
SYBEX Supplement

Mastering Windows 2000
Programming with
Visual Basic C++
by Ben Ezzell

Screen reproductions produced with Collage Complete.
Collage Complete is a trademark of Inner Media Inc.

SYBEX, Network Press, and the Network Press logo are registered trademarks of SYBEX Inc.
Mastering, Expert Guide, Developer’s Handbook, and No experience required. are trademarks of SYBEX Inc.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms by
following the capitalization style used by the manufacturer.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape Navigator are trademarks of
Netscape Communications Corporation.

Microsoft® Internet Explorer ©1996 Microsoft Corporation. All rights reserved. Microsoft, the Microsoft Internet Explorer logo,
Windows, Windows NT, and the Windows logo are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release soft-
ware whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manufac-
turer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness or
accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchantability,
fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or indirectly
from this book.

Photographs and illustrations used in this book have been downloaded from publicly accessible file archives and are used in
this book for news reportage purposes only to demonstrate the variety of graphics resources available via electronic access.
Text and images available over the Internet may be subject to copyright and other rights owned by third parties. Online avail-
ability of text and images does not imply that they may be reused without the permission of rights holders, although the
Copyright Act does permit certain unauthorized reuse as fair use under 17 U.S.C. Section 107.

Copyright ©2000 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this pub-
lication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photocopy,
photograph, magnetic or other record, without the prior agreement and written permission of the publisher.

E_Content.qxd 11/1/99 12:07 PM Page 1

http://www.sybex.com

S U P P L E M E N T
O N E

Message Handlers and the
Microsoft Foundation Classes

� Message-handling formats

� WM_PAINT message processing

� Windows font metrics and measurements

� Windowing text output

� Window resizing

S1

2642S01.qxd 11/1/99 9:49 AM Page 1

http://www.sybex.com

2

In the introductory chapters to this book (specifically Chapter 2) we discussed
the WinHello and WinHello2 programs, which displayed a simple message in the
center of the application window, and then forgot about them. This is all that the
demo programs were intended to do; they were provided with only minimal
capabilities because the object was simply to demonstrate how a Windows pro-
gram should be initialized and how to use a simple message handling loop.

In this chapter, we will use another, slightly less simple, program to demonstrate
several elements used in Windows applications. The PainText demo demonstrates
writing a display larger than the application window, along with provisions for
scrolling the display within the window. Also, unlike the WinHello demo, in which
only one message is important, the PainText example responds to several event
messages—a much more realistic eventuality. Another program discussed in this
chapter is PainText2. This program handles the same tasks as PainText, but it uses
the MFC classes.

Both programs also demonstrate an aspect of display handling that is necessary
for Windows applications: re-creating the screen, in part or entirely, as required.

PainText versus PainText2: Conventional
versus MFC Message Handling

For many programmers who began creating applications under DOS (or another
early operating system, such as Unix or CP/M), the change to Window’s event-
message programming has required an adjustment in attitude and in their approach
to programming. Creating a program as responses to event messages rather than a
direct flow of actions is a very different milieu.

By now, after several generations and versions of both Windows and OS/2,
event-driven programming is not only acceptable and convenient, but often it
is the method of choice for triggering an action or activity, even when doing so
requires defining and generating custom messages.

In a conventional Windows application, the message responses are normally
handled in the WndProc procedure as a switch/case statement, where the vari-
ous case statements may call subprocedures or may contain the code for the
immediate response.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 2

http://www.sybex.com

3

In an MFC-based application, however, the conventional WndProc procedure
has been replaced by a message-map handler which directs the event messages to
specific class methods that provide the responses. At the same time, the message
mapping often also interprets the conventional message parameters in a more
convenient format.

In the examples discussed in this chapter, using MFC for the PainText2 demo
introduces two principal changes from the PainText program:

• Instead of a message-handling loop, CALLBACK functions cause message
events to connect directly to the event-response functions. There is still a
message loop, but using MFC, it is effectively hidden from view.

• Rather than providing functions to handle scrolling as in PainText, the Pain-
Text2 program uses the CScrollView class, allowing the MFC library to
handle the scrolling for us. Functionally, the same tasks are performed but
the handling is greatly simplified.

As a brief example, the switch/message handler for the PainText program
(conventional version) is shown in Table S1.1, along with the equivalent MFC-
class methods from the PainText2 version and the CScrollView equivalents.

TA B L E S 1 . 1 : Conventional versus MFC Message Handling

Conventional MFC Equivalent CScrollView Equivalent

switch(msg)

{

case WM_CREATE: … OnCreate … OnCreate … / OnUpdate …

case WM_SIZE: … OnSize … Handled by CScrollView

case WM_PAINT: … OnDraw … OnDraw …

case WM_VSCROLL: … OnVScroll … Handled by CScrollView

case WM_HSCROLL: … OnHScroll … Handled by CScrollView

case WM_DESTROY: … (Uses default handler) Handled by CScrollView

}

PainText versus PainText2: Conventional versus MFC Message Handling

2642S01.qxd 11/1/99 9:49 AM Page 3

http://www.sybex.com

4

While it is perfectly practical—and sometimes necessary—to incorporate an
old-style switch/case statement in an MFC OnCommand function, the newer for-
mat is more convenient. Furthermore, by using the CScrollView class, most of
the messages that the conventional application needed to handle are now han-
dled automatically without requiring any provisions in the application.

The following sections discuss the conventional message-handling functions,
referred to in the PainText application, while the MFC equivalents, from the
PainText2 version, are covered primarily where they differ from conventional
message-handling functions or require special responses. At the end of the chap-
ter, we will focus on the PainText2 version and how MFC can simplify the same
process by automating most of the operations required by the PainText demo.

NOTE The PainText and PainText2 demos are included on the CD in the Chapter 3 folder.

Screen-Recovery Operations
Under DOS, once the screen is written, an application is pretty well free to for-
get about it and proceed with something else. Under Windows, however, even
though an application is limited to its own client window, the display created
is not inviolate, and the application must be prepared to re-create the display
as required. And because the application does not “own” the display, it must be
prepared for its display to be invalidated—by another window overlaying its
display, by its display being resized or shrunk to an icon and restored, or by its
application window simply being moved on the screen. The application itself
may invalidate its display by overwriting some portion with a pull-down menu
or a pop-up dialog box.

For a text-based display, pop-up dialog boxes and pull-down menus can pro-
vide their own screen recovery by saving a memory copy of the existing display
and, when dismissed, can erase themselves by restoring the original display from
memory. In text modes, this is relatively simple because less than 4KB are neces-
sary to save an entire screen (80×25×2 bytes—character and attribute—per cell).

For a graphics display, however, a similar operation would require nearly
300KB, assuming a screen 640×480 with 16 colors. Of course, for SVGA and True

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 4

http://www.sybex.com

5

Color displays, memory requirements increase accordingly. Granted, data com-
pression could reduce these requirements to some degree, but until super-fast
terabyte memories become common, the saved image approach is not likely to
be considered practical under general circumstances. Instead, Windows applica-
tions are expected to be able to re-create the screen as required.

NOTE There are circumstances in which Windows does save overwritten display areas,
such as when the cursor overwrites the display or when an icon is dragged across
a client area. Under these limited circumstances, no screen update is required.
However, in all other cases, Windows notifies the application whose screen dis-
plays have been invalidated when it is appropriate to re-create the client window
while Windows handles restoration of the application’s frame.

The WM_PAINT Message
The WM_PAINT message is posted to an application as notification that the cur-
rent screen display is invalid, requiring restoration. Thus, a WM_PAINT message is
issued, notifying the application that it’s time to repaint its display, under these
conditions:

• When an application window has been hidden, partially or entirely

• When an application window has been resized (assuming the CS_HREDRAW
and CS_VREDRAW flags were set in the style specification)

• When ScrollWindow is called to scroll the client area, horizontally or vertically

At the same time, there are circumstances under which the application may
wish to issue its own WM_PAINT message. For example, during initialization,
most applications call the UpdateWindow function, which instructs Windows to
issue a WM_PAINT message addressed to the application’s client window. Then,
after the message loop begins processing, the WM_PAINT message is picked up
and forwarded to the WndProc function, and finally, the initial window display
is painted.

In other circumstances, the application may choose to use the InvalidateRect or
InvalidateRgn functions, both of which explicitly generate WM_PAINT messages,
along with information specifying the area requiring repainting. Applications writ-
ten using MFC may simply call the Invalidate function for the same result.

Screen-Recovery Operations

2642S01.qxd 11/1/99 9:49 AM Page 5

http://www.sybex.com

6

At first, this may appear to be a rather roundabout means of accomplishing
what, in other circumstances, would be a fairly straightforward task. After all,
instructing Windows to send a message back to the application to request a
repaint is a bit like riding ‘round Robin Hood’s barn.

NOTE “Robin Hood’s barn” refers to Sherwood Forest and is a common expression for a
task carried out in the hardest possible manner.

The reasons, however, are far more than philosophical. For multiple applica-
tions to share a computer, as is the case under Windows, they must operate in a
fashion permitting others to have access to the system resources. To accomplish
this, applications are required to break their operations into a series of subtasks
and, instead of initiating these tasks directly, to place requests (that is, messages)
in a queue. Control of the system is passed back to Windows as each task is com-
pleted, and if necessary, Windows can then pass control to another application.
The result is flexible time sharing, with Windows offering each application time
and resources according to its needs.

The important item to remember is that applications must be prepared to re-
create their display space at any time. They must be ready to write the screen on
demand and to rewrite the screen on demand.

The PAINTSTRUCT Structure
Hand in glove with the WM_PAINT message is the PAINTSTRUCT information struc-
ture. A separate PAINTSTRUCT record is maintained by Windows for each applica-
tion, with the structure defined as:

typedef struct tagPAINTSTRUCT
{ HDC hdc;

BOOL fErase;
RECT rcPaint;
BOOL fRestore;
BOOL fIncUpdate;
BYTE rgbReserved[32];

} PAINTSTRUCT, *PPAINTSTRUCT, *NPPAINTSTRUCT,
*LPPAINTSTRUCT;

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 6

http://www.sybex.com

7

The first three fields in PAINTSTRUCT—hdc, fErase, and rcPaint—are
commonly used by applications. The latter three fields are used internally by
Windows 98.

NOTE If the rgbReserved field (the sixth field) is accessed directly when converting from
Windows 3.x to Windows 98, be aware that the size of this field has changed
from 16 to 32 bytes.

The first field, hdc, is simply a handle to the application’s device context. Rather
than accessing the hdc field from the PAINTSTRUCT field, however, applications
should continue to depend on the value returned by the BeginPaint or GetDC
functions called before any screen-update operations commence.

The second field, fErase, is a flag value with, confusingly, FALSE instructing
Windows to erase the background of an invalidated rectangle, and TRUE indicat-
ing that the background has already been erased.

The third field, rcPaint, consists of a RECT structure defined as:

typedef struct tagRECT
{ LONG left;

LONG top;
LONG right;
LONG bottom;

} RECT, *PRECT, NEAR *NPRECT, FAR *LPRECT;

The rcPaint field is used to keep track of the invalidated region within the appli-
cation’s client window. The four values in the rcPaint field define the sides of
the smallest rectangle enclosing all invalidated areas.

When an application is finished responding to a WM_PAINT message (by calling
EndPaint), the rcPaint field is reset, validating the entire client window. Sub-
sequently, when some portion of the client window is overwritten by another
application, pull-down menu, or pop-up dialog box, a new invalidated region
is calculated. Likewise, when any application is moved, closed, or resized, Win-
dows checks for other applications affected by these changes, resetting the
invalidated areas as required and, as appropriate, posting WM_PAINT messages
to instruct applications to restore their display areas.

Screen-Recovery Operations

2642S01.qxd 11/1/99 9:49 AM Page 7

http://www.sybex.com

8

NOTE When you are using MFC and responding to the OnDraw method call—the MFC
equivalent to a WM_PAINT message—the device context is supplied as a pointer,
pDC, to the active device context. Also, under MFC, the BeginPaint/ EndPaint
functions are not required. Applications using MFC do not have direct access to
the PAINTSTRUCT structure.

The purpose of the invalidated rectangle is twofold:

• Because paint operations are restricted to the area specified, an application
overlapped by another application’s window—or even by another of its
own display elements—does not overwrite the higher-level display while
restoring its own display area.

• This method restricts the area that requires repainting to the minimum actu-
ally necessary. While text-based displays can afford less-than-optimum screen
updates without being visually apparent, graphics displays, requiring more
processing, lack this luxury. To present a smooth, visually seamless display,
they must use the optimum approach of executing the update in the shortest
possible time, which also means within the smallest possible area.

Applications may also need to set their own update areas. This task is accom-
plished by calling the InvalidateRect function:

InvalidateRect(hwnd, NULL, TRUE);

The first parameter, hwnd, is the window handle. The second parameter
specifies the region to be invalidated. Specifying the region as NULL, as in this
example, is the equivalent of specifying the entire client area. Alternatively, you
could use an HRGN argument to pass a handle to a data structure containing the
precise region coordinates. If the third argument is passed as TRUE, it erases the
background for the set region; if it’s FALSE, it leaves the current background
unchanged.

Painting Operations
While Windows is responsible for issuing the majority of the WM_PAINT messages,
the application is responsible for responding to these messages and for creating

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 8

http://www.sybex.com

9

or re-creating the application display as necessary. However, before the applica-
tion can draw anything—even a single pixel—the application must begin by
obtaining the device-context handle (commonly abbreviated hdc).

In the WinHello demo, the device-context handle is returned by calling the
BeginPaint function as:

hdc = BeginPaint(hwnd, &ps);

In this fashion, the application has not only obtained a handle to the device con-
text but also, at the same time, retrieved the PAINTSTRUCT record (ps) by passing
the address of a local variable of the appropriate type. The form shown is com-
monly used in response to WM_PAINT messages and is always matched, when the
current operations are finished, with a corresponding EndPaint function call:

EndPaint(hwnd, &ps);

If you are using MFC, however, the painting operations are encapsulated
in the OnDraw method instead of the BeginPaint and EndPaint instructions.
Within the OnDraw method, the device context is supplied as an argument, but
painting operations proceed in the same fashion as in response to the WM_PAINT
message (see the parallel examples in later chapters).

In other circumstances, a second method of accessing the device context is:

hdc = GetDC(hwnd);

Or, using MFC, the CWnd::GetDC method is invoked to return a pointer to the
device context:

CDC* pDC;
pDC = GetDC();

The GetDC function is commonly used in any situation where immediate client
window operations cannot wait to respond to a WM_PAINT message. For example,
a Clock program, responding to a timer event, needs to update its image immedi-
ately and cannot simply wait for a WM_PAINT message to appear in the queue.

NOTE The GetDC function is not restricted to paint operations; it is also used when an
application requires information from a device context. For an example, refer to
the font and text metrics example in Supplement 14.

Screen-Recovery Operations

2642S01.qxd 11/1/99 9:49 AM Page 9

http://www.sybex.com

10

Like the BeginPaint function, the GetDC function has its own closing statement:

ReleaseDC(hwnd, hdc);

Using MFC, instead of requiring a window handle, the CWnd::ReleaseDC
method is called:

ReleaseDC(pDC);

WARNING BeginPaint must always end with EndPaint. GetDC is always closed with a
ReleaseDC function call. Mixing these functions incorrectly will not produce
a compiler error but will have serious, or possibly fatal, effects on an application’s
execution.

Okay, why two formats? Because each format has a different purpose, and each
operates in a different fashion.

The BeginPaint/EndPaint process, as mentioned previously, returns and
resets the invalidate region data, but it also restricts drawing operations to the
region specified.

The GetDC/ReleaseDC process returns a clipping rectangle, which is equal to
the entire client window, imposing no restrictions on drawing operations (aside
from the inherent limitation to the application’s window). At the same time,
while EndPaint resets the invalidated region, ReleaseDC does not change exist-
ing settings and, therefore, does not clear information that might be needed later
to restore an invalidated area.

NOTE While GetDC permits drawing operations over the entire client window area, Win-
dows itself prevents these operations from overwriting an overlying application’s
window area, and restricts screen operations to the visible or physical portion of
the display.

The GetDC and ReleaseDC functions are frequently used when only infor-
mation about a device context—whether the display, a printer, or some other
device—is required. You’ll see this use demonstrated in the next section.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 10

http://www.sybex.com

11

Controlling Graphics Text Displays
Within the Windows environment, four primary factors govern how text is drawn:

Position The row/column absolute screen positions used in a text environment are
replaced, in Windows, with window-relative pixel coordinates. Positioning must also
take into account font metrics (text sizing), alignment options, and scroll positioning
(vertical and horizontal), as well as variable window sizing.

Text size and alignment In DOS text mode, characters are a fixed size and posi-
tioned automatically by the cursor position or by explicit row/column directions. In
Windows, as with other graphics environments, text sizes, styles, and fonts can be
mixed, and with the exception of a few fixed-width fonts, individual characters vary
in size. Regardless of font, characters and/or strings are positioned by pixel coordi-
nates, not by row and column.

Scrolling DOS text mode displays, conventionally, are limited to unidirectional ver-
tical scrolling. When horizontal scrolling is permitted, movement is based on charac-
ter columns. In Windows, both vertical and horizontal scrolling can be adjusted in
single-pixel steps or in any other increment the developer desires. Text displays must
take into account offsets from origin points, providing their own vertical (line) calcu-
lations. Fortunately, in most cases, horizontal positioning can simply be handled as
an offset, without complex calculations.

Window limits DOS text displays can depend on autowrap to prevent too-long
strings from extending beyond the physical display. In Windows, the virtual and
physical displays do not share the same limits; therefore, applications must provide
their own length calculations and line breaks. In some applications, text is sized to
a phantom, virtual screen’s limits, requiring scrolling to view various portions of the
virtual window. In other cases, applications may reformat text to accommodate
changes in window size.

In the Windows environment, these four elements are not entirely separate considerations.
Instead, they tend to be interrelated or even synergistic in their effects. And while these
relationships present their own problems, Windows shields you from many of the other
problems that otherwise would be part and parcel of the process of sharing a variable-sized
display in a multiple-application environment.

There are advantages as well. For one, because operations are always relative to the win-
dow, applications can be moved around the screen without the application requiring spe-
cial provisions for repositioning. For another, the application itself does not need to
recognize the hardware, screen size, and other display constraints and adjust its behavior

Continued on next page

Screen-Recovery Operations

2642S01.qxd 11/1/99 9:49 AM Page 11

http://www.sybex.com

12

accordingly. Also, though less commonly a consideration, Windows itself provides a vari-
ety of display fonts as well as offering accessibility to additional third-party fonts.

Of course, the real point is simply that Windows applications must take a different
approach to writing any type of screen display than a similar application operating in the
DOS environment.

Windows Font Metrics and
Measurements

The WinHello demo used the simplest possible text output, employing the Draw-
Text function to write a single line centered in the application’s client window.
However, while the demo is suitable for brief text in a very simple context, most
applications will require displays with more than one line of text and/or more
sophisticated positioning.

For displays with multiple lines of text, two pieces of data are essential: vertical
line spacing and horizontal line length (assuming a horizontal orientation). But
neither of these characteristics is fixed; they both depend on font selection and,
without knowing the relevant text metrics, cannot be arbitrarily assumed.

Also, even for system fonts, you cannot assume that font characteristics will
be the same for all systems because, during installation, Windows matches fonts
to the video-display capabilities. At the same time, video board manufacturers
and third parties design and distribute their own system fonts as well as spe-
cialty fonts.

Thus, regardless of font selection, applications must treat the font metrics as
variables and request the current font information through the GetTextMetrics
function:

TEXTMETRICS tm;

hdc = GetDC(hwnd);
GetTextMetrics(hdc, &tm);
ReleaseDC(hwnd, hdc);

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 12

http://www.sybex.com

13

This also provides an example of using the GetDC function in place of the
BeginPaint function. Since no screen-painting operations are executed, there’s
no need for invalidated region information or for PAINTSTRUCT data. Thus, for a
simple information retrieval, only the GetDC operation is necessary.

The TEXTMETRIC structure is defined as:

typedef struct tagTEXTMETRIC
{ LONG tmHeight;

LONG tmAscent; LONG tmDescent;
LONG tmInternalLeading; LONG tmExternalLeading;
LONG tmAveCharWidth; LONG tmMaxCharWidth;
LONG tmWeight; LONG tmOverhang;
LONG tmDigitizedAspectX; LONG tmDigitizedAspectY;
BYTE tmFirstChar; BYTE tmLastChar;
BYTE tmDefaultChar; BYTE tmBreakChar;
BYTE tmItalic; BYTE tmUnderlined;
BYTE tmStruckOut; BYTE tmPitchAndFamily;
BYTE tmCharSet; } TEXTMETRIC;

Of these twenty fields, the seven that control text spacing are illustrated in Figure S1.1.

F I G U R E S 1 . 1 :

Windows font metrics

Figure S1.1 shows the following TEXTMETRIC fields:

tmInternalLeading Provides space for accent marks above characters
as illustrated by the S-umlaut combination shown in Figure S1.1. Although
accents are not commonly used in English, many other languages depend
heavily on interlinear accent marks. In some cases, international character

Windows Font Metrics and Measurements

2642S01.qxd 11/1/99 9:49 AM Page 13

http://www.sybex.com

14

sets provide for these; in other cases, such as Thai, algorithms are employed
to correctly combine characters, tone accents, and vowel marks. In all cases,
this spacing should be the absolute minimum between lines.

tmExternalLeading Provides the font designer’s suggested interlinear
spacing. Although it’s optional, white space between text lines increases
the readability of the display.

tmAscent Specifies the height of an uppercase character, including the
tmInternalLeading space.

tmDescent Provides space for character descenders, as in the characters g,
j, p, q, and y.

tmHeight Identifies the overall height of the font, including the tmAscent
and tmDescent values, but not the tmExternalLeading value.

In the PainText demo, the vertical line spacing used, cyChr, is calculated as:

cyChr = tm.tmHeight + tm.tmExternalLeading;

The length of a text string is not calculated as simply, however. TEXTMETRIC
supplies two values for character widths:

tmAveCharWidth Specifies width calculated as the weighted average of
the lowercase character widths.

tmMaxCharWidth Specifies width as the single widest character in the font,
usually either the W or the M character.

If calculating the width of a character string is critical, you can approximate
a third value for the average width of the uppercase letters for most fonts as
150 percent of the tmAveCharWidth value.

Text Sizing
Since font information will remain unchanged during program execution (unless
a new font is selected, of course), the simplest method of calculating text spacing
is to retrieve the text metrics information when the application is initiated; that is,
in response to the WM_CREATE message, the first message WndProc receives.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 14

http://www.sybex.com

15

Text sizing is accomplished in the PainText demo as:

case WM_CREATE:
hdc = GetDC(hwnd);
GetTextMetrics(hdc, &tm);
ReleaseDC(hwnd, hdc);
cxChr = tm.tmAveCharWidth;
cxCap = (int)(cxChr * 3 / 2);
cyChr = tm.tmHeight + tm.tmExternalLeading;
break;

This provides three basic values for positioning text using the current font: the
average lowercase character width, the average uppercase character width, and
the vertical line spacing (although only the cxChr and cyChr values are needed
in the PainText demo).

In the MFC version of the PainText demo, PainText2, the Create method might
appear to be the appropriate location for the corresponding code. However,
attempting to call the GetDC function from the Create method will fail because
the appropriate CWnd class has not yet been initialized. Instead, you could use the
OnCreate method, which is the equivalent to the WM_CREATE message response.
Alternatively, as in the PainText2 demo, the OnShowWindow method serves nicely:

void CPainText2View::OnShowWindow(BOOL bShow, UINT nStatus)
{

CScrollView::OnShowWindow(bShow, nStatus);

if(bShow)
{

TEXTMETRIC tm;
CDC *pDC;

pDC = GetDC();
pDC->GetTextMetrics(&tm);
m_cyChr = tm.tmHeight + tm.tmExternalLeading;
m_cxChr = tm.tmMaxCharWidth;

}
}

Here, the bShow argument is tested to determine if the window is being shown
or hidden, although the fact that the OnShowWindow method is being called at all
should be sufficient assurance that we do have a window and, therefore, can call
the GetDC method to retrieve a device context.

Windows Font Metrics and Measurements

2642S01.qxd 11/1/99 9:49 AM Page 15

http://www.sybex.com

16

Notice, however, that unlike in the PainText demo, there is no instruction to call
the ReleaseDC method because this is done automatically when the CDC class
goes out of context. Also, we will use the retrieved information in a slightly dif-
ferent way, as you will see later in the chapter.

Window Coordinates and Limits
In DOS text mode, the row/column coordinate system is based on an origin point
at the upper-left corner of the screen, beginning at 1,1. Under Windows, the default
coordinate system used is nominally the same, with three provisions:

• The coordinates are relative to the window.

• The coordinates are in pixel, not row/column, units.

• The origin point is numbered 0,0, not 1,1.

NOTE Windows provides several mapping modes, each employing different scalar units
and different coordinate origins. For text displays, only the default text mapping
mode is required.

Because Windows applications do not write directly to the screen—only indi-
rectly through Windows API functions—applications do not need to know where
their client windows lie in relationship to the physical screen. Instead, Windows
applications simply write to their own virtual screens, using virtual (window-
relative) coordinates, and they leave the mapping from the virtual to the physical
to Windows.

When relevant, applications may limit operations to the present width and
height of their client window. Alternatively, they may write to an assumed screen
of optimum width and/or height (even if this is larger than the active window
dimensions) and rely on scrollbar operations to position the viewport (the visible
window) over the virtual display, as demonstrated by the PainText demo.

Outputting Text to a Window
After retrieving the TEXTMETRIC information and deriving the height and width
information for the system font, the next obvious step is to write text to the client
window (the application’s screen display). In the WinHello demo, the DrawText
function is sufficient. However, in PainText, a more sophisticated display is pro-
vided by using the TextOut function.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 16

http://www.sybex.com

17

Like the WinHello demo, the PainText demo follows the standard response pat-
tern of painting the application screen in response to a WM_PAINT message. How-
ever, because the text displayed will be larger than the application window, the
client window also has vertical and horizontal scrollbars to position the viewport
over a larger virtual window.

The text metrics information has already been retrieved when the WM_CREATE
message is received, but at this time, there is additional information that the
application requires. Part of this information can be derived from the ps paint
structure.

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
nFirst = max(0, cyPos + ps.rcPaint.top / cyChr);
nLast = min(NUM_LINES, cyPos + ps.rcPaint.bottom / cyChr);

NOTE cyPos is calculated in lines of text, not in pixels. In like fashion, the cxPos (hori-
zontal) is measured in average character widths.

The cyPos variable contains the present vertical scrollbar settings (initially
set to zero); cyChr is the vertical line spacing. The ps.rcPaint.top and
ps.rcPaint.bottom arguments identify the top and bottom, respectively, of
the window’s invalidated rectangle area (these values are relative to the client
window, of course).

In the MFC version (PainText2), we use a CRect instance to retrieve the client
window coordinates (window size) and to calculate the beginning and ending
lines for our display, because the ps structure is not available in the OnDraw
method.

GetClientRect(cRect);
nFirst = max(0, m_cyPos);
nLast = min(NUM_LINES, m_cyPos + cRect.Height() / m_cyChr);

Another difference is the variable designation m_cyPos instead of simply
cyPos. m_cyPos indicates a member variable; that is, a variable belonging to
the class rather than to a local function. Member variables are globally avail-
able to all class methods. Local variables are not available outside of the
method where they are declared.

Given this information, the calculated nFirst and nLast values will provide
line numbers identifying text that needs to be repainted, as shown in Figure S1.2.

Windows Font Metrics and Measurements

2642S01.qxd 11/1/99 9:49 AM Page 17

http://www.sybex.com

18

F I G U R E S 1 . 2 :

Displaying multiple text lines

The two macros min and max are employed simply as a safeguard against errors
in calculation. They are used to ensure that nFirst is never less than 0 and that
nLast cannot be greater than NUM_LINES—the maximum number of lines that
will be written.

Text Alignment

After the beginning and ending points have been determined, the next step is to
set the appropriate text alignment before writing anything to the screen. Under
DOS, text alignment is fixed, but in almost any graphics context, a choice of align-
ments is permitted. In this case, the TA_LEFT and TA_TOP settings provide that the
text string will be written with the top and left extents aligned with the output
coordinates:

SetTextAlign(hdc, TA_LEFT | TA_TOP);
for(i = nFirst; i <= nLast; i++)
{

x = 1 + cxChr * (i - cxPos);
y = 1 + cyChr * (i - cyPos);

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 18

http://www.sybex.com

19

Here, the MFC version is virtually identical. The only real difference is in how
the SetTextAlign function is called.

pDC->SetTextAlign(TA_LEFT | TA_TOP);
for(i = nFirst; i <= nLast; i++)
{

x = 1 + m_cxChr * (i - m_cxPos);
y = 1 + m_cyChr * (i - m_cyPos);

New x-axis and y-axis screen positions (within the client window) are calcu-
lated for each line written, together with an x-axis offset to indent successive
lines. Normally, the x-axis position used would be one character width (inset
from the client window frame). In this case, a progressive offset is used to pro-
duce a display that is wider than any normal display terminal can handle and,
thus, demonstrates horizontal scrolling.

Also, remember that the positions calculated take into account the scrollbar off-
sets. Therefore, either or both values may be negative integers, indicating that the
current line begins outside the active client window. This is not an error—screen-
painting operations may originate at coordinates outside the window, either in the
negative or positive directions. When this happens, or when drawing operations
extend outside the client window, Windows simply truncates the actual painting
operation to the visible region, without requiring the application to make elabo-
rate and complex accommodations.

The alternative, attempting to calculate where a string should be truncated in
order to fit the active window and present the appropriate alignment, is not only
cumbersome but, in practical terms, effectively impossible when a variable-width
font is used.

On the other hand, asking the application to begin by writing several hun-
dred lines of text above the visible screen (and hundreds more below), simply
to include the visible portion of the display, would be both slow and unnecessar-
ily cumbersome. Ergo, the simplest approach is to allow the application to exe-
cute its operations in a virtual space that is as large as necessary horizontally,
with Windows providing clipping, but at the same time, provide reasonable
beginning and ending points vertically. This approach is demonstrated in the
PainText demo.

Windows Font Metrics and Measurements

2642S01.qxd 11/1/99 9:49 AM Page 19

http://www.sybex.com

20

Formatted Text Output

In conventional programs, formatted text output is provided directly using the
printf function (or an equivalent):

gotoxy(x, y);
printf(“This is line %d being displayed”

“ at X:%d / Y:%d”, i, x, y);

In Windows, a somewhat different approach is required:

TextOut(hdc, x, y, szBuffer,
wsprintf(szBuffer,

“This is line %d being displayed”
“ at X:%d / Y:%d”, i, x, y));

The TextOut function expects five parameters:

• The device-context handle (hdc)

• Two screen coordinates (x and y)

• A long pointer (LPSTR) to an ASCIIZ string to be written

NOTE The term ASCIIZ is shorthand for a null-terminated ASCII string.

• The length of the string (in characters)

These parameters could be provided in a series of separate steps. For example,
you could use the sprintf function to format the string to a buffer (an array of
char), and then pass the buffer, together with its length, to the TextOut function.
However, because the wsprintf function returns the string length directly while
writing the text to a buffer, multiple separate instructions can be reduced to a sin-
gle longer instruction. (Arguments are always evaluated from left to right; that is,
in the same order listed.)

In the MFC version, instead of using a char array, a CString object is used to
create the string. We do not need to supply a string length as a separate argument
because the length is included in the CString object.

csText.Format(“This is line %d being displayed at”
“ X:%d / Y:%d”, i, x, y);

pDC->TextOut(x, y, csText);

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 20

http://www.sybex.com

21

Notice that in all three cases—whether the printf, wsprintf, or CString::
Format function is used—the arguments and format instructions are the same.

To sum up, it’s a case of sixes and half-dozens, with little to choose among the
three except personal preferences.

Scrollbar Operations
Scrollbars are a popular control feature normally associated with screen displays
for adjusting the horizontal and vertical positioning (although scrollbars are see-
ing increasing use for other scalar adjustments). Perhaps the only drawback to
scrollbars is that they frequently cannot be used without a mouse (many applica-
tions implement the arrow and page keys as alternative controls). However, since
few (if any) Windows users lack a mouse, there is certainly no reason not to use
scrollbars and every reason, including familiarity and programming convenience,
to employ them.

Of course, there is always at least one fly in the ointment. For scrollbars, the fly
is that the scrollbar operations are not automatic; applications require a few pro-
visions before they can respond to scrollbar messages.

Scrollbar Messages
Figure S1.3 illustrates two scrollbars (vertical and horizontal), with labels show-
ing the Windows messages posted when you click each scrollbar region with the
mouse or release the mouse.

Each scrollbar has five active regions (unless it is created in too small a size): the
two end arrows (endpads), the thumbpad, and the scrollbar body on each side of
the thumbpad. When the mouse is clicked or released on any of these areas, each
generates a different set of event messages, as shown in Figure S1.3.

Both scrollbars return SB_LINEUP messages when the mouse is clicked (button
down) on the top or left endpad; they return SB_LINEDOWN messages when the
mouse is clicked on the bottom or right endpad. Alternatively, if the mouse but-
ton is held down on any of the endpads, a continuous series of SB_LINEUP or
SB_LINEDOWN messages is generated, providing continuous scrolling in the appro-
priate direction.

Scrollbar Operations

2642S01.qxd 11/1/99 9:49 AM Page 21

http://www.sybex.com

22

F I G U R E S 1 . 3 :

Scrollbar messages

The body of the scrollbar—the area between either endpad and the thumbpad—
is also an active control. If the mouse hit is above or to left of the thumbpad, an
SB_PAGEUP message is generated. When the mouse hit is to the right of or below
the thumbpad, an SB_PAGEDOWN message is generated. When the mouse button
is released anywhere except on the thumbpad, an SB_ENDSCROLL message is
returned.

The thumbpad itself generates a different type of message. It returns a series of
SB_THUMBTRACK messages as long as the mouse button is down. When the mouse
button is released, the thumbpad returns a single SB_THUMBPOSITION message, as
long as the mouse cursor is still on the scrollbar. If the mouse cursor has moved
off the scrollbar, no release message is posted.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 22

http://www.sybex.com

23

Also, even if the SB_THUMBTRACK messages are ignored (by the application), as
long as the mouse button is held down and the mouse remains on the scrollbar,
Windows generates a thumbpad outline following the mouse position.

Scrollbar Ranges and Thumbpad Positions
In order for scrollbars to report and function correctly, each scrollbar must have
both the range and thumbpad positions assigned.

For a standard Windows application, the SetScrollRange function is called
with the application window’s handle, an integer constant identifying the scroll-
bar type (horizontal or vertical), two integer arguments setting the minimum and
maximum range values, and a Boolean flag directing the scrollbar to be redrawn
(if TRUE).

SetScrollRange(hwnd, SB_VERT,
nRangeMin, nRangeMax, FALSE);

SetScrollPos(hwnd, SB_VERT, nScrollPos, TRUE);

After setting or resetting the scrollbar range, the scrollbar’s thumbpad position
still must be set. Again, SetScrollPos is called with the application window’s
handle and a constant identifying the scrollbar type—a horizontal or a vertical
scrollbar—followed by the new position and a flag directing the scrollbar to be
redrawn, or if FALSE, to be left as is.

The actual scrollbar range adjustment is handled in response to the WM_SIZE
message (discussed a bit later in the chapter, in the “Windows Sizing and Resiz-
ing” section). The scrollbar thumbpad position is updated regularly in response
to WM_VSCROLL or WM_HSCROLL messages.

For an MFC-based application, the process is essentially the same, except that
the SetScrollRange and SetScrollPos functions are CWnd class methods and do
not require the window handle. On the other hand, both the SetScrollRange
and SetScrollPos functions are internal when using the CScrollView class, so
the SetScrollSizes function is used to set the scrollbar ranges as well as the
scrollbar page and line step sizes.

Scrollbar Message Handling
Because the SB_xxxxxx messages posted by scrollbar events are secondary mes-
sages, a standard Windows application begins by looking for either a WM_VSCROLL

Scrollbar Operations

2642S01.qxd 11/1/99 9:49 AM Page 23

http://www.sybex.com

24

or WM_HSCROLL message, indicating that the mouse event occurred in the verti-
cal or horizontal scrollbar, respectively. The secondary event message is found
in the wParam value.

For an MFC-based application, the equivalent is to use the ClassWizard to cre-
ate two methods: OnHScroll and OnVScroll in the CPainText2View class. Here,
however, instead of wParam and lParam values, three arguments are supplied.
Two of these arguments are derived from the standard wParam and lParam argu-
ments, identifying the type of scroll message and the thumbpad position on the
scrollbar. The third argument is a pointer to the CScrollBar class instance origi-
nating the message.

Because the horizontal and vertical scrollbar responses are quite similar (in the
PainText demo), the WM_VSCROLL message handling is used here to illustrate both
cases, beginning as:

case WM_VSCROLL:
switch(LOWORD(wParam))
{

Under earlier Windows versions, the wParam argument was commonly
accessed as switch(wParam) without requiring the LOWORD macro. In Win-
dows 98, however, the wParam argument has changed from a 16-bit to a 32-bit
argument. Despite this change, the secondary message value accompanying
a WM_COMMAND, WM_VSCROLL, or WM_HSCROLL message (among others) is still a
16-bit value but is now passed as the low word in wParam. In many cases,
because the high-word value will be NULL or zero, switch/case handling will
function without including the LOWORD reference. But you can’t depend on this.
Ergo, the LOWORD macro should always be used to explicitly extract the 16-bit
secondary message from the 32-bit argument.

In an MFC version, if you were handling the scrollbar events directly, they
would already be identified in the nSBCode parameter and handled as:

switch(nSBCode)
{

NOTE Remember, the PainText2 application uses the CScrollView class and, therefore,
in this demo, these functions are handled internally and do not appear in the
source code.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 24

http://www.sybex.com

25

Because the order in which the scrollbar events are handled is not impor-
tant, the first two handled here will be the endpad messages: SB_LINEUP and
SB_LINEDOWN.

case SB_LINEUP:
cyStep = -1;
break;

case SB_LINEDOWN:
cyStep = 1;
break;

Both vertical and horizontal scrollbar cases provide essentially the same
response, using a set step value for vertical movement of one line up or down;
for the horizontal scrollbar, the equivalent would be a character movement left
or right. And, yes, for the present, the graphics text is being treated very much
like a row/column text display.

Alternatively, the scrollbar positions themselves could be incremented or
decremented at this point. But, for the moment, it’s simplest to set a variable at
this point and then later adjust the display and scrollbar positions appropriately.

The next two events are the SB_PAGEUP and SB_PAGEDOWN messages:

case SB_PAGEUP:
cyStep = min(-1, -cyWin / cyChr);
break;

case SB_PAGEDOWN:
cyStep = max(1, cyWin / cyChr);
break;

In these two instances, the movement range is calculated from the size of the
client window (cyWin) and the vertical line spacing (cyChr), with a simple range
check to return a minimum line adjustment of 1 (or –1).

The line and page scroll messages are relatively simple, but the SB_THUMBTRACK
message requires a different provision. For this event, instead of an incremental
adjustment, the scroll step size is the differential between the stored scrollbar
position (cyPos) and the new position reported in the low word of the lParam
argument.

case SB_THUMBPOSITION:
cyStep = LOWORD(lParam) - cyPos;
break;

Scrollbar Operations

2642S01.qxd 11/1/99 9:49 AM Page 25

http://www.sybex.com

26

Remember, each scrollbar has already been assigned a range for full-scale
movement. Windows, in the low word of lParam, is simply reporting the relative
position on the assigned scale. At this point, the application is calculating the
differential, so presently another calculation can be made to move the thumbpad
to the same position that was reported. Slightly inefficient, isn’t it?

Fortunately, execution efficiency isn’t important in this particular series of
routines. What is important—a smooth, seamless response to dragging the
thumbpad—is being accomplished efficiently with a minimum of source code.
As always, it’s a choice of trade-offs.

If you’ve realized that no provisions have been made to track the thumbpad—
the SB_THUMBPOSITION event repositions the thumbpad after the mouse button
is released and not while it’s being dragged—this is a good time to explain that
these two forms are generally treated as alternatives, not complements.

Continuously tracking the thumbpad position has one major flaw: It tends to be
sluggish, particularly if responding to a change in position requires much calcula-
tion or screen activity. Therefore, many applications prefer to use the SB_THUMB-
POSITION message and ignore the SB_THUMBTRACK messages. However, if you
wish, the following fragment can be implemented to provide thumbpad tracking:

case SB_THUMBTRACK:
cyStep = LOWORD(lParam) - cyPos;
break;

For a comparison, try holding the button down on the scrollbar track, generat-
ing a series of SB_PAGEDOWN or SB_PAGEUP messages. Then execute a similar scroll
using the SB_THUMBTRACK response. Of course, the vertical length of the display is
also a factor, but overall, the differences are distinct.

Last, a default case is provided purely as a precaution to reset the step value:

default:
cyStep = 0;
break;

Before you decide that the default case is redundant, consider for a moment the
results if, for example, a SB_PAGEDOWN event is followed by a series of unrecog-
nized SB_THUMBTRACK messages, without resetting cyStep.

Cautionary tales aside, the rest of the story is found after the switch/case
statement finishes.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 26

http://www.sybex.com

27

if(cyStep = max(-cyPos, min(cyStep, cyMax - cyPos)))
{

cyPos += cyStep;

The first provision is simply a range check, after which the scrollbar position
variable is incremented according to the cyStep value (which may be a negative
or positive integer).

Having reset the cyPos variable, the next requirements are to adjust the win-
dow position to match and then update the position of the scrollbar’s thumbpad.

ScrollWindow(hwnd, 0, -cyChr * cyStep, NULL, NULL);
SetScrollPos(hwnd, SB_VERT, cyPos, TRUE);
UpdateWindow(hwnd);

}

And, last, the UpdateWindow function is called to ensure that the client window
is repainted. This results in a WM_PAINT message being posted and requires its
own response.

In responding to the ScrollWindow function, Windows has set the invalidate
rectangle coordinates to cover the area revealed by the scroll operation. There-
fore, the subsequent WM_PAINT operation is required to paint only a portion of
the screen, which is faster than repainting the entire client window.

Window Sizing and Resizing
While the PainText demo is deliberately designed to create a display larger than
the actual client window, thus necessitating the use of scrollbars, further provi-
sions are also required to respond to changes in the size of the client window.

Any time the client window changes size—vertically or horizontally, larger or
smaller—a WM_SIZE message is posted to the application. Also, when the applica-
tion was first created, a WM_SIZE message preceded the initial WM_PAINT message.

In the WinHello demo, the WM_SIZE message is left for default handling by Win-
dows instead of being handled by the application itself. The PainText application,
however, is intended to be a bit more sophisticated in its response, and for this
purpose, several operations are necessary.

Window Sizing and Resizing

2642S01.qxd 11/1/99 9:49 AM Page 27

http://www.sybex.com

28

Size Message Handling
In response to a WM_SIZE message, the first requirement is to retrieve the new
cyWin and cxWin values that accompany the WM_SIZE message as the high-word
and low-word values in the lParam argument, thus:

case WM_SIZE:
cyWin = HIWORD(lParam);
cxWin = LOWORD(lParam);

In the MFC version, the OnSize function, which is the response to a WM_SIZE
message, is called with three parameters: the nType argument, which reports the
type of sizing operation but which will be ignored here, and the cx and cy argu-
ments, which report the new client window size.

void CPainText_View::OnSize(UINT nType,
int cx, int cy)

{
CView::OnSize(nType, cx, cy);

// TODO: Add your message handler code here
if(m_cxChr > 0 && m_cyChr > 0)
{ // don’t do anything unless have text sizes

m_cyWin = cy;
m_cxWin = cx;

NOTE Again, in the PainText2 demo, the OnSize method is internal to the CScrollView
class and no direct handling is required.

Before responding to the size-change message, the first step is to determine
if you have vertical and horizontal character sizes. Using the MFC classes, the
sequence of size messages is not quite as clean as it is in a conventional appli-
cation. A size event will be reported before the system text metrics have been
retrieved—depending, of course, on which version is used to test the text metrics.
However, to prevent a runtime error caused by a divide-by-zero operation, a sim-
ple test is provided.

Also, in the MFC version, the size information is stored in member variables for
the CPainText_View class rather than in global variables. The effect is the same,
but the mechanism is slightly different.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 28

http://www.sybex.com

29

Scrollbar Adjustments
Once you know the new window size, set the vertical and horizontal scrollbars
to match. Begin by calculating a new value for cyMax and take into account the
number of lines that can be displayed in the resized window.

cyMax = max(0, NUM_LINES + 2 - cyWin / cyChr);
cyPos = min(cyPos, cyMax);

In like fashion, the scrollbar thumbpad position is also recalculated before next
resetting the scrollbar range and thumbpad position.

SetScrollRange(hwnd, SB_VERT, 0, cyMax, FALSE);
SetScrollPos(hwnd, SB_VERT, cyPos, TRUE);

The MFC version follows essentially the same pattern.

And last, a similar treatment is accorded the horizontal scrollbar. In theory,
and according to various documentation, the scrollbar ranges should only
require adjusting when the application window is created or resized. Experi-
ence, however, has suggested that better results are achieved if the scrollbar
range is reset immediately before adjusting the thumbpad position.

In later examples in this book, the text metrics operations demonstrated by
the PainText program will be used in a variety of other applications, as will the
scrollbar-handling provisions and the text-handling and positioning routines.

Simplified Operations with MFC
The PainText2 demo shows a much simplified method of presenting information
in a scrollable format by using the CScrollView class as the basis for the display
window. In the PainText2 demo, instead of the application writing only the infor-
mation that will fit in the display window, a virtual space is supplied where the
entire document can be written. Then, after the document is written, the CScroll-
View supplies all of the scroll operations.

This does not mean that a monstrous copy of the entire document is kept in
memory as an image. As I’m writing this chapter, more than 40 pages of text are
actively available, but only approximately a half-page is visible in the display
window. In other cases, I may be working on a document containing several
hundred pages, again with only a half-page or so visible.

Simplified Operations with MFC

2642S01.qxd 11/1/99 9:49 AM Page 29

http://www.sybex.com

30

And, remember, because that half-page—at my display resolution— requires
roughly 2MB of memory to display, the entire document could demand 80MB to
90MB of memory (as an image).

Instead, the CScrollView class simply controls which part of the drawing oper-
ation is actually sent to the display context for viewing, but it allows the drawing
operation to act as if it were writing everything. Furthermore, the CScrollView
class manages the scrollbars for the view window, intercepts and interprets the
scrollbar messages, and invisibly handles most of the operations demonstrated in
the PainText demo.

Setup for CScrollView
Using the CScrollView class does, however, have its own requirements. First,
because the information used for the display is artificially structured, you need
to retrieve some information about the text metrics (the font size characteristics).
For the PainText2 demo, this retrieval was shown earlier in the OnShowWindow
method (see “Text Sizing”).

Once you have retrieved the font information, you use the OnUpdate method to
provide four important pieces of information to the CScrollView class.

The first and obligatory piece of information is the mapping mode to be used in
the CScrollView window. This argument may be any of the Windows mapping
modes except MM_ISOTROPIC or MM_ANISOTROPIC. To use an unconstrained map-
ping mode, you should call SetScaleToFitSize instead of SetScrollSizes.

The second and the one really essential piece of data is the x/y size of the vir-
tual window where you want to write your information. This pair of size coordi-
nates does not restrict what you write (or draw), but it does place limits on how
you can scroll across the virtual window. If the specifications are too small, you
will simply not be able to view all of the contents. If the specifications are too
large, the view will be able to scroll beyond the displayed data.

The third and fourth pieces of data are optional arguments and set the x/y
scroll sizes for page and line steps, respectively. If not supplied, they will default
to predefined step sizes.

The following code fragment, from the PainText2 demo, shows one
implementation.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 30

http://www.sybex.com

31

void CPainText2View::OnUpdate(CView* pSender, LPARAM lHint,
CObject* pHint)

{
if(m_cxChr > 0 && m_cyChr > 0)

SetScrollSizes(MM_TEXT,
CSize(m_cxChr*100, m_cyChr*100),
CSize(m_cxChr*10, m_cyChr*10),
CSize(m_cxChr, m_cyChr));

else
SetScrollSizes(MM_TEXT, CSize(1300, 2000),

CSize(130, 200), CSize(13, 20));
}

Here, two different provisions are offered. The first depends on font informa-
tion to calculate the CScrollView window size and scroll step sizes; the second
uses predefined sizes if the font information is not available.

In other circumstances—for example, when you wish to show a document—you
may be less concerned with font information and more interested in document-
size information. For this purpose, when implementing your custom document
class, you would include a function to return a CSize response giving the size of
the document, such as GetDocSize().

The OnDraw Method
Having set up the CScrollView class instance, the remaining task is painting
the actual window display. In the PainText2 demo, this is similar to the original
PainText demo, but not identical The PainText2 version use the OnDraw method,
as shown here:

void CPainText2View::OnDraw(CDC* pDC)
{

CPainText2Doc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

CString csText;
int i, x, y;
TEXTMETRIC tm;

pDC->GetTextMetrics(&tm);
m_cyChr = tm.tmHeight;
m_cxChr = tm.tmAveCharWidth;
pDC->SetTextAlign(TA_LEFT | TA_TOP);
for(i=0; i<=NUM_LINES; i++)

Simplified Operations with MFC

2642S01.qxd 11/1/99 9:49 AM Page 31

http://www.sybex.com

32

{
x = 1 + m_cxChr * i;
y = 1 + m_cyChr * i;
csText.Format(

“This is line %d being displayed at X:%d / Y:%d”,
i, x, y);

pDC->TextOut(x, y, csText);
}

}

Notice that the OnDraw method in PainText2, unlike the WM_PAINT response
in PainText, does not calculate a beginning or ending line number and that no
scrollbar positions are used to calculate offsets. Instead, the entire display is
being written just as if the window were actually large enough to display all
of the information. In turn, the CScrollView window provides the view and
offsets into the virtual space.

Differences in the Demos
To summarize, you should note the following differences between the PainText
and PainText2 (MFC) examples:

• In the CScrollView-derived window, no efforts are made to track the scroll-
bar positions or to offset the drawing information accordingly.

• No limits are placed on where and what information can be drawn.

• Window size information is required.

Also, if you compare Figure S1.4 with Figure S1.2, you should see the differ-
ences in the line offsets.

In Figure S1.2, the line offsets shown are relative to the window. In Figure S1.4,
the line offsets are relative to the document (the offsets shown are relative to a
much larger space than the space shown in the visible CScrollView window).
By itself, this factor is a powerful argument for using the CScrollView class. By
drawing in a virtual space of whatever size desired rather than trying to draw
portions of an image to fit within a view window, the task of constructing a com-
plex image or document is greatly simplified.

Supplement 1 • Message Handlers and the Microsoft Foundation Classes

2642S01.qxd 11/1/99 9:49 AM Page 32

http://www.sybex.com

33

F I G U R E S 1 . 4 :

Multiple text lines in
PainText2

This chapter described how to implement several provisions required by most
Windows applications: writing a display larger than the application window,
scrolling the display within the window, and responding to several event mes-
sages. We showed how these operations are done with conventional program-
ming, in the PainText demo, and how they are simplified by using MFC, in the
PainText2 demo.

In the next chapter, we will address another requirement for Windows applica-
tions: responding to keyboard events.

Simplified Operations with MFC

2642S01.qxd 11/1/99 9:49 AM Page 33

http://www.sybex.com

S U P P L E M E N T
T W O

Keyboards, Carets, and
Characters

� Keyboard-event message components

� Virtual key codes and handling

� Keyboard message responses and handling

� Text caret (cursor) handling

� Event message generation

S2

2642S02.qxd 11/1/99 9:50 AM Page 1

http://www.sybex.com

2

The standard 89-key and the enhanced 101–102-key keyboards, as well as the
newer one-handed key encoders, are the input devices of choice for today’s com-
puter user. And even though all types of applications—not just Windows 98 pro-
grams—are becoming increasingly mouse-interactive, until such time as either
mechanical telepathy or direct neural interfaces become common and reliable,
the keyboard will remain the primary system input device. Yes, I know that pen-
based computers are out there. But can we really take them seriously? Not with
my handwriting!

Because the keyboard is so important, knowing how Windows 98 handles key-
board events is critical. The different languages and character sets used around
the world also require different programming considerations. This chapter will
show you how to manage keyboard-events in Windows applications.

The Evolution of Keyboard Character
Sets and International Language Support

Originally, PCs recognized a single character set with the character values 0x20
through 0x7E devoted to the English alphabet, the Roman number set, and
assorted punctuation. The remaining 128 character values—0x80 through 0xFF—
were devoted to the extended ASCII characters, providing a selection of Greek
and mathematical symbols and a primitive series of box-drawing characters.

On the whole, this character set was strictly English-chauvinistic. For non-
English writers, it provided an exercise in frustration, as they attempted to ren-
der their native languages via a restrictive display channel. And, while various
approaches attempted to circumvent these limitations, these often innovative
experiments have become, principally, a matter of historical interest only.

Today, since computers are international in both nature and recognition, a vari-
ety of keyboard drivers (with corresponding video and printer character sets) pro-
vide support for most, if not all, of the principal languages. In some cases, such as
the Japanese Kanji alphabet, this support may involve special keyboard layouts. In
other cases, such as the Thai alphabet, the familiar keyboard can be adapted (with
only a change of key caps for Thai characters); only special support for the display
format is required, along with an appropriate driver, of course.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 2

http://www.sybex.com

3

Earlier versions of Windows provide international alphabets, but the 256 char-
acters supported by an 8-bit character code, such as the familiar ANSI ASCII stan-
dard, are not adequate for true international support. For this reason, a new
standard, called Unicode, has been defined. In Unicode, characters use a 16-bit
char (or wide char) code to support a total of 65,536 characters—quite sufficient
to encode all of the world’s contemporary alphabets.

Of course, this does not mean that every keyboard will be required to support
the entire Unicode char set. Instead, keyboard drivers access subsets of the Uni-
code standard for specific languages. Win32 (Windows 98) applications have the
options of supporting either Unicode or the conventional ASCII character set or
providing mixed support for both.

Although you don’t need to worry about Unicode in most cases, sometimes it is
important for international support, even on an introductory level. The KeyCodes
and Editor demos, which are discussed in this chapter, demonstrate this support.

ANSI versus MBCS versus Unicode
The conventional ANSI character set consists of an 8-bit font (255 characters) and is lim-
ited to the Roman alphabet together with some European variations and an assortment of
symbols. The shortcoming of the ANSI character set is that it limits displays to languages
using the Roman alphabet—which also means that a large part of the world’s population
is not able to view computer displays in their native language(s).

Although multibyte characters (MBCS) have been used for a number of international lan-
guages, the multibyte approach has never been standardized; it often requires specific
firmware and software while still leaving the operating system itself limited to an English
(or Roman-alphabet) display. One example of the MBCS approach is in the Japanese Kanji
script.

In contrast, Unicode characters—a.k.a. “wide characters”—use 16-bit character descrip-
tors (for 65,535 characters) and include character sets for every language used in the mod-
ern world, including Kanji, as well as technical symbols and special publishing characters.

Admittedly, wide characters do take more space in memory than multibyte characters but
they are processed faster. Another disadvantage to multibyte characters is that only one
locale can be implemented at a time when using multibyte encoding, but Unicode repre-
sentation encompasses all (terrestrial) character sets.

Continued on next page

The Evolution of Keyboard Character Sets and International Language Support

2642S02.qxd 11/1/99 9:50 AM Page 3

http://www.sybex.com

4

Both MFC and the runtime library support Unicode or MBCS. (The MFC framework
is Unicode-enabled throughout, except for the database classes; ODBC is not
presently Unicode-enabled.)

Both Unicode and MBCS are enabled by means of portable data types in MFC function
parameter lists and return types. These types are conditionally defined in the appropriate
ways, depending on whether your build defines the symbol _UNICODE or the symbol
_MBCS (which means DBCS or double-byte character set). Different variants of the MFC
libraries are automatically linked with your application, depending on which of these two
symbols your build defines.

Class library code uses portable runtime functions and other means to ensure correct Uni-
code or MBCS behavior.

Most traditional C and C++ code makes assumptions about character and string manipu-
lation that do not work well for international applications; however, the application must
still handle certain kinds of internationalization tasks in the application code. To simplify
internationalization, always:

• Use the same portable runtime functions that make MFC portable under either
environment.

• Make literal strings and characters portable under either environment using the
_T macro.

• Follow precautions for MBCS strings during parsing; these precautions are not
required under Unicode.

• Mix both ANSI (8-bit) and Unicode (16-bit) strings in an application if needed, but do
not mix them in the same string.

• Never hard-code strings in any application. Instead, strings should always be
STRINGTABLE resources in the application’s .RC file. This allows an application to
be localized without changing the source code and recompiling.

You can find more extensive information on Unicode versus ANSI character sets in the
online documentation included with your compiler.

Handling Keyboard Events
One of the principal strengths of the Windows environment is its international
adaptability. During installation, or via the International dialog box in the Control

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 4

http://www.sybex.com

5

Panel, you can select a variety of keyboard drivers, along with fonts and .DLL
libraries that support various international keyboard configurations and charac-
ter sets.

If you are reading this in English, most likely the keyboard drivers available with
your version of Windows 98 are principally those suited to the Germanic/Romance
languages. If you are reading a translated version of this book, your version of
Windows 98 probably supplies a different selection of supported keyboards and
alphabets.

No matter which keyboard driver you’re using, Windows takes control of
your keyboard and actively traps all keyboard events, long before they could
be received and interpreted by an application. Routines supplied by Windows
decode these key events, storing the results as keyboard-event messages in the
application’s message queue; Windows decides which message queue the key-
board input is intended for.

Then, the target application needs to retrieve the keyboard-event messages that
Windows has stored in its message queue. When control returns to the target
application, the GetMessage function (refer to the WinMain routine discussed
in Chapter 2) retrieves the keyboard-event message from the queue. After it is
retrieved, the application treats the event message as characters received directly
from the keyboard, in a fashion similar to how the event message is handled
under DOS.

However, you need to be careful because similar does not mean identical. The
principal difference between a DOS application receiving keyboard-event mes-
sages and a Windows application retrieving keyboard-event messages from
the application’s message queue is primarily the amount of information that is
reported.

Early computers, with their slow CPUs and limited memory, couldn’t handle
complex information from the keyboard without sacrificing what little speed of
execution they were capable of. (Some very early machines did not even recog-
nize, except via special provisions, a difference between uppercase and lowercase
characters and handled only 6-bit char codes.) For these systems, the wealth of
information available through a modern keyboard would be overwhelming.

Under DOS, the keyboard-event message is essentially the scan and char codes
returned by the keyboard buffer. When the user presses the a key, a DOS key-
board buffer is fed only the single character a returned as the char code. The scan
code, which identifies the physical key and some aspects of the Shift+Ctrl+Alt

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 5

http://www.sybex.com

6

flag states, has already been discarded as unnecessary. (For details, see DOS inter-
rupts 16h and 21h.)

But Windows 98 and, to a lesser degree, earlier versions of Windows are
designed for operation on less limited and less time-constrained CPUs. Under
Windows, the same physical event of pressing the a key begins by reporting
three separate event messages:

• A WM_KEYDOWN event reporting that a key is being pressed

• A WM_CHAR event reporting the character code generated (in the wParam
argument)

• A WM_KEYUP event reporting the subsequent key release (unless, of course,
the key is held down for auto-repeat)

Each of these three messages is accompanied by wParam and lParam argu-
ments. The WM_CHAR event comprises six separate information fields. Ergo, a
total of eight data elements are reported for each message received, resulting
in a grand total of 24 pieces of data generated by one keystroke!

Fortunately, applications are not required to use all of the information or even
to recognize its existence, so you may feel free to wipe the worried sweat away
from your brow and cease considering the keyboard as a potential instrument for
hari kari. All of the information is there when needed, but it is not obligatory.

Types of Keyboard-Event Messages
Each keyboard event begins by generating a window message indicating that the
event is one of two things: an application message or a system keystroke message.
Application messages are WM_KEYDOWN, WM_KEYUP, WM_CHAR, and WM_DEADCHAR.
System keystroke messages are WM_SYSKEYDOWN, WM_SYSKEYUP, WM_SYSCHAR, or
WM_SYSDEADCHAR.

System keystroke messages, identified as WM_SYSxxxxx, are generally events
that are more important to Windows than to the application. Normally, they are
simply passed by default to DefWindowProc for handling. However, the KeyCodes
demo described in this chapter traps and displays almost all keyboard-event mes-
sages, both system and application, together with all of the information accompa-
nying each.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 6

http://www.sybex.com

7

TIP Because the system interprets the event message as requiring special actions, Win-
dows, in some cases, takes control after the first part of the key event is
processed. Thus, a few keyboard events are only partially trapped by this program.
The reasons for such event instances should be readily apparent to any program-
mer even partially familiar with the Windows 98 interface. But, if you are not
familiar with the interface, the discontinuity occurs simply because this program
loses the input—and, therefore, the subsequent key events—whenever a hotkey
combination redirects operations to another application or utility.

System-key event messages include Alt-key combinations, such as the Alt+Tab or
Alt+Esc combinations, which are used to switch the active window or the system
menu accelerators. (Alt-key combinations are discussed in detail in Supplement 9.)
In some cases, these event messages may be used directly by applications, but they
are normally left for Windows to recognize and handle.

In like fashion, the application ignores both the application and system
xxxDEADCHAR messages. In general, these are used by non-US keyboards that
include special keys for adding accents or diacritics to other letters. They can
also provide other special functions or, in Unicode applications, produce other
special selections. Because these messages do not, of themselves, generate char-
acters, they are called “dead” and, for most applications, they can be safely
ignored.

Similarly, the WM_KEYUP, WM_SYSKEYUP, WM_KEYDOWN, and WM_SYSKEYDOWN mes-
sages can generally be ignored by the application. If circumstances demand, how-
ever, the information held in these messages is available.

NOTE Sometimes, such as when the Shift key is used to allow multiple selections, it’s
more important to know when a key has been released than which key was
pressed. Or, under other circumstances such as a game, you might be interested in
reaction times and want to know how long a key was held down by checking
both the key down and key up events and the time stamps for each. If you have
special requirements, this information is available even if it isn’t normally used by
most applications.

After all of these exclusions, the WM_CHAR message remains. This event provides
the single keyboard message that applications normally process because it con-
tains the actual character code identifying the key event.

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 7

http://www.sybex.com

8

Elements of Keyboard Messages
In DOS, in addition to the character and scan codes, keyboard shift-state infor-
mation is also available, and this information can be retrieved separately from
the keyboard event itself. The DOS keyboard shift-state information contains the
current status of the right and left Shift keys, the right and left (assuming an
enhanced keyboard) Ctrl and Alt keys, the CapsLock and NumLock keys, and
the Scroll Lock and Insert keys (which are usually ignored). Under DOS, how-
ever, key-press and key-release events are not normally reported as separate
events.

In Windows, the wParam and lParam arguments accompanying each keyboard-
event message carry the event character code, the scan code, all of the shift-state
information just mentioned and, in addition, an 8-bit key repeat count. Figure S2.1
illustrates the components of the the wParam and lParam arguments for WM_CHAR.

F I G U R E S 2 . 1 :

WM_CHAR’s wParam and
lParam arguments

The wParam Argument

In previous versions of Windows, the character code was found in the low byte of
the wParam argument.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 8

http://www.sybex.com

9

Under Windows 98, the wParam argument has grown to 32 bits, and the charac-
ter code can be either the low byte of the low word (for 8-bit ANSI ASCII values)
or, for 16-bit Unicode char values, the low word itself. Which type of character
code is expected is determined by compiler switch settings or by direct references
to Unicode/ANSI API functions.

The high-word value in the wParam argument currently remains unused.

The lParam Argument

The lParam argument contains a variety of information, as explained in the fol-
lowing sections.

Repeat Count This 16-bit value reports the number of keystrokes represented
by the event message and, normally, has a value of 1. However, if a key is held
down and the application cannot process the keyboard messages quickly enough
(for any reason), Windows will combine multiple WM_KEYDOWN, WM_SYSKEYDOWN,
WM_CHAR, and WM_SYSCHAR messages into a single message, incrementing the
repeat count appropriately. For WM_KEYUP or WM_SYSKEYUP messages the repeat
count is always 1, of course.

One reason that the repeat count value may be higher than 1 is as a response to
a typematic overrun. For example, you may observe typematic overruns while
executing the KeyCodes demo, even on fast machines, simply because of the time
required to write a full-line screen message for each key event. You might also
generate typematic overruns by selecting a high repeat rate from the Control
Panel. In neither case, however, should you take this as an indication that type-
matic overruns are likely in conventional applications.

In addition, the Page Up, Page Down, and up and down arrow keys are some-
times sources for typematic overruns, simply because the time required to
respond to one instruction may be long enough for additional keystrokes to
accumulate and, as a result, often cause applications to overscroll in response.
For this reason, many applications prefer to ignore the repeat count value, par-
ticularly for specific keys. Experiment to determine whether individual applica-
tions should use or ignore the repeat count.

Scan Code The keyboard scan code is a value generated by the keyboard
firmware to identify the actual physical key pressed or released. While the
same char code may be generated by different keys—for example, the numeral 1
character can be returned either from the number key at the top of the main
keyboard or from the key pad—the scan code is specific to the physical key.

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 9

http://www.sybex.com

10

Likewise, right and left Alt and Ctrl keys return separate scan codes, even
though neither generates a char code. However, some physical keys may return
different scan codes according to the Alt, Ctrl, or Shift states.

Extended Key Flag This flag is set to 1 if the present keystroke was generated
by one of the keys specific to the enhanced keyboard. These keys include the
nonkeypad cursor and page keys, as well as the Insert and Delete keys, the
keypad slash key (/), the keypad Enter key, and the NumLock key.

Context Code Flag This flag is set to 1 if the Alt key is down during the
present keystroke or if the current message is WM_SYSKEYUP or WM_SYSKEYDOWN.
The context code flag is cleared (set to 0) for all WM_KEYUP and WM_KEYDOWN
messages with two exceptions:

• Some non-English keyboards use combinations of the Shift, Ctrl, and Alt
keys together with conventional keys to generate special characters. These
may have the context code flag set but will not be reported as system
keystrokes.

• If the active window is an icon, it does not receive the input focus, and,
therefore, all keystrokes will generate WM_SYSKEYUP and WM_SYSKEYDOWN
messages to prevent the active window (as an icon) from attempting to
process these events. In these cases, the context code flag is set only if the
Alt key is down.

Prior Key State Flag For WM_CHAR, WM_CHARDOWN, WM_SYSCHAR, and
WM_SYSCHARDOWN messages, the prior key state flag is set to 1 if the same
key was previously down, or it is cleared (set to 0) if the same key was
previously up.

For WM_KEYUP and WM_SYSKEYUP messages, the prior key state flag is always set.
Obviously, the key must have been down before it could be released.

Transition State Flag This flag provides redundant information. It is cleared (0)
if a key is being pressed, as in a WM_KEYDOWN or WM_SYSKEYDOWN message. If the key
is being released, as in a WM_KEYUP or WM_SYSKEYUP message, the flag is set to 1.
For the WM_CHAR and WM_SYSCHAR messages, the transition flag is cleared (but it’s
also irrelevant).

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 10

http://www.sybex.com

11

The KeyCodes Demo: Deciphering
Keyboard-Event Messages

The KeyCodes and KeyCodes2 demos provide a window in which to examine
keyboard-event messages in a degree and detail that are not available through
conventional handling. Figure S2.2 illustrates a series of key-event messages cap-
tured by the KeyCodes2 demo.

F I G U R E S 2 . 2 :

Keyboard-event messages
deciphered through the
KeyCodes2 program

The KeyCodes demo uses eight case statements to respond to the keyboard
WM_xxxxx messages. The ShowKey subprocedure provides the mechanism to deci-
pher and expand the keyboard-event messages. Let’s look at a few provisions in
this example that deserve some explanation.

NOTE The KeyCodes and KeyCodes2 demos are included on the CD that accompanies
this book, in the Supplement 2 folder.

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 11

http://www.sybex.com

12

Retrieving Text Metric Information

The first provision of interest is in the WndProc procedure. In response to the
WM_CREATE message, the following code fragment is used to retrieve text metric
information for the system fixed (monospace) font:

case WM_CREATE:
hdc = GetDC(hwnd);
SelectObject(hdc, GetStockObject(SYSTEM_FIXED_FONT));
GetTextMetrics(hdc, &tm);
cxChr = tm.tmAveCharWidth;
cyChr = tm.tmHeight + tm.tmExternalLeading;
ReleaseDC(hwnd, hdc);
rect.top = 2 * cyChr;

The tm (text metric) data structure is used to retrieve information about the
system fixed font. The character size (in pixels) is then used to set the cxChr and
cyChr variables, which will be used to control the format and spacing of the
actual display.

NOTE SYSTEM_FIXED_FONT is only one of the many fonts available under Windows 98
(fonts will be discussed in Supplement 14). I choose it for the demo because it
provides a simple, monospace font that is available on all (English/US) systems
(and probably on most others as well).

The second, parallel provision is found in the response to the WM_PAINT mes-
sage and in the ShowKeys subprocedure. Before text is written, the same Select-
Object and GetStockObject functions are called again. But this time, instead of
being called in an information context, they are called as the display font.

InvalidateRect(hwnd, NULL, TRUE);
hdc = BeginPaint(hwnd, &ps);
SelectObject(hdc, GetStockObject(SYSTEM_FIXED_FONT));
...
EndPaint(hwnd, &ps);

TIP Remember, if you arrange spacing to fit a specific font, you also need to be sure
that the same font is used for the actual display (unless you aren’t particularly con-
cerned about the results).

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 12

http://www.sybex.com

13

Responding to Keyboard Messages

Another part of the Keycodes demo that deserves some explanation is the switch-
(msg)... tree, which provides eight case responses for the eight keyboard-
event messages tracked:

switch(msg)
{

...
case WM_KEYDOWN:

ShowKey(hwnd, 0, FALSE, “WM_KEYDOWN”, wParam, lParam);
break;

case WM_KEYUP:
ShowKey(hwnd, 0, TRUE, “WM_KEYUP”, wParam, lParam);
break;

case WM_CHAR:
ShowKey(hwnd, 1, FALSE, “WM_CHAR”, wParam, lParam);
break;

case WM_DEADCHAR:
ShowKey(hwnd, 1, FALSE, “WM_DEADCHAR”, wParam, lParam);
break;

case WM_SYSKEYDOWN:
ShowKey(hwnd, 0, FALSE, “WM_SYSKEYDOWN”, wParam, lParam);
break;

case WM_SYSKEYUP:
ShowKey(hwnd, 0, TRUE, “WM_SYSKEYUP”, wParam, lParam);
break;

case WM_SYSCHAR:
ShowKey(hwnd, 1, FALSE, “WM_SYSCHAR”, wParam, lParam);
break;

case WM_SYSDEADCHAR:
ShowKey(hwnd, 1, FALSE, “WM_SYSDEADCHAR”, wParam, lParam);
break;

...
}

In each case, the response is to call the ShowKey subprocedure with the appro-
priate data for the display, as shown in Figure S2.2.

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 13

http://www.sybex.com

14

NOTE The demo provides a degree of grouping by including an extra half-line space
after each WM_KEYUP or WM_SYSKEYUP event. However, as you may observe, the
_KEYDOWN, _CHAR, and _KEYUP messages for a specific key do not always appear
in strict sequential order.

Formatting the Text

In the demo, the remaining provisions for string handling and formatting the
text display are fairly straightforward C code, with the possible exception of the
TextOut function call. This function appears in text as:

TextOut(hdc, cxChr, cyWin - step, szBuff,
wsprintf(szBuff, szFormat[iType],
(LPSTR) szMsg, ...

In the ShowKey subprocedure, the wsprintf function is called with an explicit
typecasting instruction (LPSTR) preceding the szMsg reference. LPSTR is defined
as a far pointer to a string and is necessary because, in this instance, szMsg has
already been passed as a local pointer reference from the WndProc procedure. For
clarity—and to prevent a compiler warning message—the explicit redefinition is
made from a local to a far pointer.

The remaining parameters, such as the two string references szBuff and
szFormat[], are already passed to wsprintf as the expected far pointer refer-
ences and do not require explicit typecasting. However, when in doubt, includ-
ing explicit typecasting does no harm, but its omission might.

Ignoring Keyboard Messages
The KeyCodes demo demonstrates intercepting and reporting keyboard-event
messages, but it also shows the potential hazards in attempting to process
every message received. As mentioned earlier, if an application (or system) is
not fast enough to process every keyboard message generated, Windows will
combine duplicate messages, incrementing the repeat count appropriately.
This approach may seem useful, but keep in mind that processing all—or even

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 14

http://www.sybex.com

15

most—keyboard messages is neither necessary nor desirable. The reasons for
this are threefold:

• The WM_SYSxxxx messages are intended for Windows, not the application, to
handle. Except under special circumstances, they can safely be left for pro-
cessing via the DefMessageProc call.

• The WM_KEYDOWN and WM_KEYUP messages are essentially duplicates, and
again, except under special circumstances, either or both can be ignored
entirely. If, however, they are actually needed, most applications will
confine themselves to responding to WM_KEYDOWN events while ignoring
WM_KEYUP events.

• Even when WM_KEYDOWN messages are recognized, they are generally confined
to cursor and special key events, not to retrieving conventional character key
events. For this latter purpose, only the WM_CHAR message should be expected.

In the KeyCodes demo, all of the keyboard-event messages are given equal
weight—a treatment that most applications will not indulge in. In the Editor
demo discussed a bit later in this chapter, for example, only the WM_KEYDOWN
and WM_CHAR messages are trapped, leaving the remaining six keyboard-event
messages for default handling.

TIP Windows applications should not depend on special key combinations, which may
not be supported by many keyboard drivers and/or physical keyboards (especially
non-English versions). Granted, this prohibition does eliminate a number of favorite
“tricks,” but there are alternatives to using special key combinations. Also, your appli-
cation will benefit by not relying on deciphering complex key combinations, because
the time required for processing keyboard messages can be greatly reduced.

Translating Character-Event Messages
Applications dealing with text input depend on WM_CHAR keyboard-event mes-
sages to provide character input (as shown in the Editor demo). However, the
WM_CHAR messages may or may not correspond to the familiar ASCII codes. So,
how do you ensure that your application receives the appropriate char code
when a key is pressed?

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 15

http://www.sybex.com

16

Actually, in this respect, there is very little problem. To match the keyboard
drivers generating these messages, Windows 98 also provides translation ser-
vices that have been incorporated in all of the programming examples. As you
may recall, the message loop in the WinMain procedure appears like this:

while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

The TranslateMessage function provides the mechanism to convert keystroke-
event messages into character messages. These messages are recognized and used
by the application because the keyboard, per se, generates only keystroke infor-
mation. Before this new keystroke information can be used, the keyboard driver
must translate it into WM_xxxKEYDOWN and WM_xxxKEYUP messages.

This translation process derives the WM_CHAR and WM_DEADCHAR messages from
WM_KEYDOWN events, and the WM_SYSCHAR and WM_SYSDEADCHAR messages from
WM_SYSKEYDOWN events. The translation service also processes shift-status flags to
generate uppercase and lowercase characters.

The important point to remember is that the WM_CHAR message, via the Trans-
lateMessage function, provides character information. The VK_xxxxx message
parameters provide all function, cursor, and special key data. (VK_xxxxx mes-
sage parameters will be covered presently in the “Virtual Key Codes” section of
this chapter.) Both of these methods are demonstrated by the Editor demo on the
CD accompanying this book.

While the TranslateMessage function is an inherent part of all Windows appli-
cation programs, this function is hidden in MFC-based applications, where you
use another provision to examine keyboard events.

Using MFC to Handle Keyboard Messages
If you are using MFC and creating an application using the AppWizard, the con-
ventional message loop is effectively hidden and unavailable. This does not
mean, however, that you cannot trap all these message events in the fashion
shown in the KeyCodes demo; it just means that a slightly different approach is
required for interception.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 16

http://www.sybex.com

17

The Keycodes application shows how to trap the keyboard events using the Pre-
TranslateMessage member function in the CKeycodesView class. The keyboard-
event message is received as an MSG structure, which is defined as:

typedef struct tagMSG
{

HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;

} MSG;

The MSG fields are defined as follows:

hwnd Identifies the handle of the window whose window procedure
receives the message.

message Provides the message number or identifier.

wParam Provides additional information about the message. The exact
meaning depends on the value of the message member.

lParam Provides additional information about the message. The exact
meaning depends on the value of the message member.

time Provides the time when the message was posted.

pt Provides the cursor position, in absolute screen coordinates, at the time
the message was posted.

The original KeyCodes demo program is only concerned with the message,
wParam, and lParam fields in the MSG structure and ignores the hwnd, time, and
pt fields. The pt field would be useful if you were intercepting mouse messages,
but it really isn’t relevant in this example, which demonstrates handling events
generated from the keyboard.

In the Keycodes2 demo’s PreTranslateMessage handler, the pMsg structure is
handled in the same fashion as the message events are handled in the original
KeyCodes program (the non-MFC version). In this case, the exception is that the
pMsg structure is provided in place of separate parameters and, therefore, must

Handling Keyboard Events

2642S02.qxd 11/1/99 9:50 AM Page 17

http://www.sybex.com

18

be decoded before passing the arguments needed to the ShowKey function for
display.

BOOL CKeycodesView::PreTranslateMessage(MSG* pMsg)
{

switch(pMsg->message)
{

case WM_KEYDOWN:
ShowKey(0, 0, “WM_KEYDOWN”, pMsg->wParam, pMsg->lParam);
break;

case WM_KEYUP:
ShowKey(0, 1, “WM_KEYUP”, pMsg->wParam, pMsg->lParam);
break;

case WM_CHAR:
ShowKey(1, 0, “WM_CHAR”, pMsg->wParam, pMsg->lParam);
break;

case WM_DEADCHAR:
ShowKey(1, 0, “WM_DEADCHAR”, pMsg->wParam, pMsg->lParam);
break;

case WM_SYSKEYDOWN:
ShowKey(0, 0, “WM_SYSKEYDOWN”, pMsg->wParam, pMsg->lParam);
break;

case WM_SYSKEYUP:
ShowKey(0, 1, “WM_SYSKEYUP”, pMsg->wParam, pMsg->lParam);
break;

case WM_SYSCHAR:
ShowKey(1, 0, “WM_SYSCHAR”, pMsg->wParam, pMsg->lParam);
break;

case WM_SYSDEADCHAR:
ShowKey(1, 0, “WM_SYSDEADCHAR”, pMsg->wParam, pMsg->lParam);
break;

}
return CView::PreTranslateMessage(pMsg);

}

Notice also that all of the events are returned for default handling by the par-
ent class’s PreTranslateMessage function. If we had not defined a custom
PreTranslateMessage handler here, this would have been the default handling
provided by MFC.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 18

http://www.sybex.com

19

NOTE Chances are that you will not need to provide this type of handling for any of your
own applications. For most key events, MFC provides alternatives that do not
need this level of interrogation. Nevertheless, you are still able to intercept key-
board (and other event) messages at the lowest possible level.

Handling Virtual Keys
Under DOS, many applications, particularly TSRs, spend a portion of their time
filtering keyboard char codes while waiting for a specific keyboard event to trig-
ger some action. This can be as complex as looking for a Ctrl+Alt+K combination
or as common as waiting for an arrow or page key. Hotkey assignments under
Windows 98 are not handled in the same fashion as DOS TSRs, nor should they
be. In some ways, Windows can be thought of as a giant TSR parceling out key-
board-event information to applications requesting that information.

NOTE DOS-based TSRs commonly install vectors to intercept all keyboard inputs. After
checking each keystroke, the TSR returns the data to the original location so that
it can be sampled by the next TSR and, finally, sent to the principal application.

Virtual-key handling is one area where applications moving from DOS to Win-
dows may experience the greatest change, as they shift from filtering characters
to simply responding to virtual-key messages. This practice is demonstrated in
the Editor demo discussed in this chapter.

Required Key Codes
Customarily, the WM_KEYDOWN message is trapped while looking for virtual key
messages, each of which is identified by a constant with the format VK_xxxxxx,
defined in WinUser.H.

Table S2.1 lists the virtual-key codes you’ll encounter when programming for
Windows keyboard events.

Handling Virtual Keys

2642S02.qxd 11/1/99 9:50 AM Page 19

http://www.sybex.com

20

TA B L E S 2 . 1 : Virtual Key Codes Defined in WinUser.H

Constant Hex Dec Req Keyboard Comments

VK_LBUTTON 01h 1 Mouse emulation

VK_R1BUTTON 02h 2 Mouse emulation

VK_CANCEL 03h 3 ✔ Ctrl+Break Same as Ctrl+C

VK_MBUTTON 04h 4 Mouse emulation

05 Not assigned
..
07h

VK_BACK 08h 8 ✔ Backspace

VK_TAB 09h 9 ✔ Tab key

0Ah Not assigned
..
0Bh

VK_CLEAR 0Ch 12 Keypad 5 NumLock off

VK_RETURN 0Dh 13 ✔ Enter

0Eh Not assigned
..
0Fh

VK_SHIFT 10h 16 ✔ Shift Right or left

VK_CONTROL 11h 17 ✔ Ctrl Right or left

VK_MENU 12h 18 ✔ Alt Right or left

VK_PAUSE 13h 19 Pause

VK_CAPITAL 14h 20 ✔ Caps Lock

15h Reserved for Kanji system
..
19h

1Ah Not assigned

VK_ESCAPE 1Bh 27 ✔ Esc

1Ch Reserved for Kanji system
..
1Fh

Continued on next page

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 20

http://www.sybex.com

21

TA B L E S 2 . 1 (C O N T I N U E D) : Virtual Key Codes Defined in WinUser.H

Constant Hex Dec Req Keyboard Comments

VK_SPACE 20h 32 ✔ Spacebar

VK_PRIOR 21h 33 ✔ Page Up

VK_NEXT 22h 34 ✔ Page Down

VK_END 23h 35 End

VK_HOME 24h 36 ✔ Home

VK_LEFT 25h 37 ✔ Left Arrow

VK_UP 26h 38 ✔ Up Arrow

VK_RIGHT 27h 39 ✔ Right Arrow

VK_DOWN 28h 40 ✔ Down Arrow

VK_SELECT 29h 41 Select OEM specific

VK_PRINT 2Ah 42 Print OEM specific

VK_EXECUTE 2Bh 43 Execute OEM specific

VK_SNAPSHOT 2Ch 44 Print Screen Win3 or later

VK_INSERT 2Dh 45 ✔ Insert

VK_DELETE 2Eh 46 ✔ Delete

VK_HELP 2Fh 47 Help OEM specific

VK_0 30h 48 ✔ 0 through 9 keys Same as ASCII 0 through
.. .. 57 ✔ 9 on main keyboard
VK_9 39h ✔

3Ah Not assigned
..
40h

VK_A 41h 65 ✔ A..Z, a..z keys Main keyboard
.. ✔

VK_Z 5Ah 90 ✔

Handling Virtual Keys

2642S02.qxd 11/1/99 9:50 AM Page 21

http://www.sybex.com

22

In Tables S2.1, S2.2 and S2.3, the column labeled Req (for “Required”) indicates
by checks (✔) the keys that are required for all Windows implementations and
thus will always be available. Also, some of the notations in the Comments col-
umn of these tables require a bit of explanation:

• Three values with VK_xxxxx constants are identified as “mouse emulation.”
This is not because they will be returned by the mouse as keyboard-event
messages, but because these codes are sometimes used to emulate mouse-
button events.

• Values that do not have VK_xxxxx constants defined are noted as “not
assigned.” These are not used and/or supported by any keyboard varia-
tions, nor are these assigned for any emulation purposes.

• Two groups in Table S2.1 are noted as “reserved for Kanji system.” These
values are used with keyboards supporting the Japanese Kanji alphabet.

• Values noted as “OEM specific” may be supported by some keyboard vari-
ations but are not standard and should not be relied on except in special
circumstances.

The virtual-key definitions do not include punctuation and symbols, and they
do not distinguish between uppercase and lowercase. Also, applications should
not attempt to use virtual-key definitions for text input.

New Windows Keys
The newer “Windows keyboards” include either two or three new keys. These
may include two Windows keys, right and left, which call the Start menu, and a
single Aps key. The function of the Aps key differs according to the active appli-
cation, but, in general, it calls a pop-up menu in the same fashion as clicking the
right mouse button does. These three new keys are defined in Table S2.2.

TA B L E S 2 . 2 : Virtual Key Codes for New Windows Keys

Constant Hex Dec Req Keyboard Comments

VK_LWIN 5Bh 91 Left Windows key Not on all keyboards

VK_RWIN 5Ch 92 Right Windows key Omitted on some portables

VK_APS 5Dh 93 Aps key Not on all keyboards

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 22

http://www.sybex.com

23

NOTE Because of space limitations, many portable computers provide only the left or
right Windows key, not both.

Function Key and Other Special Key Codes
The function keys, keypad, arrow, Alt, Ctrl, and other special keys common to
all keyboards are defined as shown in Table S2.3. In this table, along with some of
the notations in the Comments column explained in the “Required Key Codes”
section, those noted as “enhanced” are supported only by enhanced 101–102
keyboards.

Note that the left and right Shift, Ctrl, and Alt virtual keys are used only as
parameters to the GetAsyncKeyState and GetKeyState functions. No other API
functions or messages distinguish between the left and right keys in this fashion.

TA B L E S 2 . 3 : Virtual Key Codes for Function Keys and Other Special Keys

Constant Hex Dec Req Keyboard Comments

5Eh Not assigned
..
5Fh

VK_NUMPAD0 60h 96 Keypad 0 NumLock on
..
VK_NUMPAD9* 69h 105 Keypad 9

VK_MULTIPLY 6Ah 106 Keypad * Enhanced

VK_ADD 6Bh 107 Keypad + Enhanced

VK_SEPARATOR 6Ch 108 OEM specific

VK_SUBTRACT 6Dh 109 Keypad - Enhanced

VK_DECIMAL 6Eh 110 Keypad . Enhanced

VK_DIVIDE 6Fh 111 Keypad / Enhanced

VK_F1 70h 112 ✔ Function key F1 Standard
.. ✔ ..
VK_F10 79h 121 ✔ Function key F10

Continued on next page

Handling Virtual Keys

2642S02.qxd 11/1/99 9:50 AM Page 23

http://www.sybex.com

24

TA B L E S 2 . 3 (C O N T I N U E D) : Virtual Key Codes for Function Keys and Other Special Keys

Constant Hex Dec Req Keyboard Comments

VK_F11 7Ah 122 Function key F11 Enhanced

VK_F12 7Bh 123 Function key F12 Enhanced

VK_F13 7Ch.. 124 Function key F13 OEM specific
..
VK_F24 87h 135 Function key F24

88h Not assigned
..
8Fh

VK_NUMLOCK 90h 144 ✔ NumLock

VK_SCROLL 91h 145 ✔ Scroll Lock

92h Not assigned
..
9Fh

VK_LSHIFT A0h 160 Left Shift key Enhanced

VK_RSHIFT A1h 161 Right Shift key Enhanced

VK_LCONTROL A2h 162 Left Ctrl key Enhanced

VK_RCONTROL A3h 163 Right Ctrl key Enhanced

VK_LMENU A4h 164 Left Alt key Enhanced

VK_RMENU A5h 165 Right Alt key Enhanced

A6h Not assigned
..
E4h

VK_PROCESSKEY** E5h 229 OEM specific

E6h Not assigned
..
F5h

VK_ATTN** F6h 246 OEM specific

VK_CRSEL** F7h 247 OEM specific

VK_EXSEL** F8h 248 OEM specific

Continued on next page

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 24

http://www.sybex.com

25

TA B L E S 2 . 3 (C O N T I N U E D) : Virtual Key Codes for Function Keys and Other Special Keys

Constant Hex Dec Req Keyboard Comments

VK_EREOF** F9h 249 OEM specific

VK_PLAY** FAh 250 OEM specific

VK_ZOOM** FBh 251 OEM specific

VK_NONAME** FCh 252 OEM specific

VK_PA1** FDh 253 OEM specific

VK_OEM_CLEAR** FEh 254 OEM specific

VK_KANA*** 15h 21 Used for Kanji

*Because the keypad 5 key does not have a ‘keypad’ function, or at least not one that is commonly supported, the keypad 5 returns two

different scan codes depending on whether the NumLock is set or cleared. See VK_CLEAR (0x0C).

**These VK_xxxx definitions are found in the WinUser.H header file, but many of these are duplicated in the WinRes.H header.

***VK_KANA is defined in AfxVer.H.

The Editor Demo: Basic Keyboard Handling
The Editor demo demonstrates basic keyboard-event handling, including responses
to keyboard messages and text-input handling. As you’ll see, as word processors
go, the Editor demo is both a wimp and an idiot. It includes provisions for nothing
except the simplest operations for input, control, and for display. As it stands, Editor
does not even toggle between insert and overwrite modes, normally a feature of
even the dumbest editor.

Although it’s severely lacking, the Editor program does accomplish its objec-
tive—not to build a word processor, but to show how keyboard-event messages
are handled and to demonstrate the basic caret (text cursor) functions (discussed
later in this chapter). For now, we will focus on how the Editor demo handles
virtual-key code trapping.

NOTE MFC-based applications may prefer to use the CEdit or CEdit-
View classes to implement simple text-editor controls or windows without the
labor of creating a full-featured editor.

Handling Virtual Keys

2642S02.qxd 11/1/99 9:50 AM Page 25

http://www.sybex.com

26

In the following fragment from the Editor demo, the Home, End, Page Up and
Page Down (VK_PRIOR and VK_NEXT), and arrow keys are trapped as virtual-key
codes in the low word of the wParam argument that accompanies the WM_KEYDOWN
message. Each key code exercises the appropriate control over the cursor position:

case WM_KEYDOWN:
switch(LOWORD(wParam))
{

case VK_HOME:
xCaret = 0;
break;

case VK_END:
xCaret = cxBuff - 1;
break;

case VK_PRIOR:
yCaret = 0;
break;

case VK_NEXT:
yCaret = cyBuff - 1;
break;

...

case VK_DOWN:
yCaret = min(yCaret+1, cyBuff-1);
break;

Since the Editor demo does not scroll and is limited to the client window dis-
play, the Page Up (VK_PRIOR) and Page Down (VK_NEXT) keys move the cursor to
the top and bottom text positions within the window, respectively.

In other applications, almost any key that can be used to control, select, or acti-
vate can be found in the virtual-key list and trapped in a fashion similar to the
one shown in the preceding example.

NOTE The Editor demo is included on the CD that accompanies this book, in the Supple-
ment 2 folder.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 26

http://www.sybex.com

27

Getting Shift-State Data for Virtual Keys
The wParam and lParam arguments accompanying key-event messages carry a
considerable amount of information, but they do not provide specific shift-key
data other than for alphabetical characters (uppercase or lowercase) and other
dual-character keys. To query the current shift states of the Shift, Ctrl, and Alt
keys as well as the toggled shift keys, CapsLock and NumLock, you can use the
GetKeyState function.

Realize, however, that the shift states reported by this function are the shift
states associated with specific keyboard-event messages in the application’s mes-
sage queue—not the physical interrupt level state at the instant the inquiry is
made. Thus, if the string “This is A TEST” were in the application’s message
buffer and the next char message to be read was a capital letter (assuming the
right or left Shift key was used rather than the CapsLock key), the API function
call GetKeyState(VK_SHIFT) would report the Shift key as down, regardless
of the actual physical state of either Shift key at that instant. In like fashion, if the
next char message were lowercase, the same inquiry would report both Shift keys
were released.

For immediate information about the shift state of any of the shift keys—Shift,
Ctrl, or Alt—use the GetAsyncKeyState function with the VK_SHIFT, VK_CONTROL,
or VK_MENU parameter, respectively. Or, for even more specific information, you
could use the VK_Lxxxxx or VK_Rxxxxx parameter to distinguish between the right
and left Shift, Ctrl, or Alt key.

NOTE You can also use the VK_LBUTTON, VK_RBUTTON, and VK_MBUTTON parameters
with the GetKeyState function to query the mouse-button status. This is gener-
ally unnecessary, however, because the mouse-event messages already contain all
the relevant information. See Supplement 3 for more information about mouse-
event messages.

Handling Text Input
You already know how important the keyboard is as an input device. What is
even more important is the ability of an application to cleanly receive and display
text—anything from a few lines to full screens of structured or unstructured text.

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 27

http://www.sybex.com

28

And, in any case, there are a few basics that apply to all types of text input. Of
course, with Windows, there are a few differences as well. As the Walrus said,
“the time has come to speak of many things …,” but specifically, to speak of
things governing Windows 98’s ability to display text and to accept inputs.

The Caret versus the Cursor
In Windows, the word cursor has been reserved for the mouse cursor. The familiar DOS
cursor (from the text-mode display) is now renamed the caret. Technically, this term more
properly refers to the curious little hat-shaped character (^) , which C/C++ commonly rec-
ognizes as the bitwise XOR operator, and which other human European languages use as
an accent (as in â, for example).

Of course, the caret displayed has no more resemblance to the caret character (thus far,
no applications have appeared using a literal caret), than the cursor (mouse) resembles the
DOS text cursor. In both cases, the displayed symbol for either the cursor or caret pointer
device is a graphic and therefore flexible. Ergo, applications are free to modify both
devices, although some standards and conventions do apply.

One standard that does not apply in Windows, however, is the DOS cursor standard of a
blinking underbar cursor (caret). This is because Windows supports both flexible font sizes
and proportionally spaced fonts, so no fixed character width applies, and the underline
caret simply does not serve as an accurate position indicator. Instead, a blinking vertical
line, the same height as either the font or the interline spacing, has replaced the blinking
underbar in a wide variety of applications. Conventionally, the blinking line is positioned at
the point where the next character will begin (or at the first or leftmost extent of an exist-
ing character).

For languages written from right to left, such as Hebrew, other conventions apply. For a
vertical script, such as ancient Chinese ideograms, the solution might be a blinking hori-
zontal bar. Of course, if a “bostriphon” (literally, as the ox plows) script remains in use
anywhere in the world, the alternating right-to-left and left-to-right text would demand
its own standards. In fact, this might be a situation where, curiously enough, the caret
character positioned below the line, might serve nicely—certainly much better than a
plain underbar.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 28

http://www.sybex.com

29

Changing the Caret Type and Position
Because the caret (text cursor) is a system resource, individual applications are
not free to create or destroy the caret any more than they are free to create and
destroy the mouse cursor. Applications may, however, borrow the system caret—
as long as the application holds the system (input) focus. During this time, an
application can change the caret type, as well as control the caret position.

Caret Focus Messages

The first step, before the caret can be positioned or modified, is for the applica-
tion to know when it gains or loses the system focus. Two Windows messages
are devoted to precisely this function:

• WM_SETFOCUS notifies an application that it is receiving the system focus.

• WM_KILLFOCUS notifies an application that it is losing the system focus.

The two focus messages are always issued in pairs; that is, a WM_SETFOCUS will
always be followed at some point by a WM_KILLFOCUS message, while the latter
message will never be issued except when preceded by the former.

NOTE WM_SETFOCUS and WM_KILLFOCUS are totally independent of the WM_PAINT,
WM_SIZE, and other messages that instruct applications to update or adjust their
displays. Applications can accomplish these and other appropriate tasks without
receiving the system focus or coming to the front of the screen.

At the same time, receipt of a WM_SETFOCUS or WM_KILLFOCUS message does not
indicate or suggest that an application is being created or destroyed. It just indi-
cates that the focus is being shifted to or from the present application.

Conversely, a WM_CREATE message is always preceded by a WM_SETFOCUS mes-
sage. In parallel fashion, a WM_KILLFOCUS message follows a WM_DESTROY mes-
sage, providing opportunities to create and destroy application carets. Depending
on your application’s needs, you may provide responses to these event messages
or simply ignore them as irrelevant.

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 29

http://www.sybex.com

30

Caret Shape and Position Functions

When an application receives the system focus, as notified by a WM_SETFOCUS
message, the immediate response, if applicable, is usually to call the CreateCaret
function to assign the desired caret shape, followed by SetCaretPos to position
the caret and ShowCaret to make the caret visible:

case WM_SETFOCUS:
CreateCaret(hwnd, (HBITMAP) 1, cxChr, cyChr);
SetCaretPos(xCaret * cxChr, yCaret * cyChr);
ShowCaret(hwnd);
break;

The CreateCaret function is called with four parameters: a handle identifying
the application window owning the caret and a bitmap handle providing the
caret shape, and the width and height of the caret. The bitmap handle may have
two default values: NULL to create a solid caret or one (1) to create a gray caret. In
both cases, the caret will be a block (or line) with the dimensions specified by the
third and fourth arguments. In the Editor demo, the caret is a gray block that is
the height and width of a single character.

Because any call to CreateCaret destroys any previous caret shape, applica-
tions must be prepared to re-create their caret shape anytime the system focus is
received. If this is not done, the caret displayed will be whatever shape was set by
the last application holding the system focus and defining a caret format.

In addition to creating a caret (text cursor), functions are also provided to set
the caret position, find the caret position, and make the caret visible.

The SetCaretPos function is called with the x-axis and y-axis coordinates for
the caret position, nominally the position of the upper-left corner of the caret
bitmap. If, however, the window was created using the CS_OWNDC class style,
these coordinates are mapped to the mapping mode associated with the window,
and the caret position—and appearance—are affected accordingly. (Mapping
modes will be discussed and illustrated in Chapter 23.) The caret position is set
regardless of whether the caret is visible.

The complementary function, GetCaretPos, is called with a long pointer to a
POINT structure. It returns the caret’s current position in client window coordi-
nates or returns FALSE on failure.

The ShowCaret function is called to make the caret visible and has only one
parameter: the handle identifying the window owning the caret. If the caret has

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 30

http://www.sybex.com

31

been hidden two or more times in succession, the ShowCaret function must be
called an equal number of times before the caret will become visible. Also, if the
handle passed is NULL, the SetCaret function will work only if the caret is owned
by a window in the current task (it is, however, very bad form for one application
to try to show another application’s caret).

NOTE If the caret has no shape or size, the ShowCaret function will have no effect.

The flip side of the WM_SETFOCUS message is the WM_KILLFOCUS message, which
includes the HideCaret function.

case WM_KILLFOCUS:
HideCaret(hwnd);
DestroyCaret();
break;

The HideCaret function, like its counterpart ShowCaret, is called with a single
parameter identifying the application window owning the caret. Hiding the caret
does not destroy the caret shape, which can be restored using the ShowCaret func-
tion. Multiple successive calls to the ShowCaret function must be matched by mul-
tiple calls to the HideCaret function before the caret will be hidden.

Also, if desired, the SetCaretBlinkTime function sets the caret blink rate as
elapsed milliseconds between flashes. The function is called with a single argu-
ment (UINT), specifying both the delay between flashes and the flash duration.

The GetCaretBlinkTime function requires no parameters and returns a UINT
value, specifying the blink time in milliseconds.

Caret (Cursor) Positioning for a Fixed-Width Font

The Editor demo uses a gray-block caret (see Figure S2.3) sized to fit the
SYSTEM_FIXED_FONT. Because this is a fixed-width font, cursor positioning
is quite simple.

With the caret initially located at the upper-left corner of the client window, the
caret positioning provisions begin by watching for a WM_KEYDOWN message, such as:

case WM_KEYDOWN:
switch(LOWORD(wParam))
{

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 31

http://www.sybex.com

32

F I G U R E S 2 . 3 :

A simple text-only editor pro-
gram with a gray-block caret

Most of the WM_KEYDOWN messages received will be ignored; a response will be
generated only when the wParam argument identifies one of the cursor or page keys
(identified by the appropriate VK_xxxx virtual key messages, as explained earlier in
the chapter). Because this is a fixed-width font, the appropriate response is simply
to increment or decrement the cursor in character (row/column) positions.

case VK_HOME:
xCaret = 0;
break;

case VK_END:
xCaret = cxBuff - 1;
break;

case VK_PRIOR:
yCaret = 0;
break;

case VK_NEXT:
yCaret = cyBuff - 1;
break;

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 32

http://www.sybex.com

33

case VK_LEFT:
xCaret = max(xCaret-1, 0);
break;

case VK_RIGHT:
xCaret = min(xCaret+1, cxBuff-1);
break;

case VK_UP:
yCaret = max(yCaret-1, 0);
break;

case VK_DOWN:
yCaret = min(yCaret+1, cyBuff-1);
break;

NOTE For a variable-width font, such as the default font used for a WYSIWYG (“What
You See Is What You Get”) editor, the immediate response in most cases would be
essentially the same. The application would keep track of the cursor position in
terms of line and character positions and only convert these row/column equiva-
lents to an actual screen position matching the string display position immediately
before calling the SetCaretPos function.

Deleting the Character at the Caret Position
The page and arrow keys are only a few of the VK_xxxxx messages to which the
Editor demo could respond. In this example, there’s only one additional virtual
key provided for: the VK_DELETE event, which is handled as:

case VK_DELETE:
for(x = xCaret; x < cxBuff - 1; x++)

Buffer(x, yCaret) = Buffer(x+1, yCaret);
Buffer(cxBuff-1, yCaret) = ‘ ‘;

Here, the response is a bit more elaborate than simply changing the cursor posi-
tion. In this instance, the program deletes the character at the cursor position by
shifting the remainder of the line left one character position and appending a
blank at the end of the line. (The space ensures that the character previously fol-
lowing is overwritten with a blank.)

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 33

http://www.sybex.com

34

Updating the text buffer is only a part of the necessary response. The display
also needs to be updated, which could be done in a couple of ways. For one, the
application could simply invalidate the appropriate region, allowing a repaint to
repair the screen. Or, as done in this case, an immediate screen update could be
executed.

HideCaret(hwnd);
hdc = GetDC(hwnd);
SelectObject(hdc,

GetStockObject(SYSTEM_FIXED_FONT));
TextOut(hdc, xCaret * cxChr, yCaret * cyChr,

&Buffer(xCaret, yCaret), cxBuff-xCaret);
ShowCaret(hwnd);
ReleaseDC(hwnd, hdc);

Notice that before updating the screen, the HideCaret function is called to
remove the caret from the display, and after updating, ShowCaret restores the text
cursor with the position unchanged. Removing the caret is a necessary operation
anytime the screen is repainted, simply to ensure that the caret doesn’t interfere
with the paint operation (similar precautions are generally used when the mouse
cursor is active). Feel free to experiment by commenting out both the HideCaret
and ShowCaret API calls and observing the results directly.

For a VK_BACK (backspace) message, essentially the same response could be
used, except that the program would also need to decrement the caret position.
An alternative is to handle this through a WM_CHAR message, as explained shortly,
in the “Handling WM_CHAR Messages” section.

Other possible VK_xxxxx messages might require quite different responses. For
example, suppose provisions were made for the VK_INSERT message to toggle
between insert and overwrite modes. Should the cursor shape, size, or format
change to reflect the current mode?

Still, whatever operations are provided, the last provision within the VK_KEY-
DOWN response is to update the caret position, even though many of the options
may not have affected this position at all.

SetCaretPos(xCaret * cxChr, yCaret * cyChr);
break;

Calculating the position is simple using a fixed-width font; it requires nothing
more than multiplying the row and column position by the character width and
line spacing, respectively.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 34

http://www.sybex.com

35

A different approach is required for a variable-width font. There are several
possibilities, but perhaps the best approach might lie in the current position or cp,
a Windows feature described in the next section.

Handling Carets for Variable-Width Fonts
The cp is an internal POINT structure that can be used by Windows to track draw-
ing operations, with a separate cp for each device context. In some cases, cp is
ignored and not updated during drawing operations.

For example, the TextOut function used to write (draw) the text display in the
Editor demo does not normally keep track of the cp. However, this is subject to
change. By calling the SetTextAlign function with the fmode argument,
TA_UPDATECP will enable current position tracking.

When current position tracking is enabled, the GetCurrentPositionEx func-
tion can be called to retrieve the cp coordinates after writing a string or a portion
of a string. For example, assume that the string displayed reads, “This is a posi-
tioning text,” and the caret should be positioned immediately after the a. With a
proportionally spaced font, the capital T will be wider than average, and the two
i’s will be narrower. Obviously, attempting to estimate character positions from
the tmAveCharWidth spacing is not going to produce accurate results. If, however,
only a part of the string is drawn (“This is a”), and cp is retrieved before complet-
ing the sentence, the retrieved cp will provide the positioning for the caret.

The bad news is that it’s not quite as simple as this illustration suggests. You
will need to refer to the SetTextAlign, GetCurrentPositionEx, and TextOut
functions for details on how to use each appropriately for the task. And, of
course, you will need to do a bit of experimenting.

Handling WM_CHAR Messages
Like WM_KEYDOWN messages, WM_CHAR messages are also subject to a wide variety
of processing. Most of the special provisions discussed here can also be handled
by virtual-key responses in the WM_KEYDOWN message handling. In fact, they
would be handled that way in most cases. But the WM_CHAR message-handling
methods are alternatives that you may want to consider.

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 35

http://www.sybex.com

36

TIP For an exercise in keycodes and functions, convert as much as is practical of the
WM_CHAR message handling to WM_KEYDOWN handling. Just be sure to test your
results carefully.

Repeat Characters

The first step, because the WM_CHAR message may well include a repeat count, is a
loop controlled by the low word in the lParam argument:

case WM_CHAR:
for(i = 0; i < (int)LOWORD(lParam); i++)
{

Within the loop, even though the high word of wParam should be simply a
NULL, the LOWORD macro is used to discard any potentially conflicting data:

switch(LOWORD(wParam))
{

Backspace

The first char value trapped is the backspace character (\b).

case ‘\b’: // backspace
if(xCaret > 0)
{ xCaret–;

SendMessage(hwnd, WM_KEYDOWN, VK_DELETE, 1L);
}
break;

The Backspace key is easily handled by simply decrementing the caret position
and then issuing a key down/delete key message. Alternatively, this could be
handled as a virtual key (VK_BACK) in the preceding WM_KEYDOWN handler. In this
case, the handling might well be almost exactly the same as shown here.

Tab

The tab char is easily provided for using a do .. while loop to insert spaces
repeatedly until the desired character position is reached.

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 36

http://www.sybex.com

37

case ‘\t’: // tab
do

SendMessage(hwnd, WM_CHAR, ‘ ‘, 1L);
while(xCaret % 8 != 0);
break;

Like the Backspace key, the Tab key can also be trapped by the preceding
WM_KEYDOWN handler.

Carriage Return and Line Feed

The next two char events are handled as a pair. The first character watched for is
the carriage return (\r or ASCII 0x0D), which resets the horizontal position to the
beginning of the line. It is then allowed to fall through to the second case, the line
feed, for further response.

case ‘\r’: // carriage return
xCaret = 0; // falls through to ‘\n’

case ‘\n’: // line feed
if(++yCaret == cyBuff)

yCaret = 0;
break;

The line feed character (\n or ASCII 0x0A), by convention, does not reset the
horizontal position; instead, it is treated as the equivalent of the down arrow. In
this example, both of these responses could as easily have been written as:

case ‘\r’:
SendMessage(hwnd, WM_KEYDOWN, VK_HOME, 1L);

case ‘\n’:
SendMessage(hwnd, WM_KEYDOWN, VK_DOWN, 1L);
break;

Notice that the carriage return response is still allowed to fall through to the sub-
sequent line feed response.

While the practice of responding to one keyboard-event message by issuing
other keyboard-event messages may, at first, seem slightly redundant, the overall
result is an economy of effort both for the programmer and for the program. After
all, instead of duplicating essentially the same response (both as code and exe-
cutable), this approach allows code and executable to do double duty. In addi-
tion, this approach can be (and often is) applied to features other than keyboard
responses.

Handling Text Input

2642S02.qxd 11/1/99 9:50 AM Page 37

http://www.sybex.com

38

Escape (Esc)

The Escape key (ASCII 0x1B) is another popular hotkey. In this example, it resets
the text buffer and then issues a query for confirmation:

case ‘\x1B’: // escape
if(MessageBox(hwnd, “Reset text buffer?”,

“Editor Query”,
MB_ICONEXCLAMATION | MB_OKCANCEL |
MB_DEFBUTTON2) == IDOK)

The MessageBox API call presents a stock dialog box with the caption “Editor
Query,” the message “Reset test buffer?” and the OK and Cancel buttons. If the
OK button is clicked, the function returns TRUE; if the Cancel button is clicked, it
returns FALSE. This value dictates whether or not the following provisions will be
executed.

If the decision is to proceed, then a double loop overwrites the text buffer with
blanks, the caret position is reset to the first character position at the upper-left,
and last, the InvalidateRect function is called to clear the existing display by
issuing a WM_PAINT message.

{
for(y = 0; y < cyBuff; y++)

for(x = 0; x < cxBuff; x++)
Buffer(x, y) = ‘ ‘;

xCaret = 0;
yCaret = 0;
InvalidateRect(hwnd, NULL, FALSE);

}
break;

Other Character Events

As a final response to WM_CHAR messages, the default provision handles all other
character events, which are assumed to be conventional alphabetic, numeric, or
punctuation characters:

default: // all other chars
Buffer(xCaret, yCaret) = (char) LOWORD(wParam);
HideCaret(hwnd);
hdc = GetDC(hwnd);
SelectObject(hdc,

GetStockObject(SYSTEM_FIXED_FONT));

Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 38

http://www.sybex.com

39

TextOut(hdc, xCaret * cxChr, yCaret * cyChr,
&Buffer(xCaret, yCaret), 1);

ShowCaret(hwnd);
ReleaseDC(hwnd, hdc);
if(++xCaret == cxBuff)
{

xCaret = 0;
if(++yCaret == cyBuff) yCaret = 0;

}
break;

} }

The handling used is essentially the same as shown earlier for the VK_DELETE
message. However, in view of earlier remarks about sharing responses, couldn’t
the present duplication of code and executable be similarly avoided?

Finally, because some of the preceding responses have affected the caret posi-
tion, the same closing provision is required here as in the WM_KEYDOWN response.

SetCaretPos(xCaret * cxChr, yCaret * cyChr);
break;

Generating Event Messages
The flip side of processing keyboard messages (or any other event messages) is
being able to generate your own messages to request specific actions. You’ve seen
several brief examples of message generation in the preceding code fragments.

Sending Messages to Applications
The SendMessage function is called with the same four parameters that are
passed to the WndProc procedure:

SendMessage(HWND hwnd, UINT msg,
DWORD wParam, LONG lParam);

SendMessage passes its arguments to Windows, which then places the message
in the message queue for the application identified by the hwnd argument. In this
fashion, the destination could be the same application window that originated
the message, another window belonging to the same application, or even a win-
dow belonging to another application entirely.

Generating Event Messages

2642S02.qxd 11/1/99 9:50 AM Page 39

http://www.sybex.com

PostMessage versus SendMessage
Two functions are provided for passing messages within an application: SendMessage and
PostMessage. These work essentially the same way except for how they dispatch messages.

PostMessage places the message in the messaging queue and then returns immedi-
ately—without waiting for the message to be delivered. Using PostMessage, the posting
procedure can continue operating and the called procedure—the message recipient—
does not act until the message queue delivers.

In contrast, SendMessage places a message in the queue but does not return until the
message has been processed and delivered to the recipient. In effect, SendMessage trans-
fers operational control to another routine—the message recipient—and waits for the
recipient to finish its task and return control. For sending messages to other applications,
SendMessage is not the most efficient method.

Scrolling with Arrow Keys
The PainText demo (discussed in Supplement 1) demonstrates how scrollbars are
used to respond to mouse-event messages. Even though it is rare to find a com-
puter without a mouse (at least, one that is running Windows), there may be
times when using the keyboard for scrolling is more convenient.

To further demonstrate the SendMessage function, here is a patch for the
PainText program, which allows the arrow keys to simulate mouse operations:

switch(msg)
{

...
case WM_KEYDOWN:

switch(LOWORD(wParam))
{

case VK_LEFT:
SendMessage(hwnd, WM_HSCROLL, SB_LINEUP, 0L);
break;

case VK_RIGHT:
SendMessage(hwnd, WM_HSCROLL, SB_LINEDOWN, 0L);
break;

40 Supplement 2 • Keyboards, Carets, and Characters

2642S02.qxd 11/1/99 9:50 AM Page 40

http://www.sybex.com

41

case VK_UP:
SendMessage(hwnd, WM_VSCROLL, SB_LINEUP, 0L);
break;

case VK_DOWN:
SendMessage(hwnd, WM_VSCROLL, SB_LINEDOWN, 0L);
break;

...
}
break;

...
}
break;
...

In this fashion, the four arrow keys use the SendMessage function to generate
scrollbar messages equivalent to clicking on the arrow keys at the ends of the
scrollbars. Alternatively, for faster scroll operations, the Page Up (VK_PRIOR),
Page Down (VK_NEXT), Home (VK_HOME), and End (VK_END) keys can be used to
send the appropriate SB_PAGEUP and SB_PAGEDOWN messages to each scrollbar.

The SendMessage function can be used to generate any valid Windows mes-
sages, not just those shown here. Furthermore, this can be initiated in response to
any appropriate circumstance, not just a keyboard (or mouse) event.

In Windows programming, messages are generated in response to a wide vari-
ety of circumstances and for a wide variety of purposes. In many senses, the mes-
sage functions and operations are the heart of Windows applications (actually,
life’s blood might be a better metaphor).

In this chapter, we covered handling keyboard-event messages. In the next
chapter, you will learn about handling mouse-event messages.

Generating Event Messages

2642S02.qxd 11/1/99 9:50 AM Page 41

http://www.sybex.com

S U P P L E M E N T
T H R E E

Mouse Operations

� Mouse-event messages

� Mouse-movement tracking

� Mouse cursor shapes

� Mouse-hit testing

S3

2642S03.qxd 11/1/99 10:30 AM Page 1

http://www.sybex.com

2

If you have read the book up to this point or have had time to work on a
Windows system (and who hasn’t?), it should be quite obvious that Windows is
totally mouse-oriented. Granted, there are keyboard options to permit switching
between windows and applications without using the mouse but in reality, with-
out a mouse, using Windows is almost impossible. At the same time, it is possible
that your application could be designed in such a fashion that a mouse was not
required—possible, but unlikely.

Besides, is there any real reason—short of some mechao-myomorphicphobia—
for seeking to avoid these ubiquitous little pseudo-rodents? (Obviously, the ques-
tion demands a negative response.)

NOTE If you will pardon the bad Greek/Latin, mechao-myomorphicphobia is a fear of
mechanical mice.

In any case, hypothetical phobias aside, at least a minimal knowledge of mouse
operations is essential to any application. Furthermore, knowing how the mouse
works may even suggest uses and possibilities relevant to your application
design.

The Evolution of the Genus MusMechano
Originally, mouse devices were single-button (left-button equivalent) pointing
devices—a primitive form that is still found today on Apple/Macintosh systems
but that is virtually obsolete on contemporary DOS, Windows, and OS/2 systems
(despite the fact that some sources continue to suggest that a single-button mouse
should be considered a minimal standard).

For Windows 2000, two standard mouse configurations are supported: the two-
button variety typified by the standard Microsoft Mouse and the three-button
variety represented by the Logitech Mouse. Support is also provided for some
variant forms, such as mouse-emulation by joy sticks and lightpens, which are
treated as single-button mice. A variety of less common devices—such as those
for use by disabled persons or special-purpose variations (“un-mouse” pads,
touch pads, joy-stick pointers, and so on)—attempt to make their interfaces indis-
tinguishable from one of the standard interfaces.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 2

http://www.sybex.com

3The Evolution of the Genus MusMechano

Some mouse varieties (“mutations,” if you prefer) have appeared, sporting
dozens of “keys.” These keys are usually used for numerical data operations,
but in theory, they provide mini-keyboards on a mouse. These varieties require
special drivers before any Windows 98 interface is possible, and for now, they
can simply be ignored. Virtual devices, such as control gloves that sense spatial
motion, are still experimental, and they also can be ignored for now.

Also, the newest “mouse” from Microsoft (and others) includes a wheel
between the two buttons. The wheel is designed as an add-in for scrolling
through Web pages but—at present— should not be considered a “standard”
requiring support. For the moment, only the two “standard” mouse types
require consideration. Even though the middle button on three-button mice
can be extremely useful, this chapter concentrates on the minimalist standard
of two mouse buttons: left and right.

Common usage emphasizes the left mouse button, regardless of the actual
number of buttons available, as the equivalent of the Enter key. The right button
is often used as the equivalent of the Escape key (south-paws can reverse this
by going to the Control Panel, selecting the Mouse icon, and swapping the left
and right buttons). When available, the middle button triggers optional short-
cuts. If you are using a Logitech or equivalent mouse—one with a third button—
the third button is still active, even if none of your applications respond to the
middle-button-down (WM_MBUTTONDOWN) messages.

Is There a Mouse in the House?
Although it is usually safe to assume that a mouse is present, for critical applications, it is
possible to query the system to ensure that a mouse is present. This task is accomplished
using the GetSystemMetrics function:

if(GetSystemMetrics(SM_MOUSEPRESENT)) ...

If a mouse is present (and working), GetSystemMetrics will return TRUE; if no mouse is
available, GetSystemMetrics will report FALSE. If the result is FALSE, mouse-critical
applications can report accordingly.

How an application should respond to the absence of a mouse depends entirely on the
application and the importance of mouse support. One possibility is to abort the program
execution, as demonstrated in the Mouse3 demo discussed later in this chapter.

2642S03.qxd 11/1/99 10:30 AM Page 3

http://www.sybex.com

4

Mouse Actions and Events
Three principal types of mouse actions are possible:

Clicking Pressing and releasing a mouse button

Double-clicking Clicking a mouse button twice rapidly

Dragging Moving the mouse while holding down a mouse button

Other mouse actions may be implemented by an application; these are gener-
ally more a feature of the application than a standard mouse activity. For exam-
ple, instead of dragging an object such as an icon to move it, some applications
permit you to simply click once to select it and click again to release it in its new
position, without holding down the mouse button. This form (and variations) are
popular with many drawing programs and help to reduce mouse-wrist injuries
(muscle/tendon strains caused by holding and dragging the mouse in applica-
tions requiring fine control for positioning).

Mouse events in Windows are different from mouse events under DOS in sev-
eral respects:

• In the Windows environment, mouse-button events are not always paired
because the environment is shared. For example, a button-down event can
occur in one window while the release event is not reported until the mouse
has entered another window. In this fashion, the application receives only
one of these event messages, and if it depends on receiving both, may mal-
function. For an example, see the discussion of the Mouse2 demo later in this
chapter.

• An application in Windows can hold the mouse focus, even after relinquish-
ing the system focus. The application can also continue to receive all mouse
messages, even though the mouse is outside the client window area.

• If a system-modal message or dialog box is active in a Windows application,
no other application window can receive any mouse messages. System
modal messages and dialog boxes prohibit switching to any other window
or application until they are exited.

Special circumstances aside, however, there are normally no restrictions or spe-
cial provisions required for handling mouse-event messages in Windows.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 4

http://www.sybex.com

5

Mouse-Event Messages
A total of 22 mouse-event messages are defined in WinUser.H. Two of these have
values duplicating other mouse messages and are apparently intended for inter-
nal use (or, perhaps, simply for variety). Of the remaining 20, these messages
occur in pairs: one for client window events (mouse events occurring within the
application’s client window) and a corresponding event message for mouse
actions that occur outside the client window. Table S3.1 lists these mouse-event
messages and their values.

TA B L E S 3 . 1 : Mouse-Event Messages and Values

Client Window Events Value Nonclient Window Events Value

WM_MOUSEMOVE* 0x0200 WM_NCMOUSEMOVE 0x00A0

WM_LBUTTONDOWN 0x0201 WM_NCLBUTTONDOWN 0x00A1

WM_LBUTTONUP 0x0202 WM_NCLBUTTONUP 0x00A2

WM_LBUTTONDBLCLK 0x0203 WM_NCLBUTTONDBLCLK 0x00A3

WM_RBUTTONDOWN 0x0204 WM_NCRBUTTONDOWN 0x00A4

WM_RBUTTONUP 0x0205 WM_NCRBUTTONUP 0x00A5

WM_RBUTTONDBLCLK 0x0206 WM_NCRBUTTONDBLCLK 0x00A6

WM_MBUTTONDOWN 0x0207 WM_NCMBUTTONDOWN 0x00A7

WM_MBUTTONUP 0x0208 WM_NCMBUTTONUP 0x00A8

WM_MBUTTONDBLCLK** 0x0209 WM_NCMBUTTONDBLCLK 0x00A9

*WM_MOUSEFIRST duplicates WM_MOUSEMOVE.

**WM_MOUSELAST duplicates WM_MBUTTONDBLCLK.

Normally, mouse-movement and mouse-button messages are reported only
while the mouse remains within the application’s client window. In these cases,
the nonclient window mouse events are not issued to the application. However,
there are circumstances where an application will request and track mouse events
outside its own immediate jurisdiction; for example, a screen-capture application
needs this information.

Mouse Actions and Events

2642S03.qxd 11/1/99 10:30 AM Page 5

http://www.sybex.com

6

NOTE Because nonclient mouse messages are relevant only under special circumstances,
they are not demonstrated in the examples in this chapter. They will be demon-
strated in later chapters dealing with graphics, in Part 3 of this book.

The most important mouse-event messages for most applications are the nine
client window mouse-button messages listed in Table S3.2.

TA B L E S 3 . 2 : Mouse-Button Messages

Button Pressed Released Double-Clicked

Left WM_LBUTTONDOWN WM_LBUTTONUP WM_LBUTTONDBLCLK

Right WM_RBUTTONDOWN WM_RBUTTONUP WM_RBUTTONDBLCLK

Middle WM_MBUTTONDOWN WM_MBUTTONUP WM_MBUTTONDBLCLK

WM_xBUTTONDOWN and WM_xBUTTONUP messages are issued only once—when a
mouse button is pressed or released. A WM_xBUTTONDBLCLK message is issued only
when a mouse button is rapidly double-clicked (press+release+press). Unlike
keyboard events, repeating mouse-button messages are not issued by holding
down a mouse button, even though WM_MOUSEMOVE messages are issued for all
mouse movements regardless of the button states.

The status of both (or all three) mouse buttons may, however, be retrieved from
the information accompanying the WM_MOUSEMOVE message, as explained in the
“Information in Mouse Messages” section, coming up soon.

Double-Click Messages

Because not all applications require (or desire) double-click event messages, pro-
visions are included in Windows 98 to control whether or not double-click events
are reported. These provisions are controlled by the client window’s (or child
window’s) style definition. WM_xxxxDBLCLK messages are generated only if the
class style includes the CS_DBLCLKS flag, as in:

wc.style = CS_HREDRAW | CS_VREDRAW | CS_DBLCLKS;

If the CS_DBLCLKS flag is not set, a double-click is simply received as four
separate events: WM_xBUTTONDOWN, WM_xBUTTONUP, WM_xBUTTONDOWN, and WM_
xBUTTONUP. However, when CS_DBLCLKS is enabled, a double-click is received

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 6

http://www.sybex.com

7

as WM_xBUTTONDOWN, WM_xBUTTONUP, WM_xBUTTONDBLCLK, and WM_xBUTTONUP,
with the double-click message replacing the second-button-pressed message.

In general, responses to a double-click message are designed as continuations
or expansions of single-click responses; before the double-click event is regis-
tered, the application has already received a button-pressed/button-released
event message pair.

Also, if single- and double-click events are intended to perform quite different
tasks, the response processing could become quite complex because the single-
click event message will always be received before the double-click event. On the
other hand, you can make this work for you.

For example, consider the Windows File Manager’s handling of a single-click
and a double-click on a subdirectory listing. A single-click changes the active
directory; a double-click calls a new directory window displaying the selected
directory. The result is that accidental entries perform in very much the same
fashion, if not precisely the same, as the intended result.

NOTE Under Windows 98 (and 95), File Manager is still available; it’s in the Windows
directory under the filename WinFile.EXE. Windows Explorer works in a quite dif-
ferent fashion than the File Manager example cited here.

Mouse-Movement Messages

Although many applications require only mouse-button event messages, the
WM_MOUSEMOVE message is issued every time the mouse moves physically. How-
ever, this does not necessarily mean that the mouse has moved on the screen
because movement is reported not per screen pixel but per unit of mouse motion.

Rapid mouse movement may cause WM_MOUSEMOVE messages to be reported
irregularly. The Mouse1 demo, discussed later in this chapter, may demonstrate
this effect. This effect is produced partially by the accelerator settings, which
multiply distances for rapid mouse movements, and partially by the inability of
the system to respond to rapid movement events.

With slower mouse movement, the WM_MOUSEMOVE messages will most likely
overlap, resulting in more than one message with the same screen coordinates.
Overlapping mouse coordinates, however, ensure a solid series of painted screen
coordinates.

Mouse Actions and Events

2642S03.qxd 11/1/99 10:30 AM Page 7

http://www.sybex.com

8

NOTE Mouse movement is reported in mickeys. (You already know that all programmers
are punsters.) A high-resolution mouse reports 200 to 300 mickeys per inch (with-
out acceleration). The speed of movement is reported as mickeys per second.
Given the predilection of programmers for puns, it seems a wonder that this API
was not named MouseTrap().

Miscellaneous Mouse Messages

Three additional mouse messages are possible, but normally, they are not the
direct concern of the application itself and are left to Windows for appropriate
handling.

WM_MOUSEACTIVATE Occurs when the cursor is in an inactive window
and any mouse button is pressed.

WM_MOUSEENTER Occurs when the mouse enters any window.

WM_MOUSELEAVE Occurs when the mouse leaves any window.

Information in Mouse Messages
Each mouse-event message contains, in addition to the event itself, complete
mouse button and Shift- and Ctrl-key status data in the wParam argument (as flag
information), and mouse coordinate information in the lParam argument. The
status data can be tested as:

if(wParam & MK_LBUTTON)... // left button down
if(wParam & MK_RBUTTON)... // right button down
if(wParam & MK_MBUTTON)... // middle button down
if(wParam & MK_CONTROL)... // Ctrl key pressed
if(wParam & MK_SHIFT)... // Shift key pressed

The mouse coordinate information is in client-window pixel coordinates rela-
tive to the upper-left corner. As mentioned previously, this information is found
in the lParam argument, with the x-coordinate in the low-order word and the
y-coordinate in the high-order word. You can use the MAKEPOINTW macro to con-
vert the lParam argument to a POINTW structure.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 8

http://www.sybex.com

9

The Mouse1 Demo: Tracking the Mouse
The Mouse1 demo demonstrates how WM_MOUSEMOVE messages are tracked. It
plots a single pixel at the coordinates reported with each message received.
Plotting is toggled on and off by the left mouse button. Plotting begins with one
WM_LBUTTONDOWN message and ends with the next WM_LBUTTONDOWN message.
For this example, only the WM_MOUSEMOVE and WM_LBUTTONDOWN messages are
provided with responses.

The WM_LBUTTONDOWN message is used to toggle the fPaint variable by XORing
fPaint and 1, flipping the value from TRUE to FALSE and vice versa. The value
of fPaint was initialized as zero (0).

case WM_LBUTTONDOWN:
fPaint ^= 1;
MessageBeep(0);
break;

As a minor bonus, the MessageBeep function is called to provide audio feed-
back. You can call MessageBeep with a zero argument, although this argument is
simply the equivalent of MB_OK and produces the system default sound. Other
options are listed in Table S3.3.

TA B L E S 3 . 3 : MessageBeep Arguments

Argument Sound

0xFFFFFFFF Standard beep using the computer speaker

MB_ICONASTERISK SystemAsterisk

MB_ICONEXCLAMATION SystemExclamation

MB_ICONHAND SystemHand

MB_ICONQUESTION SystemQuestion

MB_OK SystemDefault

Mouse Actions and Events

2642S03.qxd 11/1/99 10:30 AM Page 9

http://www.sybex.com

10

The second response to the WM_MOUSEMOVE message depends on the current
value in fPaint (TRUE or FALSE). It extracts the mouse’s window coordinates
from lParam and paints a single black pixel.

case WM_MOUSEMOVE:
if(fPaint)
{

hdc = GetDC(hwnd);
SetPixel(hdc, LOWORD(lParam), HIWORD(lParam), 0L);
ReleaseDC(hwnd, hdc);

}
break;

For tracking mouse movements, this method is sufficient. However, pay partic-
ular attention to how different rates of movement affect the dot spacing.

NOTE The Mouse1 demo is included on the CD that accompanies this book, in the Sup-
plement 3 folder.

The Mouse Cursor
Supplement 2 explained how the text pointer is now known as the caret, and the
term cursor is now the property of the mouse pointer. And, while the mouse
pointer points at a single pixel rather than a character cell position, the cursor
proper is a bitmapped image that is tracked across the display while preserving
the background image. One pixel location within this cursor image is known as
the hot spot, which is the actual pointer location tracked.

Windows 2000 provides 14 predefined cursor images, which are listed in Table S3.4.
By default, Windows uses the slanted arrow (IDC_ARROW). Individual applications
are free to define any of these standard cursors as their own default cursor. (Most
of the applications discussed in this book follow Windows 2000 in using the
slanted arrow default.)

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 10

http://www.sybex.com

11

TA B L E S 3 . 4 : Windows Predefined Cursor Shapes

Cursor Description

IDC_APPSTARTING A standard arrow and small hourglass combination; used to show that an
application is opening

IDC_ARROW An arrow pointing diagonally up and left; the familiar default cursor

IDC_CROSS A simple horizontal/vertical cross

IDC_IBEAM An I-beam cursor; commonly used for word processing

IDC_ICON An empty shape that can be used to hide the cursor; i.e., no cursor image
(obsolete)

IDC_NO An international negative; i.e., a circle with a diagonal slash

IDC_SIZE Obsolete, see IDC_SIZEALL

IDC_SIZEALL Four arrows, pointing in the four cardinal directions (up, down, left, and
right)

IDC_SIZENESW A tilted double-arrow, pointing diagonally up to the right (NE) and down
to the left (SW)

IDC_SIZENS A double-arrow, pointing up and down

IDC_SIZENWSE A tilted double-arrow, pointing diagonally up to the left (NW) and down
to the right (SE)

IDC_SIZEWE A double-arrow pointing left and right

IDC_UPARROW Similar to the default cursor, an arrow pointing directly up

IDC_WAIT An hourglass, or wait, symbol

WARNING While both the IDC_SIZE and IDC_SIZEALL cursors are documented as produc-
ing the identical four-pointed arrow, the IDC_SIZE cursor is now obsolete. For
reliability, use IDC_SIZEALL instead.

Regardless of what the default cursor is, applications are free to change cursors
at any time, as appropriate to specific tasks or to window areas. They also may
define their own custom cursors. The predefined cursor shapes (see Table S3.4)
are illustrated in the Mouse2 demo.

The Mouse Cursor

2642S03.qxd 11/1/99 10:30 AM Page 11

http://www.sybex.com

12

The Mouse2 Demo: Mouse Cursor Shapes
As shown in Figure S3.1, the Mouse2 demo subdivides the application client win-
dow into child windows, each appearing as a simple outline with a white back-
ground. These child windows are secondary to the principal purposes of the
example, which are to demonstrate the predefined mouse cursor shapes supplied
by Windows 98 and show how the mouse cursor is changed by the application.
However, you must create and manage these child windows for the example, as
described here. (See Supplement 4 for more details about child windows and con-
trol elements.)

F I G U R E S 3 . 1 :

The Mouse2 demo shows
multiple cursor shapes

NOTE The Mouse2 demo is included on the CD that accompanies this book, in the Supple-
ment 3 folder.

Creating the Child Windows

To create the child windows for Mouse2, the first step occurs in the WinMain pro-
cedure. After registering the window class in WinMain, the InitApplication
subprocedure is called from the Template.I include file. This subprocedure is then
used to make another local set of wc assignments to register the child classes.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 12

http://www.sybex.com

13

if(! hPrevInstance)
{

if(! InitApplication(hInstance))
return(FALSE);

//*** also register child window class ***//
wc.style = CS_HREDRAW | CS_VREDRAW;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hbrBackground = GetStockObject(LTGRAY_BRUSH);
wc.lpszMenuName = NULL;
wc.lpfnWndProc = ChildWndProc;
wc.hIcon = NULL;
wc.hCursor = NULL; // essential!!! //
wc.lpszClassName = szChildClass;
RegisterClass(&wc);

}

This code includes the three critical wc assignments:

• The pointer to the ChildWndProc

• The assignment of the hCursor field as NULL

• The class name, which is a string defined at the beginning of the source
code, following the fashion used for the main window class

After you have registered the child class, the main window is created, as usual,
by calling the InitInstance subprocedure and then entering the message loop.
Remember, however, that at this point, only the main window instance has been
created; the child window class has been registered, but no instances of this class
yet exist.

The actual child windows are created in the WndProc procedure, where an array
of handles are defined as:

static HWND hwndChild[7][2];

These child window handles are defined as a static array of handles because the
values assigned must remain, even when the application exits from this local pro-
cedure. Any nonstatic data may be overwritten between messages. This is fine for
temporary variables, but the child window handles, once assigned by the Create-
Window function call, must be preserved.

The Mouse Cursor

2642S03.qxd 11/1/99 10:30 AM Page 13

http://www.sybex.com

14

The WM_CREATE message is only issued once—when the application is first cre-
ated. Therefore, 14 child window instances are created at this time, each returning
a handle, which is stored in the hwndChild array.

case WM_CREATE:
for(x=0; x<7; x++)

for(y=0; y<2; y++)
hwndChild[x][y] =

CreateWindow(szChildClass,
NULL, WS_CHILDWINDOW | WS_VISIBLE,
0, 0, 0, 0, hwnd,

(HMENU) (x | (y << 8)),
(HANDLE) GetWindowLong(hwnd, GWL_HINSTANCE),
(LPVOID) NULL);

Here, there are three principal differences between the operation for the child
window and the corresponding operation for the parent (application) window:

• Each child window is created using the hwnd handle identifying the parent
window. For the parent, the corresponding argument was NULL.

• Each child window requires an ID value that must be unique within this
application. In this case, the ID is generated as a word value (x|y<<8) and
is typecast using the HMENU data type. Although HMENU is not the data type
you might expect for a window ID, the CreateWindow function is also used
to create menus, and this is the type definition expected in the function dec-
laration. The equivalent HWND type will also work, but it will result in a
warning message from the Microsoft C++ compiler. The corresponding ID
values will be needed in ChildWndProc to identify specific child windows.

• The child window instance parameter is supplied by calling the GetWindow-
Long function with the GWL_HINSTANCE argument. When the application’s
client window was initialized, Windows had supplied this argument as the
hInstance parameter passed to the WinMain procedure. But now, 12 sepa-
rate and unique instance handles are needed, and they must be supplied by
Windows, indirectly or directly.

NOTE In Windows 3.1, the child window instance parameter is supplied by calling the
GetWindowWord function with the GWW_HINSTANCE argument.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 14

http://www.sybex.com

15

There are other differences as well, such as the absence of window titles (identi-
fied as NULL) and the differences in the style flag, but these will vary depending
on the style and type of child windows desired.

Also, these windows have all been created with both size and position set at
zero. While the same was done for the main client window, the main window is
sized automatically. The child windows, however, will not be defined as a style
that will receive WM_SIZE messages. Therefore, to size and space these dozen chil-
dren, a provision is required to accomplish this anytime the main client window’s
size changes.

Ergo, in response to the WM_SIZE message, the WndProc procedure begins by
using the current window size in the high and low words in lParam:

case WM_SIZE:
cxWin = LOWORD(lParam) / 5;
cyWin = HIWORD(lParam) / 2;
for(x=0; x<7; x++)

for(y=0; y<2; y++)
MoveWindow(hwndChild[x][y], x * cxWin, y * cyWin,

cxWin, cyWin, TRUE);
break;

Once cxWin and cyWin hold the appropriate size and spacing for each child
window, a double loop calls the MoveWindow function using the handles in the
hwndChild array and sizes and positions each.

Operating the Cursor in the Child Windows

As the mouse moves from one child window to another in the Mouse2 demo, the
mouse cursor image changes for each window. To accomplish this, however, a bit
of subterfuge is required. Initially, when the child window style was registered,
the cursor was declared NULL, affecting all instances of the child class.

Now, as the mouse moves, each WM_MOUSEMOVE message is directed to whichever
child window the mouse happens to occupy, and the response sets the mouse cur-
sor shape appropriate to that child window. However, there is only one ChildWnd-
Proc to handle responses for all of the child windows. To assign the appropriate
cursor, the WM_MOUSEMOVE response requires one additional piece of information—
which child window is currently being handled.

The Mouse Cursor

2642S03.qxd 11/1/99 10:30 AM Page 15

http://www.sybex.com

16

The WM_MOUSEMOVE response begins with an inquiry to retrieve the child win-
dow ID, as:

case WM_MOUSEMOVE:
switch(GetWindowLong(hwnd, GWL_ID))
{

Once the child window ID is known, the switch/case statement can branch to
the appropriate response, as:

case 0x0000:
SetCursor(LoadCursor(NULL, IDC_APPSTARTING));
break;

...
case 0x0106:

SetCursor(LoadCursor(NULL, IDC_WAIT));
break;

Remember, the child window IDs were assigned using the formula (x|(y<<8)),
but here it’s simpler to just assign the appropriate constants, especially because for-
mulas are not permitted as case statement IDs. Alternatively, a series of mnemonics
could have been declared, but this is simple enough for demo purposes.

In the Mouse2 demo, anytime you press the left (or primary) mouse button, the
cursor will shift to the default arrow cursor. Likewise, anytime you press the right
(or secondary) mouse button, the mouse cursor will be hidden until the button is
released.

Also, the changing cursors are assigned (loaded) only in response to a mouse
movement. Once the selected cursor has been replaced by the default cursor,
the selected cursor is reloaded only when another mouse-movement message is
received. To avoid this type of interruption, the mouse-button messages also need
to be handled to ensure that the desired mouse cursor is shown.

Hiding the mouse cursor might be the simplest task of all. It requires only the
ShowCursor function and an argument specifying whether the cursor is to be hid-
den or visible.

In Supplement 2, the ShowCaret and HideCaret functions were used in a simi-
lar fashion to hide and reveal the text caret. In that discussion, I mentioned that
you could encounter a problem with multiple show or hide calls because they
require equal occurrences of their counterparts before any action occurs.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 16

http://www.sybex.com

17

The same holds true for the ShowCursor function, except that instead of a corre-
sponding HideCursor function, ShowCursor accepts a TRUE or FALSE argument.
However, if the ShowCursor(FALSE) function is called and the mouse is then
moved to another child window before a ShowCursor(TRUE) call is made, a dif-
ferent problem may occur: The mouse cursor may not be visible again—at least
not until you leave the application window entirely.

To prevent either problem from occurring, a Boolean variable, Visible, has
been declared. This variable holds the current state of the mouse cursor, and
ShowCursor(FALSE) is only permitted if Visible is TRUE and vice versa. A simi-
lar solution, if needed, can be applied to the ShowCaret/HideCaret functions.

There’s also a second solution. The ShowCursor function returns the new dis-
play count resulting from the operation, and the cursor is hidden any time the
count is negative and shown whenever the count is zero or higher; therefore, the
following code lines will increment or decrement the show count until the appro-
priate value is reached:

while(ShowCursor(FALSE) >= 0); // hides cursor
while(ShowCursor(TRUE) < 0); // reveals cursor

NOTE As an alternative to using predefined cursors, you can include custom cursors in
your application. See Supplement 6 for details.

The Mouse3 Demo: Hit Testing
The Mouse3 demo demonstrates how mouse-click events are registered. It uses a
simple cruciform game field, which responds to both the left and right mouse
buttons by displaying, respectively, an X or O. Figure S3.2 illustrates the game
field.

NOTE The “game” using this board was originally devised by a young lady of ten. She
came up with a rather complex set of rules that, you may be properly relieved to
know, are not implemented here.

The Mouse3 Demo: Hit Testing

2642S03.qxd 11/1/99 10:30 AM Page 17

http://www.sybex.com

18

F I G U R E S 3 . 2 :

A cruciform playing board
for mouse-hit testing

The actual grid is a 7×7 array, with four elements from each corner flagged as
invalid and, therefore, not included in the paint operations. Each remaining grid
element has a corresponding integer flag, which is set to 0 initially.

To demonstrate mouse-hit testing, the location of each WM_LBUTTONDOWN and
WM_RBUTTONDOWN message is tested against the grid coordinates and then shifted
according to the original state and the button clicked before invalidating the spe-
cific grid. Conversely, any mouse clicks that fall outside the grid area or on an
array element flagged as invalid produce a warning beep.

As for playing the game, feel free to invent your own rules.

NOTE The Mouse3 demo is included on the CD that accompanies this book, in the Supple-
ment 3 folder.

Supplement 3 • Mouse Operations

2642S03.qxd 11/1/99 10:30 AM Page 18

http://www.sybex.com

19

In addition to handling mouse-event messages, the three programs discussed
in this chapter demonstrate all the principal mouse operations within the client-
window area: tracking the mouse, changing the mouse cursor, and testing mouse
hits. Because mouse operations are integral to any Windows application, they
will continue to be discussed in later chapter. But for now, we’ll leave that topic
and turn to some other basic elements of Windows applications, which we
touched on briefly in this chapter: child windows and control elements.

The Mouse3 Demo: Hit Testing

2642S03.qxd 11/1/99 10:30 AM Page 19

http://www.sybex.com

S U P P L E M E N T
F O U R

Child Windows and
Control Elements

� Types of window controls

� Control button styles

� Control button grouping

� Button event messages

S4

2642S04.qxd 11/1/99 9:52 AM Page 1

http://www.sybex.com

2

You’ve already seen examples using child windows. In Supplement 3, two of
the programs we discussed included child windows: one to demonstrate different
system cursors, and another to respond to mouse-button events by displaying
either crosses or circles in child windows.

Generically, child window controls are windows that process mouse and key-
board messages. They handle their own responses appropriately and notify the
parent window in some suitable fashion as necessary when a control changes the
child window’s state (for example, a different radio button has been chosen or a
scrollbar has been adjusted).

As you will be reassured to know, you can normally accomplish these tasks
without the need for the elaborate provisions shown in the ChildWndProc proce-
dures in the demo programs in Supplement 3. Instead, the usual child windows
are predefined window classes, several of which will be demonstrated in this
chapter and all of which will be demonstrated in future chapters.

Before moving on to Part 2, where you’ll learn about an easier way of using
window control elements, you need to understand how child windows are han-
dled using direct, rather than indirect, interactions, which is the topic of this
chapter.

The Programmer and
Child Window Controls

The real use of child windows is in the form of child window controls, although
they are not usually referred to as such. Instead, child window controls are com-
monly referred to by their functions: as buttons, checkboxes, radio buttons, edit
boxes, list boxes, scrollbars, and so on.

NOTE We’ve talked about scrollbars in earlier chapters, but only in one of their many
possible forms. As you will see later, scrollbars can be used for a variety of pur-
poses other than scrolling windows.

If you are familiar with Windows, you’ve already encountered a wide variety
of Windows control elements and know how convenient they are for the user.

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 2

http://www.sybex.com

3

Equally important is just how convenient these control elements are for the pro-
grammer. The program (and, therefore, the programmer) does not need to be con-
cerned with the mouse driver and mouse-button logic or with any of the other
myriad details involved in using these controls, such as making control buttons
change state or adjusting scrollbars when they are dragged. Instead, as the pro-
grammer, you are free to use them “as is,” as the end user does.

As a programmer, the extent of your involvement is simple. You just define
the control elements needed and the appropriate responses—and then wait.
When a control is activated, a WM_COMMAND message is returned, together with
additional information identifying which control and, if appropriate, specifics
about the state of the control.

For example, in the Mouse2 demo (discussed in Supplement 3), a child window
class is defined and registered (in this case, in the WinMain procedure). Then,
in the WndProc procedure, this child window class is initiated, as individual
instances, using the CreateWindow function before positioning and sizing each
using the MoveWindow function.

The Button1 and Button2 demos described in this chapter use a similar process,
calling the CreateWindow function to create instances of predefined classes before
positioning and sizing each using the MoveWindow function. For the predefined
window classes, such as buttons and scrollbars, the process becomes much sim-
pler. For these window controls, the classes and their responses are already
defined, programmed, and compiled, and they are available simply as library
functions.

The third demo described in this chapter, Button3, duplicates the codes
returned by the child window controls, but uses MFC to create a dialog
box–based application and introduces a wider variety of button styles.

Control Button Types
Windows provides three principal types of control buttons: pushbuttons, check-
boxes, and radio buttons. Figure S4.1 shows several examples of each of these
three types.

Control Button Types

2642S04.qxd 11/1/99 9:52 AM Page 3

http://www.sybex.com

4

F I G U R E S 4 . 1 :

Standard button
control styles

NOTE Another child window type also appears in Figure S4.1. A group box contains
each of the sets of examples. However, group boxes do not respond to mouse
events or issue WM_COMMAND messages. They are used only to visually group other
control elements (with or without group labels).

Because these child window buttons are “drawn” on a regular white window
background, rather than on the half-tone gray background common to dialog
boxes, here the controls appear unfinished. Because the purpose is to demon-
strate messages from child windows, the incomplete appearance shouldn’t
detract from the buttons’ functions. (For a more polished version, see the dis-
cussion of the Button3 demo, later in the chapter.)

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 4

http://www.sybex.com

5

Pushbutton Styles
Generic pushbutton controls are rectangular boxes that have a centered text label
and an outline simulating a raised button (3-D shading). When activated, such as
by a mouse click, the outline changes to simulate a button that has been physi-
cally depressed. This type of control button is commonly used to initiate immedi-
ate actions, without retaining or displaying any continuing status information.

For control buttons, the entire active area is enclosed by the button image,
although the control button may be any size desired. Two types of pushbutton
controls are predefined:

BS_PUSHBUTTON A control button displaying an optional text label. The
pushbutton posts a message to the parent window when activated, while
briefly changing state to simulate being physically pressed.

BS_DEFPUSHBUTTON A control button similar to the BS_PUSHBUTTON con-
trol, but with a heavy border. This button represents the default response
and normally accepts the Enter key as equivalent to being pressed. (The
heavy border represents the control that currently has the focus.)

NOTE Another Windows button type, BS_PUSHBOX, was defined previously in Windows 3.x.
The BS_PUSHBOX style appeared initially as only a text label without a button outline.
When selected, the button outline appeared (as per BS_PUSHBUTTON) and the label
was highlighted; it remained so until another pushbutton or control was selected and
the input focus was lost.

Checkbox Styles
Checkboxes are small squares with text labels appearing to the right by default (but
you can change them to the left with BS_LEFTTEXT, as explained in the “Special

Control Button Types

2642S04.qxd 11/1/99 9:52 AM Page 5

http://www.sybex.com

6

Controls and Modifiers” section). The checked state is shown by a checkmark (or
by an X in MFC) in the box.

Although the box element of the checkbox is fixed in size, the active area,
including the optional label, can be any size desired (within practical limits). To
select the button, the user can click the mouse anywhere within the checkbox
window, not just on the checkbox proper, whether or not the region is visibly
delineated.

Four checkbox styles are defined:

BS_CHECKBOX A checkbox that displays a bold border when the button is
checked. The button state must be set by the owner (application) and is not
displayed automatically.

BS_AUTOCHECKBOX The same as BS_CHECKBOX, except that the button state
is automatically toggled when selected or deselected.

BS_3STATE The same as BS_CHECKBOX, except that three states can be
selected: clear, checked, or grayed. The button state must be set by the
owner (application) and is not displayed automatically.

NOTE The grayed state is typically used to show that a checkbox has been disabled.

BS_AUTO3STATE The same as BS_3STATE, except that the checkbox auto-
matically steps through the three states in clear, checked, gray-checked
order (unless otherwise explicitly set by the application). In the third state,
the checked state appears as a dark gray checkmark (or, using MFC, an X)
against a lighter gray square.

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 6

http://www.sybex.com

7

The state (setting) of any of these checkbox controls can be queried or set
directly using the mouse.

Radio Button Styles
Radio buttons are small, circular buttons with optional text labels that appear to
the immediate right by default (like checkbox labels, radio button labels can also
be displayed on the left using BS_LEFTTEXT, as explained in the next section).

By custom and intention, radio button controls are used as groups representing
mutually exclusive choices. Only one button in a group can be selected at any
time. A set radio button is shown with a solid center. Selecting a radio button a
second time (once it has been chosen) does not change the button status. Nor-
mally, a default or initial choice is selected when the group is initially displayed.

TIP MFC also offers the option of creating radio buttons without mutual exclusivity—
the equivalent of placing each radio button in its own group.

Two styles of radio buttons include:

BS_RADIOBUTTON A radio button that displays a bold outline when
clicked, but does not display a set condition or clear set condition until
explicitly directed by the owner (application).

BS_AUTORADIOBUTTON The same as BS_RADIOBUTTON, except when a
button in a group is selected, a BM_CLICKED message notifies the appli-
cation, the selected button is set automatically, and all other auto radio
buttons in the group are cleared automatically. Any non-auto radio but-
tons within the group will not be affected without explicit instructions
from the application.

The state (setting) of either type of radio button control can be queried directly
by the application or can be explicitly set as required.

Control Button Types

2642S04.qxd 11/1/99 9:52 AM Page 7

http://www.sybex.com

8

Special Controls and Modifiers
Three additional BS_xxxx button types are defined for special purposes:

BS_OWNERDRAW This designates an owner-drawn button, but it does not
provide any type of image or response. Instead, the parent window is
notified when the button is clicked and is expected to supply provisions
to paint, invert, and/or disable the button using application-supplied
bitmap images.

BS_GROUPBOX This designates a rectangle used to visually group other but-
tons with or without an optional label that will be displayed in the rectan-
gle’s upper-left corner. The position and size for the group box must be
specified appropriately to enclose the controls or area desired. The group
box does not respond to mouse events or return any WM_COMMAND mes-
sages. (Figure S4.1, shown earlier, includes three group boxes.)

BS_LEFTTEXT This designates a flag used in combination with the
BS_CHECKBOX, BS_RADIOBUTTON, or BS_3STATE style to shift the label to
the left of the checkbox or button. This flag is not valid with pushbuttons.

The Button1 and Button2 Demos:
Button Operations

The button operations demonstrated in the Button1 and Button2 demos are
less flexible than the usual standards typified by dialog-box button operations,
because the only provisions included for these child window operations are to
respond to the mouse. No provisions have been made to permit control selec-
tions using the Tab or cursor keys, nor do any of these, including the default
pushbutton, respond to the Enter key.

Likewise, except for the BS_AUTOCHECKBOX, BS_AUTO3STATE, and BS_AUTORADIO-
BUTTON styles, none of the controls demonstrated display any change of state
beyond the immediate selection “flash” when clicked with the mouse.

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 8

http://www.sybex.com

9

NOTE Although this is not obvious in either demo, the child window controls demon-
strated can obtain the input focus when selected with the mouse. However, they
do not subsequently release the input focus to the parent window.

When selected, any of the buttons demonstrated send a WM_COMMAND message
to the parent window. In the Button1 demo, this message is displayed in a table
below the buttons as a breakdown of the wParam and lParam arguments. (You
can see this in Figure S4.1, shown earlier in the chapter.) The table shows (from
left to right):

• The notification value (high word in wParam)

• The child window (control) ID (low word in wParam)

• The child window handle value (lParam)

You will learn all about notification values in the section “Button Control Com-
munications: A Two-Way Channel,” later in this chapter.

NOTE The Button1 and Button2 demos are included on the CD that accompanies this
book, in the Supplement 4 folder.

Using CreateWindow for Buttons
The individual control buttons are generated using the same CreateWindow func-
tion that we have used to create an application’s client window and, in Supple-
ment 3, to create a series of child windows. This time, however, the CreateWindow
function is going to be used in a somewhat unusual fashion—to create sets of but-
tons grouped together by a BM_GROUPBOX child window.

The parameters used in calling CreateWindow for this purpose are defined as:

lpszClassName ASCIIZ character string identifying the window class.
This class may be a predefined window class or a registered custom class.
Note that an error in this field does not cause a compiler error but will not
allow an erroneous class object to be displayed.

The Button1 and Button2 Demos: Button Operations

2642S04.qxd 11/1/99 9:52 AM Page 9

http://www.sybex.com

10

lpszWindowText Pointer to an ASCIIZ character string, providing a label
for the button or control.

dwStyle Double-word style identifier, which uses the predefined window
and control styles.

x Integer specifying the initial x-axis position of the button class (relative
to the parent window origin).

y Integer specifying the initial y-axis position of the button class (relative
to the parent window origin).

nWidth Integer value specifying the control button width (in device units).

nHeight Integer value specifying the control button height (in device
units).

hWndParent Parameter that identifies the parent window (owner) of the
window or control being created.

hMenu Unique value identifying the child window (in other circumstances
this value may identify a menu belonging to the window; the meaning
depends on the style definition). Notice that the values used for this field
are always cast as HMENU types, regardless of their intended function. This
cast is necessary to prevent a compiler warning but does not affect the
actual operation.

hInstance Parameter that identifies the instance creating the window or
control.

lpParam Pointer used to address extra parameters or, in the Button1 demo,
to chain a series of window controls. The chain is terminated by passing
the final lpParam argument as NULL.

The actual code is rather unwieldy, making the chain structure of these grouped
controls difficult to follow. Therefore, the following list omits most of the para-
meter arguments in favor of illustrating the links in the declarations.

hwndGroup =
CreateWindow
(... , ... , ... , ... , ... ,

... , ... , hwnd, ... , ... ,
CreateWindow
(... , ... , ... , ... , ... ,

... , ... , hwnd, ... , ... ,

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 10

http://www.sybex.com

11

CreateWindow
(... , ... , ... , ... , ... ,

... , ... , hwnd, ... , ... ,
CreateWindow
(... , ... , ... , ... , ... ,

... , ... , hwnd, ... , ... ,
CreateWindow
(... , ... , ... , ... , ... ,

... , ... , hwnd, ... , ... ,
NULL

)))))

In this diagrammatic example, the hwndGroup contains five control window
elements that are chained together in the declaration. The topmost element in this
group is the declaration for the group box itself (though this is not an iron-clad
requirement), while the first control button appears as the eleventh parameter in
the group-box declaration, and so forth.

While there are no firm limits—memory and system limits aside—on such
recursive declarations, this programming style is awkward. It may appear to
produce a result that is not actually accomplished; contrary to what the structure
seems to suggest, these control buttons are not grouped by the group box except
visually, both on screen and in the program.

Grouping Controls
Grouping is not accomplished by the declaration tree (nor by the screen appear-
ance). Instead, a group is declared by first calling CreateWindow to create the
group box window and then by using the group-box handle (hwndGroup) as the
owner of the group members when these are declared.

In the tree shown previously, all the elements in the declaration tree used the
same parent window handle—that of the client window—by necessity.

In contrast, the Button2 demo actually does create groups with member controls
that are declared and created in the appropriate fashion, even if this is less elaborate.

The Button1 and Button2 Demos: Button Operations

2642S04.qxd 11/1/99 9:52 AM Page 11

http://www.sybex.com

12

Here is the Button2 code in skeleton format:

hwndPB[0] =
CreateWindow
(... , ... , BS_GROUPBOX, ... ,

... , ... , ... , hwnd,

... , ... , NULL);
for(i=1; i<4; i++)

hwndPB[i] =
CreateWindow
(... , ... , BS_xxcontrolxx, ... ,

... , ... , ... , hwndPB[0],

... , ... , NULL);

Here, the first step returns a handle to the group box control, which has the
application’s client window as a parent/owner. This handle is then used, in the
second step within the loop, to provide the parent/owner for the individual
control instances. This format creates four child window controls. These con-
trols belong to the group box and, therefore, are isolated from other controls—
a necessary requirement for auto radio buttons, for example.

However, there’s still a fly in the ointment! Why? Because this format, while satis-
factory for the present demo purposes, is still not practical for general applications.

While the parent window, hwndPB[0], is a group box and does receive mes-
sages from the child window processes, it has no provisions to act on these
messages and cannot forward them to any other process for action. Ergo, the
only actions and responses in the Button2 demo are those inherent in the button
classes themselves.

The real solution is also quite simple and is used, in part, in the Mouse2 and
Mouse3 demos (discussed in Supplement 3), when child window processes were
first introduced. If you recall, in addition to creating the child windows used in the
programs (refer particularly to Mouse3), a subprocess was also created with provi-
sions to respond to messages from the child window. Thus, to use button controls
in the fashion illustrated, the group box—whether it’s visible or invisible—or
another child window process serving as a parent to the controls would be created
in similar fashion, complete with the appropriate responses to handle messages
from the child window controls (the buttons).

Now, having been lead through this maze of complexity, you can proceed to
forget about it—at least for the present—because your applications, and the
examples discussed in later chapters, will use a quite different process to create

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 12

http://www.sybex.com

13

these and other control elements. For the most part, you will create control
elements by using dialog boxes and dialog box editors, not directly within the
application code. Be assured, this is a much simpler, as well as a much more
practical, route.

Before leaving this topic altogether, there are other aspects of child window
controls that will be relevant, regardless of how the controls are created.

Controlling Button Communications:
A Two-Way Channel

Although auto checkboxes and auto radio buttons change their state automati-
cally when clicked, you need to be able to set initial states for checkboxes and
radio buttons—for both the normal and automatic versions. At the same time,
you need to be able to accept notifications from these (and other) controls and to
query the status of these controls. These tasks are handled by sending messages
to controls and recognizing messages generated by controls, as well as by setting
initial states for the controls.

The Button1 demo demonstrates how event messages are received from the but-
ton control elements as WM_COMMAND messages with amplifying data in the lParam
and wParam arguments. The lParam argument, which will generally be ignored,
contains the window identifier for the child window control. More immediately
important is the wParam argument, which, in the low-order word, reports the con-
trol ID assigned by the application when the control was created.

The notification code in the high-order word of wParam informs the parent
process precisely what event occurred. This notification code consists of one of
the six values shown in Table S4.1.

TA B L E S 4 . 1 : User Button Notification Codes

Code Constant Value

BN_CLICKED 0

BN_PAINT 1

BN_HILITE 2

BN_UNHILITE 3

BN_DISABLE 4

BN_DOUBLECLICKED 5

The Button1 and Button2 Demos: Button Operations

2642S04.qxd 11/1/99 9:52 AM Page 13

http://www.sybex.com

14

The Button1 demo returns only two event types: 0 or 5. The second of these,
BN_DOUBLECLICKED is only returned by the BS_RADIOBUTTON style control (but
not by the BS_AUTORADIOBUTTON style control). Control notifications 1 through 4
are returned only by custom control buttons (not illustrated in this chapter) to
prompt the parent application to take the appropriate action (if any) to update
the control’s image.

Sending Messages to Controls

The Button2 demo demonstrates four group boxes containing groups of child but-
ton controls. Unlike in the Button1 demo, these group boxes are actually parents
to the controls enclosed. Because of this, setting an auto radio button in one group
will not affect settings in another group, but it will reset other buttons in the same
group, as you will see.

The Button2 demo also demonstrates other aspects involving messages sent
from the application to the control buttons. Five button-specific messages are
defined in WinUser.H, each beginning with the prefix BM_ (for “button message”),
as listed in Table S4.2.

TA B L E S 4 . 2 : Button Control Messages

Code Constant Value

BM_GETCHECK 00F0h

BM_SETCHECK 00F1h

BM_GETSTATE 00F2h

BM_SETSTATE 00F3h

BM_SETSTYLE 00F4h

NOTE In Windows 3.x, the corresponding message values were defined as WM_USER+0
through WM_USER+4. However, if the defined message constants are used, no con-
version will be required to move applications from Windows 3.x to Windows 98.

The BM_SETCHECK and BM_GETCHECK messages are sent by the parent window to
a child window control button to, respectively, retrieve or set the check state of

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:52 AM Page 14

http://www.sybex.com

15

checkboxes and radio buttons (use with normal, auto, and three-state versions).
In Button2, the BM_SETCHECK message sets three of the checkboxes in the Check-
Boxes group, three of the auto radio buttons in the RadioButtons 1 group, and
one of the radio buttons in the RadioButtons 2 group. Figure S4.2 shows the But-
ton2 display.

F I G U R E S 4 . 2 :

Grouped control buttons

The display in the RadioButtons 1 group, with three auto radio buttons
checked, is definitely anomalous and can only occur (short of bad programming)
because of the explicit settings made by the application. Clicking any of the but-
tons in this group will correct the situation shown. The BM_SETCHECK message
was sent as:

SendMessage(hwnd...., BM_SETCHECK, TRUE, 0L);

Conversely, to clear the check state of a button, another message would be sent as:

SendMessage(hwnd...., BM_SETCHECK, FALSE, 0L);

The first parameter is the child window (control button) handle, followed by
the message identifier with the third parameter setting or clearing the flag state.
The fourth parameter is unused and is passed as zero.

The BM_SETSTATE message is used to simulate the button flash that occurs
when a button is clicked with the mouse or otherwise activated. In Figure S4.2,

The Button1 and Button2 Demos: Button Operations

2642S04.qxd 11/1/99 9:53 AM Page 15

http://www.sybex.com

16

three of the checkboxes (shown with heavy outlines) have received BM_SETSTATE
messages, which were sent in the same fashion as the BM_SETCHECK messages.

The third “set” message provides a means of changing the control button style
during execution. Button2 demonstrates this with two examples.

First, the BM_SETSTYLE message is used to change the style of the third (bottom)
pushbutton from BS_PUSHBUTTON to BS_DEFPUSHBUTTON:

SendMessage(hwndPB[3], BM_SETSTYLE,
BStyle | BS_DEFPUSHBUTTON, 1L);

Unlike the earlier set messages, the BM_SETSTYLE message does use the fourth
parameter, passing a nonzero argument to request that the control be redrawn
immediately, using the new style settings. A zero argument leaves the control
unchanged until some other circumstance causes the control to be redrawn.

Second, one more BM_SETSTYLE message is sent to change the style of the third
radio button in the RadioButtons 2 group to a checkbox, but, at the same time, the
message does not incorporate the BS_LEFTTEXT flag originally used with all con-
trols in this group. As a result, the newly styled control button behaves precisely
like any other checkbox but remains a member of the RadioButtons 2 group.

Querying Control States

The BM_GETCHECK and BM_GETSTATE messages are sent as information requests
directed to specific button controls. They return the check or state status as TRUE
if the button is checked or depressed (that is, the state flag is set) or FALSE if the
appropriate flag is clear. As an example, the following instruction retrieves the
check status:

fStatus = SendMessage(hwnd..., BM_GETCHECK, 0, 0L);

In this inquiry, only two parameters are relevant: the handle identifying the con-
trol element and the BM_GETCHECK message.

On the other hand, if the only requirement is to flip the state of a button or
checkbox, you can combine the BM_GETCHECK and BM_SETCHECK instructions:

SendMessage(hwnd..., BM_SETCHECK,
(WORD)SendMessage(hwnd...,

BM_GETCHECK, 0, 0L), 0L);

However, this latter form is generally not required because the BM_AUTOxxxxx
styles obviate the need for the application to handle the button state directly.

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:53 AM Page 16

http://www.sybex.com

17

Changing Button (Window) Labels
One item that applications may wish to change on buttons and controls of all
types—whether to present a different series of selections or to update other infor-
mation types—are the button labels. This also applies to window captions and
the window text for any window type. The SetWindowText function is written as:

SetWindowText(hwnd, lpszString);

The hwnd parameter identifies the window, and the string argument is passed
as a long or far pointer to an ASCIIZ string. Button labels are constrained to a
single line of text and line wrapping is not allowed.

TIP You can create a multiline button using a static text field for the button text and
omitting text entirely from the button. The disadvantage of this approach, of
course, would be that the user would need to click the button itself—clicking the
text would not set the button. This is true unless the application included addi-
tional code to recognize a hit on the separate label and to issue a button message
in response.

At the same time, you can retrieve the current text label from any window type
using the GetWindowText function:

nLen = GetWindowText(hwnd, &Buff, sizeof(Buff));

Obviously, the buffer must be large enough to hold the string information
returned. The third parameter places a limit on the length copied. The value
returned directly to nLen is the actual length copied.

If the length is unknown, the GetWindowTextLength function can be called:

nLen = GetWindowTextLength(hwnd);

A More Elaborate Version: Button3
Figure S4.3 shows the Button3 demo, which, like Button1, reports the event mes-
sages produced when the various buttons are pressed. Unlike the earlier version,
however, this variation uses a dialog box–based application window, where the
various buttons appear against the appropriate background.

A More Elaborate Version: Button3

2642S04.qxd 11/1/99 9:53 AM Page 17

http://www.sybex.com

18

F I G U R E S 4 . 3 :

A finished button demo

In addition to providing a more complete demo, Button3 also demonstrates
three additional button styles:

• The flat pushbutton

• The push-style radio button

• The flat radio button

These styles are provided by MFC; they are not included in the standard defined
button styles.

NOTE The Button3 demo is included on the CD that accompanies this book, in the Sup-
plement 4 folder.

Now that you’ve finished this chapter, you may be tempted to simply forget
almost all of it since these tasks can be accomplished in a simpler fashion. How-
ever, whether you use these forms directly or not, a clear understanding of how

Supplement 4 • Child Windows and Control Elements

2642S04.qxd 11/1/99 9:53 AM Page 18

http://www.sybex.com

19

applications use child window controls is still, if not essential, certainly very
valuable. After all, it isn’t what you don’t know that hurts half as much as what
you think you know but actually don’t.

In Part 1, you’ve seen the mechanisms from the inside; in Part 2, you will look
at these same mechanisms (and others) from a higher (and easier to implement)
level.

A More Elaborate Version: Button3

2642S04.qxd 11/1/99 9:53 AM Page 19

http://www.sybex.com

S U P P L E M E N T
F I V E

An Introduction to
Application Resources

� Types of application resources

� Types of resource files

� Resource manager functions

S5

2642S05.qxd 11/1/99 9:54 AM Page 1

http://www.sybex.com

2

Resources in Windows applications appear as a variety of elements. These
elements range from text-based menus, to dialog box displays combining graphic
and text elements, to purely graphic elements that include bitmaps, cursors, and
icons. Each individual application may use many or all of these elements. For
example, an application might include multiple menus and dialog boxes, dozens
of bitmaps, and assortments of cursors representing different operations or modes.

In theory, resource elements can be created as part of an application’s con-
ventional executable code. Under DOS, this was essentially what was required.
Windows, however, provides a different structural approach for executables.
The approach used by Windows permits resources to be appended to an appli-
cation’s executable without being embedded within the operational portion of
the program.

This chapter provides an overview of the application resources offered by Win-
dows 98. These topics are then discussed in detail in the following chapters. In
Supplement 10, we’ll finish up by discussing two versions of an application that
uses all the techniques covered in Part 2: the FileView1 and FileView2 demos.

Advantages of the Windows
Structural Approach

When an application is loaded for execution, the resource elements are not
loaded. Instead, resources, such as dialog boxes and menus, are loaded only on
demand, as required. When a resource is no longer needed, it is discarded. The
advantage of loading resources on demand is simple: Memory is expended only
for currently operating elements. Memory is not used for storage of elements that
may or may not be needed.

For example, one version of a solitaire program (Sol.EXE) contains 74 bitmaps
(52 for the card faces alone), one menu, five dialog boxes, one accelerator table, one
icon, and one custom resource type—a fairly small load as resource elements go.

In contrast, another application might contain only one resource and the applica-
tion’s icon, and then use a series of .DLL files. These .DLL files might contain hun-
dreds of bitmap images, dozens of menus and dialog boxes, multiple accelerator

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 2

http://www.sybex.com

3

key sets (for different circumstances), a hundred separate cursors, dozens of addi-
tional icons, and a huge string table.

In both cases, if these massive assortments of resources needed to be loaded
into memory immediately on execution of the application, your system memory
would quickly become overloaded. And only a small portion of these resources
might actually be used at any time. Instead, under Windows, because the system
loads resources only on demand (when they are needed), memory remains free
for other uses.

Another advantage to the Windows approach is that you can edit application
resources without needing to recompile the files. While the usual practice is for
programmers to edit their own resource files before compiling and linking, they
can now edit executable program resources.

NOTE When executables are opened for resource editing, the original resource names
do not appear. Instead, all resources are labeled by their identifier values.

Keep in mind, however, that application resources define only the appearance
and organization of the resources, not their functional characteristics. By using
a resource editor to edit a dialog box, for example, you can change the arrange-
ment or appearance of that dialog box, but you cannot alter how the application
responds to the dialog box controls. This means that you can make only cosmetic
changes by editing resource elements. If you need to make functional changes,
you must revise the application’s source code and then recompile it.

Types of Resources
For your Windows 2000 applications, the following resources are available:

Images Three types of image resources are supported as bitmaps (.BMP),
cursors (.CUR), and icons (.ICO). Each of these are bit images, but different
rules and organizations are applied to create each one. You can edit image
resources with a bitmap editor. The three bit-image resource types are dis-
cussed in Supplement 6.

Types of Resources

2642S05.qxd 11/1/99 9:54 AM Page 3

http://www.sybex.com

4

On the Use of Resources
Because my tech reviewer has raised a few important questions concerning limitations on
resources (there really aren’t any), I’m repeating the questions here with approximate
answers.

Q: How much free memory can be used for resources?

A: All of it. In theory, the only limitation—under any 32-bit version of Windows—is the
4GB limit on addressable memory. Remember, that the operating system uses
roughly 12MB of RAM, but the swap file acts as an extension to system RAM.
Therefore, on a 16MB system, somewhere in the neighborhood of 20MB–30MB of

RAM are available for resources. How much you use is entirely up to your applica-
tion design. (And, yes, you could use a 2GB or 3GB hard drive as a dedicated swap
file—why not, they’re cheap now and relatively fast if you really need that much
space.)

Q: List everything that is considered a resource.

A: List everything that isn’t provided directly by your C/C++ source code. A resource—
in addition to bitmaps, icons, toolbars, dialog templates, hotkey accelerators, string
tables, and custom cursors—may include data objects, such as a database template,
custom controls, default registry data, sound files (but these are usually external), or
anything else you desire to include as a custom resource.

Q: How time-consuming is it to load and unload resources?

A: In actual fact, it isn’t. Resources are part of the application’s .EXE file (or .DLL
library) and are loaded at the same time the executable runs. If there is insufficient
free memory, some part of the executable or DLL is transferred to the swap file.
This task is handled by Windows on a demand basis such that currently unneeded
elements are off-loaded to a disk image of RAM and are recalled (moved back into
active memory) when needed. In effect, there is no real way to say what the time
constraints are except to observe that fast hard drives are more responsive than
slow ones.

Q: Besides memory, what are the limitations on how many resources can be loaded at
one time?

A: For all practical purposes, memory aside, there are none.

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 4

http://www.sybex.com

5

Toolbars These resources are specialized bitmap images consisting of one
or more individual button images. By default, each button is 16x15 pixels,
but you can size buttons as desired. (While toolbars are bitmap images,
most resource editors provide a toolbar editor for greater convenience.)
Toolbar resources are discussed in Supplement 6.

Dialog boxes These resources are generally message or input windows, but
they may also be child windows used to organize a display. A dialog box edi-
tor provides an interactive means of constructing dialog boxes and showing
the elements (list boxes, buttons, edit boxes, scrollbars, and so on) exactly as
these will appear on screen. Dialog boxes are discussed in Supplement 7.

Menus These resources provide lists of program options. The options
may immediately execute commands, display submenus, or display dia-
log boxes for other operations. A menu editor allows you to define and test
main and pull-down menus. You can also create menu resources using any
plain-text editor (Windows Notepad, for example). Menus are discussed in
Supplement 8.

Accelerators These are keyboard resources. An accelerator resource is a
key or key combination provided as an alternative to an individual menu
item to invoke a command. One common example is pressing the Shift+Ins
or Ctrl+V combinations as an alternative to pulling down the Edit menu to
select the Paste option. You can define these hotkey shortcuts for menus
with an accelerator editor or a plain-text editor. Accelerator resources are
discussed in Supplement 9.

Strings These resources are text strings that are displayed by an applica-
tion in its menus or dialog boxes, for error messages or other information.
By defining text strings as resources, rather than embedding them in the
source code, you can conserve memory. Also, keeping all message strings
in a single location makes it easier to standardize message formats and to
maintain consistency. Another advantage of this approach is that it allows
you to edit strings for language changes without recompiling. You can
create string tables using any plain-text editor or a string table editor. String
resources are discussed in Supplement 9.

Version This resource contains information about the application, such
as its version number, its intended operating system, and its original file-
name. It is intended for use with the File Installation library functions.
Version resources are discussed in Supplement 9.

Types of Resources

2642S05.qxd 11/1/99 9:54 AM Page 5

http://www.sybex.com

6

While application resources are, nominally, contained in the .RES resource
script file during development, binary resource objects—such as bitmaps, cur-
sors, and icons among others—are stored separately as individual files. Also, sev-
eral custom file types can be used to store individual resource objects separate
from the resource script.

Files and File Types
Most resource editors can create, import, export, or edit most resource files used
by Windows, including executable files containing resources. A full list of stan-
dard resource types appears in Table S5.1.

TA B L E S 5 . 1 : Standard (Predefined) Resource File Types

File Extension Type Description

.EXE Executable Executable program code containing application resources
and compiled program code

.RES Resource Compiled (binary) resource file

.DLL Executable Executable (dynamic link library) module, which may contain
either executable code, application resources, or both

.H Source code Header file containing symbolic names for defined resources

.ICO Resource Individual icon-image resource file

.CUR Resource Individual cursor-image resource file

.BMP Resource Individual bitmap-image file

.DLG Resource script Individual dialog box resource script containing a single dialog
box in ASCII text format

.RC Resource script ASCII resource script containing one or more resource
elements, which may include image resources in hexadecimal
format

.DRV Device driver Compiled device driver, which may contain resource
elements, dialog boxes, and so on

.FON Font library File containing one or more fonts belonging to a single type-
face (not commonly used as a resource element)

Continued on next page

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 6

http://www.sybex.com

7

TA B L E S 5 . 1 C O N T I N U E D : Standard (Predefined) Resource File Types

File Extension Type Description

.FNT Font typeface File containing a single typeface font

.DAT Resource Raw data resource, which is used for custom resource types
(can be copied, renamed, or deleted but cannot be edited,
browsed, or created using a resource editor)

Linking Resources
Normally, the resources are compiled directly to an .RES (binary) file, permitting
the Linker to link the compiled resources with the compiled .EXE executable.
However, when editing an existing .EXE or .DLL source, no .RES file is created.
Instead, the resources are written directly to the runtime program.

Using the Microsoft command-line compiler, NMake scripts (.MAK) contain
instructions to compile .RC resource scripts before linking the resulting .RES com-
piled resources.

Note that both resource editors (and most other systems) create an .RC resource
script file—a text file—that contains all of the nonimage resources. Image resources,
such as bitmaps, icons, cursors, and toolbars, are normally stored as separate image
files referenced by the .RC resource script.

Dynamic Link Libraries
A dynamic link library (DLL, sometimes pronounced “dill”) is an executable mod-
ule that may contain both application executables (compiled source code) and
application resources. A DLL is similar in construction to a runtime library, except
that it is not linked to the application during the compile process. Instead, DLLs
are dynamically linked during execution when library resources—either exe-
cutable routines or resources—are required.

DLLs have two important strengths:

• A single DLL can be accessed by more than one application without being
duplicated within each application.

Files and File Types

2642S05.qxd 11/1/99 9:54 AM Page 7

http://www.sybex.com

8

• Routines in DLLs can be revised and recompiled without modifying the
programs using the called routines (assuming, of course, that the call-and-
response format remains unchanged).

NOTE Just as .EXE resources can be modified without recompilation, .DLL resources may
also be edited, extracted, or updated without recompilation. Unfortunately, the
current Visual C/C++ compiler does not support opening resources from .EXE or
.DLL sources, although other compilers have managed this task without difficulty.

Header Files
All application resources must be identified by numeric values. But, for humans,
numeric identifiers are awkward and difficult to remember. Therefore, just as
Windows 2000 supplies mnemonic constants (see the Windows.H and included
header files), programmers can also define .H header definition files to provide
mnemonics for application resources (or use predefined mnemonics).

When creating resources using the Microsoft C++ integrated development
compiler, the resource identifiers are created automatically and are found in
the Resource.H header. The bulk of the resources appear as scripts in the .RC
resource file. All image resources—bitmaps, cursors, and icons—appear as sep-
arate .BMP, .CUR, and .ICO files, which are referenced within the .RC script.

Using a Resource Editor
Although some resource types, such as dialog boxes, can be designed (however
laboriously) by editing script files, image-based resource types are difficult to cre-
ate without using some type of resource editor. In this part, we’ll use the resource
editor integrated into the Microsoft Developer Studio for our examples. If you
prefer, you can select from a variety of other resource editors, all of which pro-
duce compatible application resources—both image-based and other types.

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 8

http://www.sybex.com

9

Figure S5.1 shows the Microsoft Developer Studio’s main screen and primary
menu together with the FileType dialog box open in the editor (the resource list
appears to the left in the Developer Studio window).

F I G U R E S 5 . 1 :

The Microsoft Developer
Studio main screen

Like most Windows applications, the Developer Studio is designed principally
for mouse operation. You can activate features by clicking menu options, buttons,
or other controls. However, the Developer Studio also provides hotkey options
that allow you to select items by pressing the key corresponding to the under-
scored letters. Thus, from the menu, Alt+F selects File, N selects New Project, and
a pop-up dialog box or a submenu appears, offering a selection of preferences for
creating a new file, a new project, and so on. Similar hotkeys are available in most
dialog boxes and menus.

Using a Resource Editor

2642S05.qxd 11/1/99 9:54 AM Page 9

http://www.sybex.com

10

As with many other Windows applications, you can also use the Tab key to
cycle through the buttons and/or fields. To select the highlighted option, press
the Enter key or spacebar.

Opening Project and Resource Files
Because you can create and store resource elements separately from a project (but
most commonly, they will be within a project), the Developer Studio makes pro-
visions for opening both project and individual resource files. The Developer Stu-
dio’s File menu has two “open” provisions: Open and Open Workspace:

You can use the Open option to open any type of file, including a project file.
But the Open Workspace option provides a shortcut specifically for opening
projects. Likewise, the Close Workspace option closes an open workspace and
all associated files. When you reopen the workspace, all the files that were previ-
ously open are reopened.

On the other hand, if you want to work on an individual resource file or create
a new resource file, without opening a project, simply click New to open the New
dialog box, shown in Figure S5.2, and select the file type.

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 10

http://www.sybex.com

11

F I G U R E S 5 . 2 :

Creating a new file or
resource

Notice here that there are individual options for bitmap, cursor, and icon files
but not for dialog boxes, menus, accelerator keys, and other resources. Instead, all
resource types except image resources are covered by the Resource Script option.

If you wish to open an individual resource file, select the Open option to see the
dialog box shown in Figure S5.3. Then you can select the type of resource (or
other file) from the Files of Type pull-down list.

F I G U R E S 5 . 3 :

Opening a file outside a
project

Using a Resource Editor

2642S05.qxd 11/1/99 9:54 AM Page 11

http://www.sybex.com

12

Adding and Editing Resource Elements
Normally, you will be working with a project, and you will want to create your
resources as a part of the project rather than as individual resource files. For this
purpose, instead of opening a new file, select Insert from the main menu, select
Resource, and then choose the type of resource to create from the Insert Resource
dialog box (by double-clicking the resource, or highlighting it and clicking OK),
as shown in Figure S5.4.

F I G U R E S 5 . 4 :

Adding a resource to
a project

After you select the resource type, a new resource element is added to the
resource list (on the left side of your screen) using a default type name, such as
IDC_CURSOR1. At the same time, the appropriate editor is called to create the new
resource element.

To create a custom resource element, select the Custom button from the Insert
Resource dialog box, and then enter a name for the custom resource type. You
must create custom resources independently, by whatever means are appropri-
ate. The options here only permit you to include a custom resource and custom
resource type within a project. You must handle all other provisions yourself,
and they must conform to a response code within the application or an associ-
ated DLL.

You can change default element type names at any time by right-clicking the
appropriate element in the resource list (on the left side of your screen) to call the
pop-up menu. From the menu, select Properties to display the Properties dialog

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 12

http://www.sybex.com

13

box, shown in Figure S5.5. Then simply enter a new resource name. A corre-
sponding entry will be made in the Resource.H header automatically. This pro-
vides a convenient way to replace the default labels supplied when resource
elements are generated with new mnemonic resource names.

F I G U R E S 5 . 5 :

Entering a new resource
name in the Properties
dialog box

You can edit an existing resource element simply by double-clicking it (or high-
lighting it and pressing Enter) in the project’s resource list. Doing this brings up
the appropriate editor and loads the resource element.

Viewing and Changing Resource Identifiers
To view resource identifiers, select Resource Symbols from the View menu. The
Resource Symbols dialog box appears, as shown in Figure S5.6. Here the resource
identifiers are listed in alphabetical (not numerical) order.

Using a Resource Editor

2642S05.qxd 11/1/99 9:54 AM Page 13

http://www.sybex.com

14

F I G U R E S 5 . 6 :

Viewing resource identifiers

A checkmark in the In Use column on the right side of the dialog box indi-
cates that an identifier is in use. The Used By box, at the bottom of the dialog
box, shows where the highlighted identifier is used. When an identifier is used
by more than one resource, multiple items appear in the Used By list. To view
the use of an identifier, click the View Use button.

WARNING Obsolete or unused identifiers may remain in the Resource.H header but will not
be checked. You can delete or change them; however, you should be aware that
unchecked identifiers may be mnemonic constants created for special messages.
The lack of a checkmark simply means that the constant is not used by any
resource element.

To change an identifier, click the Change button. If the selected identifier is in
use, you will not be able to change that identifier through this dialog box. You can
only change an identifier that is in use by changing the properties for the resource
element. If the selected identifier is in use, the Delete button will be disabled. You
can delete only identifiers that are not in use.

To edit the properties for most resources, right-click the resource item in the tree
display, and then select Properties from the pop-up menu. You can then change

Supplement 5 • An Introduction to Application Resources

2642S05.qxd 11/1/99 9:54 AM Page 14

http://www.sybex.com

15

the resource properties and identifier in the Properties dialog box. For string table
entries, you can change the resource identifiers directly in the string table.

Copying Resource Elements
To duplicate a resource—for example, to use as the basis for creating a different
version of the resource—select the resource to duplicate, and then use the Copy
and Paste options on the Edit menu. A new resource identifier will be created for
the duplicated resource.

The Insert menu also has a Resource Copy option; however, this option creates
a copy of a resource element that is used only when a special condition is defined,
or it creates a copy in a second language.

Managing Project Resources in the
Borland C++ Builder

The Borland C++ Builder has adopted a quite different development approach from previ-
ous versions of the compiler (and other compilers), treating projects as containers for one
or more applications (presumably associated), while treating applications as constructs
largely built from standard components. This approach is similar to Delphi and Visual Basic
application design.

The File menu offers options for creating or opening applications, application element
files, and projects. Once a project is opened (or created), instead of a resource script, you
will find yourself working with “forms,” where each form is associated with a separate
source file.

Borland’s C++ Builder also offers a resource editor, but it is difficult to use with conven-
tional C++ or MFC-based C++ application designs. This is because of the development
approach taken by the C++ Builder, with its form-centric design and almost total depen-
dence on predefined Borland classes and component-based programming.

As you learned in this chapter, application resources and resource editors can
simplify your application development work. The individual resource types and
editors are discussed in the following chapters. You’ll also find explanations of
how each type is used to create the resources for the FileView1 and FileView2
demos discussed in Supplement 10.

Using a Resource Editor

2642S05.qxd 11/1/99 9:54 AM Page 15

http://www.sybex.com

S U P P L E M E N T
S I X

Bitmaps, Toolbars, Icons,
and Cursors

� The four types of image resources

� Toolbar editing

� Icon design

� Cursor elements

S6

2642S06.qxd 11/1/99 9:55 AM Page 1

http://www.sybex.com

2

Bitmap and toolbar images, icons, and mouse cursors are image resources,
which you can manipulate with an image editor. This chapter describes the differ-
ences between these types of image resources and how to work with them.

Types of Image Resources
Although the four types of image resources are bit images, different rules and
organizations apply for their creation.

Bitmap Images
The simplest bit-image type is the bitmap image, which is a pixel image using
2, 16, or 256 colors. Individually, bitmaps may be as large as the full screen (or
larger) or as small as a few dozen pixels for a checkbox control or radio button; of
course, they may also be medium-sized, as in the Solitaire card images. Bitmap
images, however, are limited in that they consist only of a foreground image and
cannot contain transparent areas.

Bitmap images can be created by any paint program and do not differ in any res-
pect from conventional bitmaps. This means that you can import bitmap images
from external sources. Furthermore, bitmap images can use palettes supporting 2,
16, or 256 colors with no limitations (aside from memory, of course).

Within applications, you can use bitmap images for decorative or informative
purposes. You can also incorporate them as graphic controls.

Toolbar Images
Toolbars are a specialized bitmap-image format in which a long narrow image is
subdivided into individual button images. The bitmap itself is a single continu-
ous image, and the division into individual buttons is strictly an artifact of how
the bitmap is presented.

To create a toolbar bitmap, the image editor begins with a blank bitmap the size
of a single button. As one button image is created (edited or drawn), the editor
adds a new blank to the end of the bitmap image. These blank button images do
not appear on the actual bitmap but can be selected to create a new button image.

Supplement 6 • Bitmaps, Toolbars, Icons, and Cursors

2642S06.qxd 11/1/99 9:55 AM Page 2

http://www.sybex.com

3

By default, toolbar buttons are 16×15 pixels. You can specify a new button size
in the button properties, but keep in mind that changing the size of any of the
buttons on a toolbar affects all of the toolbar buttons. All buttons on a toolbar
must be the same size, both vertically and horizontally.

Icon Images
The icon image type is commonly used to represent an application within a Pro-
gram Manager group or on the Desktop display. You can also include icons as
bitmap images within dialog boxes or, with special handling, as menu elements.

Icon images are similar to bitmap images, but they have size limitations
supporting only VGA resolution 32×32 (normal) or 64×64 bit image sizes. Like
bitmaps, icon palettes can support 2, 16, or 256 colors. Unlike bitmap images,
however, icons can include transparent areas or areas that interact with the
Desktop or other underlying images by inverting the background pixels.

Cursor Images
The fourth bit-image type is the cursor, which, unlike the bitmap, toolbar, and
icon types, always interacts with the background image.

A cursor bit image consists of two 32×32 bit images: a mask that interacts
with the cursor background and the cursor pattern itself, which overlays the
mask/background combination. Cursors are restricted to a default palette con-
sisting of only four colors: black, white, transparent, and inverted.

Also, unlike other images, a cursor contains a hotspot, which is a pixel location
within the image that defines the cursor’s position. For example, the familiar
arrow cursor’s hotspot is located at the tip of the arrowhead.

Unfortunately, animated cursors (.ANI) are not supported by present resource
editors—even though Windows 98 ships with a set of sample animated cursors—
and require specialized facilities to create. Animated cursors are discussed in
more detail later in the chapter.

Types of Image Resources

2642S06.qxd 11/1/99 9:55 AM Page 3

http://www.sybex.com

4

Custom Fonts
At one time, custom fonts represented a fourth type of bitmapped resource. Application
fonts, however, were limited to bitmapped font images. These custom fonts are no longer
supported as resource elements.

Today, with a few exceptions, bitmapped fonts have been replaced by vectored (a.k.a.
True Type) character fonts. These fonts have several advantages: They are resizable, adapt-
able to different screen resolutions, and generally cleaner and easier to read, as well as
more attractive.

Vectored fonts, however, are not application resources; that is, they are not included as an
integral part of the application. Instead, vectored fonts are used as system resources, avail-
able to all applications. These types of fonts are not intended to be application-specific.

To create custom fonts, consider using any of the numerous font editors available on the
market (such as Fontographer or Adobe Font Manager). However, requiring a custom font
or fonts for your application is not a recommended practice and should be done only
under special circumstances.

A Bitmap Editor
Only the icon and cursor image types require the specialized formats provided by
an image editor. You can also create bitmaps using a wide variety of other paint
utilities (many of which are better suited for general illustration than either of
these resource editors).

Microsoft’s image editor, which is part of the Microsoft Developer Studio,
supports bitmap, cursor, icon, and toolbar images. The image editor is shown
in Figure S6.1, where the Setup.BMP image (from the D:\Win98 directory) is in a
split-window display with a zoom view on the left.

The palette bar appears (in the lower-right in Figure S6.1) with 16 basic colors.
The foreground and background colors are shown at the upper left of the palette
bar. Click (with the primary mouse button) to select a foreground color; right-
click (with the secondary mouse button) to select a background color. To change
any palette entry, double-click that entry to bring up the Windows common dia-
log box for color selection.

Supplement 6 • Bitmaps, Toolbars, Icons, and Cursors

2642S06.qxd 11/1/99 9:55 AM Page 4

http://www.sybex.com

5

F I G U R E S 6 . 1 :

The Microsoft Developer
Studio image editor has a
split-window display, with
independent zoom
capabilities.

The toolbar appears as a vertical, three-column bar (in the upper-right in
Figure S6.1), with 21 tools. When you select a brush, pen, airbrush, or similar
tool, the rectangle below the tool buttons offers a choice of weights or tool
shapes for the selection.

The drawing operations are essentially the same as in other familiar paint
programs, such as the Paint program distributed with Windows.

For more complex bitmap images, a wide variety of paint programs are avail-
able, and any .BMP or .DIB image can be imported as an application resource.

TIP The tools in Microsoft’s image editor should be familiar to anyone who has used a
paint program. For explanations about how the individual tools function, use the
editor’s Help menu options.

A Bitmap Editor

2642S06.qxd 11/1/99 9:55 AM Page 5

http://www.sybex.com

6

Toolbar Resources
Toolbar images are stored as simple .BMP image files, but they have some addi-
tional information in the bitmap header to specify the number and width of the
buttons and other organizational details. When a resource editor opens a toolbar
bitmap, the strip image is displayed as buttons, with separators where appropri-
ate, as shown in Figure S6.2.

F I G U R E S 6 . 2 :

A toolbar image

The toolbar also shows two views of a selected button: one (on the left) in actual
size and the second (on the right) enlarged for editing. Drawing operations for a
toolbar button are essentially the same as for any bitmap image.

Unlike some bitmaps, you can enlarge toolbar images (to add new buttons) by
selecting the blank button at the end of the toolbar image and then drawing in the
button image. A new, blank button will be added to the toolbar strip automati-
cally. Note, however, that the blank button is not stored as part of the toolbar bit-
map and does not appear during use.

You create the separations between buttons by selecting a button on the button
strip and dragging it to the right. When you release the button, a separator space
appears in the button order. To remove a separator, simply reverse the process.

Supplement 6 • Bitmaps, Toolbars, Icons, and Cursors

2642S06.qxd 11/1/99 9:55 AM Page 6

http://www.sybex.com

7

By dragging on any of the three black handles in a toolbar button (bottom-
center, bottom-right, or right-center), you can resize the button using the mouse.
When you change the size of existing toolbar buttons, the existing images are
repositioned (and resized as necessary) to fit the new button size. In other words,
if you enlarge the buttons, the existing images are repositioned (centered) within
the new button area. If you reduce the buttons in size, the images may be trun-
cated from the sides. (As buttons are reduced, the editor attempts to keep the
images for each by trimming pixels.)

You can summon the Toolbar Button Properties dialog box for an individual
button by double-clicking the button in the toolbar image (at the top of the editor
window). Figure S6.3 shows the Toolbar Button Properties dialog box. Using this
dialog box, you can edit the button ID (a default button ID is assigned when the
button is created), change the width and height for the button, and enter the
prompt strings for the button.

F I G U R E S 6 . 3 :

The Toolbar Button Properties
dialog box

The Prompt field consists of two strings separated by a newline (\n) character. The
first string is the prompt that appears on the application’s status bar (normally at
the bottom of the application window). The second string entry provides the pop-
up tip (normally brief) that appears when the cursor is positioned on the button.

TIP Although there are no technical limits on the number of buttons a toolbar can
have, you should remember that application window sizes might be limited by the
size and resolution of the end users’ display monitors. Instead of creating excep-
tionally long toolbars, it may be a better idea to break a long toolbar (more than a
dozen buttons) into two smaller toolbars.

Toolbar Resources

2642S06.qxd 11/1/99 9:55 AM Page 7

http://www.sybex.com

8

Icon Resources
Icon resources are used to represent applications, system resources, subsystems,
or controls within an application. Icons are commonly used to represent available
programs or minimized programs. Some applications, such as the Clock program
distributed with Windows 98, create their own dynamic icons. Aside from such
custom icons, conventional icons are simply small bitmaps of a symbol represent-
ing the application.

Designing an icon is largely a matter of personal taste. Icons can be as colorful
and gaudy or as starkly plain as you choose. However, there are a few points you
should keep in mind when designing icons:

• Your application is not going to stand or fall on the quality of your icon
(unless you have a very unusual application).

• There is always a temptation to put a great deal of detail into an icon, or to
reproduce a company logo, or to execute some concept that sounds fantastic
in conversation. But remember, an icon is small, and much of the detail is
simply going to be lost as clutter. In general, a simple icon is best. Its only
real purpose is to be recognizable, so that the user can easily locate and
select the icon to launch the application it represents.

• Although you can design icons using fine color details, if they are executed
on a simple VGA system (or on many laptops), they will be mapped to the
nearest available colors in the palette. The result is that all of your careful
work, and quite likely the image as well, is lost. On a monochrome system,
the results can be even worse when the colors are dithered down to black
and white.

The best rule is simple: as in “keep it simple.” If you need contrast, you can
always use inverted pixels to ensure that at least some of the icon will be visible
regardless of the background.

Cursor Resources
Cursor resources (mouse pointers) are a specialized form of bitmap. Unlike other
bitmap images, the bitmap images used for cursors do not replace the underlying

Supplement 6 • Bitmaps, Toolbars, Icons, and Cursors

2642S06.qxd 11/1/99 9:55 AM Page 8

http://www.sybex.com

9

background images. Instead, cursor images are intended to interact with the back-
ground but leave the underlying image unchanged after the cursor moves.

For maximum visibility, cursor images are normally created as outlines using
the inverted pixels for contrast or highlighting. The transparent pixels are simply
used for areas where the background is allowed to show through.

As with previous Windows versions, only black-and-white cursor images are
supported, and cursor pixels are composed of four colors: black, white, transpar-
ent, and inverted. (Animated cursors—which do permit color—are not a stan-
dard cursor image.)

Cursor Elements
Cursors provide three principal elements:

Pointer image The cursor image shows the mouse location and also
frequently indicates the general function currently being executed.

Screen image The screen image is a mask governing the interaction
between the cursor (pointer) image and the underlying screen image.
This image is generated automatically to fit the pointer image.

Hotspot The hotspot is a location within the cursor image that corre-
sponds to the mouse’s absolute screen position and is assigned by the
cursor’s designer.

Figure S6.4 shows a simple hand cursor with a pointing finger. The hand is
drawn in black, then outlined in white, and finally, filled using inverted pixels.
All these elements were designed to maximize the appearance of the image
against any background—light, dark, or mixed. The hotspot is located at the
tip of the extended finger.

F I G U R E S 6 . 4 :

A sample cursor image

Cursor Resources

2642S06.qxd 11/1/99 9:55 AM Page 9

http://www.sybex.com

10

TIP A simpler version of the cursor shown in Figure S6.4 could be drawn by using only
inverted pixels for the image and leaving the rest of the field transparent. Alterna-
tively, you could draw the image in black and use an inverted outline.

Animated Cursors
Animated cursors are a specialized format using the .ANI extension. They con-
sist of a series of images that provide simple visual animation. A few interesting
examples are distributed with Windows 98, including sand pouring though a
small hourglass (AppStart.ANI), a spinning globe (Globe.ANI), and a large, ani-
mated hourglass (Hourglas.ANI). Animated cursors may also include color,
unlike static cursor images.

The Microsoft C++ compiler suite does not provide support for creating or edit-
ing animated cursors, nor can animated cursors be readily imported as applica-
tion resources. There are, however, third-party utilities available for animated
cursor creation, if you are so inclined. Alternatively, you might create your own
animation by using a separate thread to load a series of cursor images, which is
essentially what an animated cursor does.

Two Icons for FileView
The FileView demo, which is described in detail in Supplement 10, uses two icon
images, as illustrated in Figure S6.5. The primary application icon appears at the
right; the icon on the left is used in one of the dialog boxes.

F I G U R E S 6 . 5 :

Two resources for the
FileView demo

Supplement 6 • Bitmaps, Toolbars, Icons, and Cursors

2642S06.qxd 11/1/99 9:55 AM Page 10

http://www.sybex.com

11

Both icon images were designed to stand out against any background, begin-
ning with a field drawn using the inverse brush. The letters are drawn using the
screen (transparent) brush, and then they are outlined in light cyan.

NOTE The FileView demo (both a FileView1 and a FileView2 version) is included on the
CD in the Supplement 10 folder. Additional resources used by the FileView demo
are discussed in the following chapters.

In this chapter, you learned about the various types of image resources: bitmap,
toolbar, icons, and cursor. These are easy to produce and edit using image editors.
In the next chapter, we’ll talk about dialog box resources.

Two Icons for FileView

2642S06.qxd 11/1/99 9:55 AM Page 11

http://www.sybex.com

S U P P L E M E N T
S E V E N

Dialog Box Resources

� Dialog box editor features

� Dialog box properties

� Dialog box controls

� Dialog box alignment, positioning, and sizing

S7

2642S07.qxd 11/1/99 9:56 AM Page 1

http://www.sybex.com

2

Dialog boxes are integral to Windows applications. Because many applica-
tions use dozens of—or even more—dialog boxes, the total number of dialog box
resources easily exceeds all other resource elements.

Although you can use ASCII scripts to define dialog boxes, dialog box editors
provide a much more convenient method. In this chapter, we’ll cover the use of a
dialog box editor and describe the various types of dialog box controls.

A Dialog Box Editor
Microsoft’s dialog box editor, part of the Microsoft Developer Studio, provides
interactive dialog box design. This editor offers tools to create and arrange all
standard dialog box resource elements, including control buttons, checkboxes,
edit boxes, list boxes, and radio buttons. The use of the dialog box editor is largely
intuitive; in many respects, it operates much like a paint program, using drag-
and-drop tools to position and size resource elements selected from a toolbar.

NOTE Borland’s C++ Builder editor takes a different approach to constructing dialog
boxes, using a format reminiscent of Visual Basic’s “form-centric” theme. This is
in contrast to Visual C++’s application-centric theme. C++ Builder even uses the
term form rather than dialog box. However, even though they’re called forms,
the elements and construction are essentially the same as for building dialog
boxes with Microsoft’s Developer Studio or Borland’s earlier Resource Workshop.

The main screen of the Microsoft Developer Studio dialog box editor is shown
in Figure S7.1. Here you see a blank dialog box that contains only two buttons,
the Controls toolbar (far right), and the status bar (bottom) with additional opera-
tor options and alignment tools.

The dialog box editor’s Controls toolbar offers 22 tools: one represents the control
cursor, 20 represent the standard dialog box element types, and the last (bottom-
right) provides for custom dialog box resource types. These resource controls are
discussed in more detail later in the chapter, in the section “Dialog Box Control
Elements” (and illustrated later in Figure S7.7).

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 2

http://www.sybex.com

3

F I G U R E S 7 . 1 :

The Microsoft Developer
Studio dialog box editor

The Layout menu offers alignment and layout options, which are also available
from the bottom toolbar. However, the menu also offers options for guide settings
and tab-order arrangements, which are not found on the toolbar.

NOTE The examples in this book were created using the Microsoft Developer Studio and
Visual C++. However, the principles and designs are compatible with other com-
pilers and tool sets, and in most cases, can be used with other languages as well.

Dialog Box Properties
With a dialog box editor, you can create a variety of dialog box types and styles.
To set the properties for a dialog box with Microsoft’s dialog box editor, select
Properties from the Edit menu, or right-click on the dialog box in the editor. This
brings up the Dialog Properties dialog box, which has General, Styles, More Styles,
and Extended Styles tabs.

Dialog Box Properties

2642S07.qxd 11/1/99 9:56 AM Page 3

http://www.sybex.com

4

General Properties
The General tab of the Dialog Properties dialog box, shown in Figure S7.2,
includes the dialog box ID and caption, along with font information, position
information, the dialog menu, and an associated class name.

F I G U R E S 7 . 2 :

The General tab of the Devel-
oper Studio Dialog Properties
dialog box

The General tab includes these fields:

ID A mnemonic symbol defined in the header file. This may be a symbol
(the customary default), an integer, or a quoted string.

Caption Text appearing as the dialog box label. Change the default
dialog box name supplied by the resource editor to a label identifying
the purpose or function of the dialog box.

Menu An optional resource identifier for a menu to be used in the
dialog box.

Font Name The typeface of the font used in all the controls in the dialog
box. The bold version of the typeface is always used.

Font Size The point size for the font used in all the controls in the dialog box.

X Pos and Y Pos The x- and y- coordinates, in dialog box units (DLUs,
a.k.a. dialog logic units), for the upper-left corner of the dialog box.

Class Name The registered dialog class (a Windows operating-system
window class, not a C++ class). Provided to support C programming, this
element is disabled when using MFC library support.

The General tab also contains a Font button, which calls the Select Dialog Font
dialog box, as shown in Figure S7.3. Here, you can change the default typeface or
point size used with your dialog box. A sample of the selected typeface and size is
shown at the bottom of the Select Dialog Font dialog box.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 4

http://www.sybex.com

5

F I G U R E S 7 . 3 :

Choosing a default font for
your dialog box

NOTE For applications written using Microsoft Visual C++, you may select only one font,
which will be applied to all controls and text elements in the dialog box.

Dialog Box Styles
The Styles tab of the Dialog Properties dialog box offers controls for the overall
appearance and behavior of the dialog box. Figure S7.4 shows this tab.

F I G U R E S 7 . 4 :

The Styles tab of the
Developer Studio Dialog
Properties dialog box

Dialog box styles may have the following values:

Style You can choose from the following operation styles:

• Overlapped, which is always a top-level window and should have a
caption and a border. Overlapped windows are pop-up windows that

Dialog Box Properties

2642S07.qxd 11/1/99 9:56 AM Page 5

http://www.sybex.com

6

can be overlapped by other dialog box windows. Normally, only the
main window in an application is defined as Overlapped.

• Popup, which is the default. Pop-up dialog boxes appear only when
called by an application in response to a menu selection or some other
program instruction.

• Child, which creates a dialog box defined as a child window belong-
ing to another window. Child dialog boxes are generally used when
several tiled windows are desired within an application, and they are
displayed at all times (unless, of course, they are covered by another
window or application). Child windows belonging to an application
are not allowed to overlap.

Border You can choose from four frame (border) styles, which determine
the appearance of the dialog box frame and the presence or absence of a
caption bar:

• None, which displays neither a border nor a caption bar.

• Thin, which displays a thin, single border without a caption bar.

• Resizing, which displays a double border without a caption bar.

• Dialog Frame, the default, which displays a double border with a
caption bar.

Titlebar If checked (the default), the dialog box appears with a title bar.

System Menu If checked (the default), the dialog box appears with a sys-
tem menu at the upper-left corner of the frame. The system menu appears
only on captioned dialog boxes.

Minimize Box If checked (unchecked is the default), the dialog box
appears with a Minimize box at the upper-right corner of the frame.
The Minimize box appears only on captioned dialog boxes.

Maximize Box If checked (unchecked is the default), the dialog box
appears with a Maximize box at the upper-right corner of the frame. Like
the system menu and the Minimize box, the Maximize box appears only
on captioned dialog boxes.

Clip Siblings If checked (unchecked is the default), child windows are
clipped relative to each other. Thus, when a particular child window is
repainted, all other top-level child windows are clipped from the region

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 6

http://www.sybex.com

7

of the child window to be updated. If cleared and child windows over-
lap, drawing in the client area of a child window may draw in the client
area of a neighboring child window. This option is for use with child
windows only.

Clip Children If checked (unchecked is the default), this excludes the
area occupied by child windows when drawing within the parent window.
This option is used only when creating a parent window. Do not use this
style if the dialog box contains a group box.

Horizontal Scroll If checked (unchecked is the default), the dialog box
contains a horizontal scrollbar.

Vertical Scroll If checked (unchecked is the default), the dialog box con-
tains a vertical scrollbar.

WARNING When a dialog box using the default Border style (Dialog Frame) contains scroll-
bars, the scrollbars are drawn overlapping the borders of the dialog box rather
than inside the frame, and the contents of the dialog box may be clipped incor-
rectly. This is standard Windows behavior. Therefore, to use scrollbars with a dia-
log box frame, select None, Thin, or Resizing for the Border style. This does not
apply to scrollbar controls within the dialog box—only to scrollbars used to scroll
the dialog box itself.

More Dialog Box Style Options
The More Styles tab of the Dialog Properties dialog box offers even more appear-
ance and behavioral controls for the dialog box. Figure S7.5 shows this tab.

F I G U R E S 7 . 5 :

The More Styles tab of the
Developer Studio Dialog
Properties dialog box

Dialog Box Properties

2642S07.qxd 11/1/99 9:56 AM Page 7

http://www.sybex.com

8

This tab offers the following selections, which are all unchecked by default:

System Modal Makes the dialog box system-modal, which prohibits
switching to another window or program while the dialog box is active.
This option is used for warnings, queries, and other urgent or immediate
messages.

Absolute Align Aligns the dialog box relative to the upper-left corner
of the screen. (By default, the dialog box is aligned relative to its parent
window.)

Visible Makes the dialog box visible when first displayed. This option is
applicable to overlapping and pop-up windows. Do not check this option
for form views and dialog-box template resources.

Disabled Disables the dialog box when it first appears.

Set Foreground Brings the dialog box to the foreground by internally
calling the SetForegroundWindow function for the dialog box.

3D-look Makes the dialog box appear with a nonbold font and draws
three-dimensional borders around control windows in the dialog box.

No Fail Create Creates the dialog box even if errors occur. For example,
if a child window cannot be created or if the system cannot create a special
data segment for an edit control, the dialog box will still be created.

No Idle Message Suppresses the WM_ENTERIDLE message ordinarily sent
to a dialog box’s owner when no more messages are waiting in its message
queue. This option is valid only for modal dialog boxes.

Control Creates a dialog box that works well as a child window of another
dialog box, similar to a page in a property sheet. This option permits the
user to tab among the control windows of a child dialog box, use its acceler-
ator keys, and so on.

Center Centers the dialog box in the working area; that is, the area not
obscured by the toolbar.

Center Mouse Centers the mouse cursor in the dialog box on opening.

Local Edit Specifies that edit-box controls in the dialog box will use
memory in the application’s data segment. Normally, all edit-box con-
trols in dialog boxes use memory outside the application’s data segment.
This option should always be used if the application will be using the
EM_SETHANDLE or EM_GETHANDLE messages.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 8

http://www.sybex.com

9

Extended Dialog Box Style Options
The Extended Styles tab of the Dialog Properties dialog box offers additional
appearance and behavioral controls for the dialog box. Figure S7.6 shows this tab.

F I G U R E S 7 . 6 :

The Extended Styles tab of
the Developer Studio Dialog
Properties dialog box

This tab offers the following selections, which are all unchecked by default:

Tool Window Creates a tool window intended to be used as a floating
toolbar. Tool windows have a shorter-than-normal title bar, and the title is
drawn using a smaller font.

Client Edge Creates a border with a sunken edge around the dialog box.

Static Edge Creates a border around the dialog box.

Transparent Creates a dialog box with a transparent window, so any
windows beneath the dialog window are not obscured. The dialog win-
dow receives WM_PAINT messages only after all sibling windows beneath
it have been updated. This option is useful for overlay drawing, but it does
not function well for overlaying live video.

Accept Files Allows the dialog box to accept drag-drop files. When a file
is dropped on a dialog box, a WM_DROPFILES message is sent to the control.

Control Parent Allows the user to navigate among the dialog child win-
dows using the Tab key. (Navigation using the mouse also remains in
effect.)

Context Help Includes the Help question mark icon in the dialog box’s
title bar. When the user clicks the question mark, the cursor changes to a
question mark with a pointer. Then, when he or she clicks a child window,
the child receives a WM_HELP message. The WM_HELP message should be

Dialog Box Properties

2642S07.qxd 11/1/99 9:56 AM Page 9

http://www.sybex.com

10

passed to the parent window procedure, which should call the WinHelp
function using the HELP_WM_HELP command, so that the Help application
can display a pop-up window with help information for the child window.

No Parent Notify Stops the child window from sending the WM_PARENT-
NOTIFY message to its parent window.

Right-to-Left Reading Order Displays the dialog box text using right-to-
left reading order properties.

Right Aligned Text Right-aligns text within the dialog box.

Left Scrollbar Displays the vertical scrollbar (if present) to the left of the
client area.

Dialog Box Control Elements
Dialog boxes may contain a wide variety of controls, including buttons, scroll-
bars, list boxes, edit fields, images, spin buttons, and more. New control varieties
are introduced regularly. While it would be literally impossible to describe every
type of control, I will attempt to cover most of the standard types here, even
though “new” standard types appear almost as often as new custom types.

The dialog box controls are on the dialog box editor’s Controls toolbar. Figure S7.7
shows the Microsoft Developer Studio Controls toolbar, labeled with the names of
the toolbar buttons. To select these control types, click the appropriate button, and
then position the control in the dialog box outline.

Button Types
Buttons are used to define controls that permit user interactions. Three types of
dialog box buttons are provided: pushbuttons, checkboxes, and radio buttons.

Pushbuttons

Pushbuttons are the simplest form of dialog box control. They execute an imme-
diate response when you click them with the mouse, but normally do not main-
tain any status information. Pushbuttons usually contain a text label (caption)
identifying their purpose.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 10

http://www.sybex.com

11

When you choose the Button button on the Controls toolbar, you’ll see the
dialog box shown in Figure S7.8.

F I G U R E S 7 . 7 :

Use the Controls toolbar in
the Microsoft Developer Stu-
dio dialog box editor to add
dialog box controls.

F I G U R E S 7 . 8 :

Choosing pushbutton styles

Dialog Box Control Elements

Image

Static text

Button

Radio button

List box

Vertical scrollbar

Progress bar

Hotkey

Tree control

Animate

Custom control

Selector

Edit box

Group box

Checkbox

Combo box

Horizontal scrollbar

Spin button

Slider bar

List control

Tab control

Rich edit

2642S07.qxd 11/1/99 9:56 AM Page 11

http://www.sybex.com

12

The Push Button Properties dialog box offers the following styles:

Default Button Makes the control the default button in the dialog box.
The default button is drawn with a heavy black border when the dialog
box first appears, and it is executed if the user presses Enter without
choosing another command in the dialog box. Windows allows only one
default button in a dialog box.

WARNING Unfortunately, the Developer Studio does not prevent you from creating more
than one button with the Default Button style. The result of having multiple
default buttons in a dialog box is generally failure of any of the buttons to respond
to the Enter key.

Owner Draw Used when an application needs to customize the appear-
ance of a control. When you select this style, Windows does not handle
the button appearance. Instead, when the button is activated, the parent
window is notified with a request to paint, invert, or disable the button.
The application must provide its own OnDrawItem message handler in
the owner-window procedure (either the dialog box procedure or class
derived from MFC class CDialog or CFormView). Owner-draw classes
may also be derived from CButton using an override for the CButton::
DrawItem method.

Icon Displays an icon image for the button.

Bitmap Displays a bitmap image for the button.

Multi-line Allows the button text to wrap to multiple lines if it is too
long to fit on a single line within the button rectangle.

Notify Sends a notification to the parent window (the dialog box) when
the pushbutton is clicked or double-clicked. By default, this option is not
selected and the button functions by generating a message—using the but-
ton ID—when selected.

Flat Creates a flat button without three-dimensional shading.

Horizontal Alignment Offers a choice of how the control’s caption text
is positioned horizontally. Options are Default (centered), Left, Center, or
Right.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 12

http://www.sybex.com

13

Vertical Alignment Offers a choice of how the control’s caption text is
positioned vertically. Options are Default (centered), Top, Center, or Bottom.

Radio Buttons

Radio buttons and auto radio buttons are used to make a selection from a list of
mutually exclusive options. Usually, when radio buttons are toggled on, dots
appear inside the button. Labels adjacent to the buttons identify the option or
selection. By convention, you can only select one button at a time in any group;
all other buttons in the same group should be cleared.

Regular radio buttons require provisions within the application to send a
set/clear message back to the button to initiate a change of state. Auto radio
buttons, which look just like regular radio buttons, automatically reset their own
state and, when selected, also clear any other radio buttons belonging to the same
group. Whether or not radio buttons or auto radio buttons are used, the applica-
tion is responsible for setting the initial, default selection in each group when the
dialog box is initiated.

When you choose the Radio Button button on the Controls toolbar, you’ll see
the dialog box shown in Figure S7.9.

F I G U R E S 7 . 9 :

Choosing radio button styles

The Radio Button Properties dialog box offers the following styles:

Auto Displays the checked state automatically when the user selects the
radio button. At the same time, any other radio buttons in the group are
cleared (deselected). When a group of radio buttons is used with the Dia-
log Data Exchange (DDE), the Auto property must be set. This style is
checked by default.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:56 AM Page 13

http://www.sybex.com

14

NOTE The Dialog Data Exchange (DDE) is an MFC-based mechanism that provides the
exchange of data between dialog box elements and corresponding member vari-
ables within the CDialog-derived class. Using the DDE, instead of explicitly gener-
ating messages to read or write the state, text, or other values from and to dialog
box elements, calling the UpdateData function with a FALSE argument causes all
the elements to be updated with the values from their corresponding class mem-
bers. Calling UpdateData with a TRUE argument retrieves the current values from
all dialog box elements, storing (and validating when appropriate) these values in
the member variables.

Left Text Places the radio button’s caption text on the left of the button
rather than the right.

Push-like Gives the radio button the appearance of a conventional push-
button while still retaining the performance and characteristics of a radio
button. A push-like radio button appears raised when unchecked and
sunken when checked (pushed).

Multi-line Allows the radio button text to wrap to multiple lines if it is
too long to fit on a single line within the button rectangle.

Notify Notifies the parent window when the radio button is clicked or
double-clicked. Notification is used only when the parent is expected to
take immediate action in response to a change rather than waiting to query
the button status when the dialog box session concludes.

TIP Because radio buttons are customarily used to establish settings or selections that
will only become relevant after the dialog box closes—when the application
returns to its primary tasks—the normal expectation is that the status of a radio
button is queried only after the dialog box closes. This is not, however, a hard and
fast rule; it’s merely a generality. When an immediate response to a change in
state is required, select the Notify option.

Flat Creates a flat radio button without three-dimensional shading.

Icon Displays an icon image for the radio button.

Bitmap Displays a bitmap image for the radio button.

Horizontal Alignment Offers a choice of how the control’s caption text
is positioned horizontally. Options are Default (text to the right of the but-
ton), Left, Center, or Right.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 14

http://www.sybex.com

15

Vertical Alignment Offers a choice of how the control’s caption text is
positioned. Options are Default (centered), Top, Center, or Bottom.

Checkboxes

Like radio buttons, checkboxes are usually identified by text labels set to the right
or left of the checkbox image. Unlike radio buttons, checkboxes permit selection
of none, one, or multiple items. Each checkbox resets its own image by displaying
a checkmark when selected. A second mouse click on a checkbox cancels selec-
tion, resetting the image.

Checkboxes may be grouped, but they do not interact with others in a group.
Each checkbox selection is assumed to be made independently of any other
selections.

When you choose the Checkbox button on the Controls toolbar, you’ll see the
dialog box shown in Figure S7.10.

F I G U R E S 7 . 1 0 :

Choosing checkbox styles

The Check Box Properties dialog box offers the following styles:

Auto Toggles between the checked and unchecked states automatically
when the user selects the checkbox. When checkboxes are used with the
DDE, this property must be set to TRUE. This style is checked by default.

Tri-state Allows the checkbox to display three states: checked, cleared, or
grayed. A grayed checkbox indicates that the state represented by the con-
trol is undetermined or, alternately, the state of the checkbox selection is
irrelevant (disabled).

Left Text Places the checkbox’s caption text on the left of the checkbox
rather than the right.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:56 AM Page 15

http://www.sybex.com

16

Push-like Gives the checkbox the appearance of a conventional push-
button while still retaining the performance and characteristics of a check-
box. A push-like checkbox appears raised when unchecked and sunken
when checked (pushed). For a tri-state push-like checkbox, the third state
is depressed but grayed.

Multi-line Allows the button text to wrap to multiple lines if it is too
long to fit on a single line within the button rectangle.

Notify Notifies the parent window when a checkbox is clicked or double-
clicked. Notification is used only when the parent is expected to take
immediate action in response to a change rather than waiting to query
the button status when the dialog box session concludes.

Flat Creates a flat checkbox without three-dimensional shading.

Icon Displays an icon image for the checkbox.

Bitmap Displays a bitmap image for the checkbox.

Horizontal Alignment Offers a choice of how the control’s caption text
is positioned. Options are Default (left), Left, Center, or Right.

Vertical Alignment Offers a choice of how the control’s caption text is
positioned. Options are Default (centered), Top, Center, or Bottom.

General Properties for Other Controls
The General tab of the Properties dialog boxes for the text-oriented fields, range
and adjustment controls, and other controls is similar for each type. Figure S7.11
shows the General tab of the Text Properties dialog box.

F I G U R E S 7 . 1 1 :

The General tab of the Text
Properties dialog box

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:56 AM Page 16

http://www.sybex.com

17

The text-oriented, range and adjustment, and other controls have the following
general properties in common:

ID Indicates the default resource ID for the control. You may retain the
supplied ID or change to a mnemonic ID by entering the desired identifier.
When you supply a new ID, a value is assigned automatically, and an
entry is placed in the Resource.H header. The resource ID may be a sym-
bol, integer, or quoted string.

Visible Makes the control visible when the application is first run. This
option is checked by default.

Disabled Displays the resource as disabled when the dialog box is created
(not relevant to static text controls).

Group Makes the control the first control of a group of controls, where
users can move from one control to the next by using the arrow keys. All
controls in the tab order after the first control belong to the same group if
the Group property is set to FALSE (unchecked). The next control in the tab
order that has Group set to TRUE (checked) ends the first group of controls
and starts the next group. For static text fields, this option is checked by
default.

Tabstop Allows the user to move to this control with the Tab key. This
option is checked by default for all text-oriented controls except static text
fields. It is also the default for sliders, hotkeys, and animated controls.

Help ID Assigns a help ID to the control based on the resource ID (not
relevant to static text).

Text-Oriented Fields
Six text-field types are provided: static text fields, edit boxes, list boxes, combo
boxes, list control boxes, and tree controls.

Static Text Fields

Static text fields display labels and other information that cannot be entered or
changed by the user. They may show information, ask questions, provide expla-
nations, or simply provide labels for other controls or for edit boxes. Static text
fields may be formatted as left-justified, right-justified, or centered.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:56 AM Page 17

http://www.sybex.com

18

When a static text field is created, a default identifier, IDC_STATIC, is assigned
and the default caption Static is supplied. If an application needs to change the
contents for a static text display, an individual resource ID should be assigned.

TIP Static text fields may be assigned unique identifiers if there is any reason to have
the displayed text change during execution of the application. After assigning a
unique ID, the SetDlgItemText function can be used to assign new text to the
static text field.

Along with the properties listed in the previous section, the General tab of the
Text Properties dialog box contains a Caption property for the text string that
appears in the static text field. If you want to change the default caption Static,
this is where you would enter the new caption.

In addition to setting the options on the General tab for a static text field, you
can also set the control’s appearance using the Styles tab, shown in Figure S7.12.

F I G U R E S 7 . 1 2 :

Setting static text field styles

WARNING Static text fields are limited to 255 characters. Multiple static text fields may over-
lap and conceal portions of other fields.

The Styles tab of the Text Properties dialog box offers the following options:

Align Text Controls how text is aligned in the static text control: Left (the
default), Center, or Right. This should be set to Left when No Wrap is
selected.

No Prefix Prevents ampersands (&) in the control’s text from being
interpreted as the mnemonic character. Normally, a string containing an
ampersand is displayed with the ampersand removed and the next char-
acter in the string underlined. The No Prefix style is most often used

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 18

http://www.sybex.com

19

when filenames or other strings that may contain an ampersand need to
be displayed.

No Wrap Displays text left-aligned; tabs are expanded but text is not
wrapped, and any text extending beyond the end of a line is clipped.

Simple Disables both the No Wrap and Align Text options; text does not
wrap and is not clipped. Furthermore, overriding WM_CTLCOLOR in the par-
ent window has no effect on the control.

Notify Notifies the parent window if the control is clicked or double-
clicked (not applicable to static text).

Sunken Creates a border with a sunken edge around the static text
control.

Border Creates a border around the text control.

Edit Boxes

Edit boxes are used for entries and responses, but they may also display infor-
mation or selections without allowing the user to change the entry. Usually, edit
boxes permit the user to enter new text information or to edit existing text infor-
mation. Although only one type of edit box is listed in the resource editor, these
controls can be defined as single-line or multiline edit fields and may include ver-
tical and/or horizontal scrolling and scrollbars.

When you create an edit box, the resource editor supplies a default ID value:
IDC_EDITn. You can enter a new ID or select one from a list of defined IDs in the
General tab of the Edit Properties dialog box. See the section “General Properties
for Other Controls” earlier in the chapter for a description of the other properties
on the General tab.

In addition to setting the properties on the General tab, you can also set the
control’s appearance using the Styles tab, as shown in Figure S7.13.

F I G U R E S 7 . 1 3 :

Setting edit box styles

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 19

http://www.sybex.com

20

The Styles tab of the Edit Properties dialog box has the following options:

Align Text Offers a choice of Left (the default), Centered, or Right-
aligned text (when the Multi-line option is selected).

Multi-line Creates a multiline edit-box control. When a multiline edit
box is in a dialog box, pressing the Enter key selects the default button.
Multiline edit boxes may have scrollbars and process their own scrollbar
messages. They may also process scrollbar messages sent by the parent
window. See also Horizontal Scroll, Auto HScroll, Vertical Scroll, and
Want Return.

Number Restricts input to numeric characters and associated symbols;
prevents any nonnumeric characters from being typed.

Horizontal Scroll Adds a horizontal scrollbar to a multiline control. This
option is not available unless the Multi-line option has been selected.

Auto HScroll Scrolls text right automatically when a character is typed
at the right end of the box. This option is checked by default. When Auto
HScroll is selected, text automatically scrolls horizontally whenever the
caret (text cursor) passes the right edge of a multiline edit box. The user
must press the Enter key to start a new line. If Auto HScroll is not selected,
the control automatically wraps words to the beginning of the next line
when necessary.

Vertical Scroll Adds a vertical scrollbar to a multiline edit-box control.
This option is not available unless the Multi-line option has been selected.

Auto VScroll In a multiline edit box, automatically scrolls text up one
line when the user presses Enter on the last line. This option is not avail-
able unless the Multi-line option has been selected.

Password Displays all characters typed as asterisks (*). This property is
not available for multiline edit boxes.

No Hide Selection Controls how text is displayed when an edit box
loses and regains the focus. If set, text remains selected even when the
edit box loses the focus.

OEM Convert Converts text typed in the edit box from the Windows
character set to the OEM character set and then back to the Windows set.
Selecting this option ensures proper character conversion when the appli-
cation calls the AnsiToOem function to convert a Windows string in the edit
box to OEM characters. This property is most useful for edit-box controls
containing filenames.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 20

http://www.sybex.com

21

NOTE OEM stands for original equipment manufacturer, but it refers to any kind of third-
party addition, including special character sets for international use.

Want Return Inserts a carriage return when the user presses the Enter
key while typing text in a multiline edit box. If Want Return is not set,
pressing the Enter key is the same as pressing the dialog box’s default
pushbutton. Want Return has no effect on single-line edit boxes.

Border Draws a border around the edit box. This option is checked by
default.

Uppercase Converts all characters typed to uppercase.

Lowercase Converts all characters typed to lowercase.

Read-Only Prevents users from changing the contents of the edit box.

List Boxes

List boxes display text (or icon) lists, allowing the user to select one (or more)
items. List box entries are supplied by the application. For example, a list box
might contain a list of filenames. When the list is too long for the allocated
space, a scrollbar appears for vertical scrolling.

Custom list boxes can also be defined as owner-drawn list boxes. Custom con-
trols may include graphic as well as text entries, but they require provisions
within the application to handle the display material. To create a custom list box,
select either the Owner Draw Fixed or Owner Draw Variable option on the Styles
tab of the List Box Properties dialog box. The Owner Draw Fixed style requires
that all items in the list box have the same height; the Owner Draw Variable style
permits the mixing of items of varying heights.

NOTE For more information about custom controls using the owner-drawn styles, refer
to the Microsoft SDK.

When you create a list box, the resource editor supplies a default ID value:
IDC_LISTn. You can enter a new ID or select one from a list of defined IDs in the
General tab of the List Box Properties dialog box (see Figure S7.11, shown earlier).
This dialog box contains the properties listed earlier in the section titled “General
Properties for Other Controls.”

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 21

http://www.sybex.com

22

The Styles tab of the List Box Properties dialog box contains options for setting
the Control’s appearance. Figure S7.14 shows this tab.

F I G U R E S 7 . 1 4 :

Setting list box styles

The Styles tab contains the following properties for list boxes:

Selection Determines how items in a list box can be selected. Possible
values are as follows:

• Single, which allows only one item in a list box to be selected at a time.
This is the default selection method.

• Multiple, which allows more than one list-box item to be selected at a
time. Clicking or double-clicking any unselected item selects it. Click-
ing or double-clicking any selected item deselects it. The Shift and Ctrl
keys have no effect.

• Extended, which allows the Shift and Ctrl keys to be used together
with the mouse to select and deselect list box items, select groups of
items, and select nonadjacent items.

Owner Draw Sets the owner-draw characteristics for the list box using
one of the following values:

• No, which turns off the owner-draw style, limiting the list box contents
to strings. This is the default setting.

• Fixed, which makes the owner of the list box responsible for drawing
the contents of the list box. All items in the list box must be the same
height. CWnd::OnMeasureItem is called when the list box is created,
and CWnd::OnDrawItem is called when a visual aspect of the list box
has changed.

• Variable, which makes the owner of the list box responsible for draw-
ing the contents of the list box; however, items in the list box may be of

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 22

http://www.sybex.com

23

varying heights. CWnd::OnMeasureItem is called for each item in the
list when the list box is created, and CWnd::OnDrawItem is called when
a visual aspect of the list box has changed.

Has Strings Specifies that an owner-drawn list box contains string items.
The list box maintains the memory and pointers for the strings, allowing
the application to use the LB_GETTEXT message to retrieve the text for a
particular item. This option is available only if the Owner Draw option is
set to either Fixed or Variable. If Owner Draw is set to No, the list box con-
tains strings by default.

Border Creates a border around the list box. This option is checked by
default.

Sort Sorts the contents of the list box alphabetically. This option is checked
by default.

Notify Sends a notification to the parent window when the user clicks or
double-clicks a list box item. This option is checked by default.

Multi-column Creates a multiple-column list box. In a multicolumn list
box, the user scrolls horizontally. Use the LB_SETCOLUMNWIDTH message to
set the width of the columns.

Horizontal Scroll Creates a horizontal scrollbar for the list box.

Vertical Scroll Creates a vertical scrollbar for the list box. This option is
checked by default.

No Redraw Specifies that a list box’s appearance is not updated when
changes are made. You can change the No Redraw style via a WM_SET-
REDRAW message or by calling CWnd::SetRedraw.

Use Tabstops Allows a list box to recognize and expand tab characters
when drawing its strings. The default tab positions are 32 dialog box
units (DLUs).

Want Key Input Sends the list box owner WM_VKEYTOITEM messages when
the Has Strings style is used or WM_CHARTOITEM messages whenever a key is
pressed and the list box has the input focus. The Want Key Input option
allows an application to perform special processing on the keyboard input.

Disable No Scroll Displays a disabled vertical scrollbar in the list box
when there are not enough items to scroll. By default, a scrollbar does not
appear until the list box contains enough items to scroll.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 23

http://www.sybex.com

24

No Integral Height Specifies that the size of the list box is exactly the
size specified by the application when the list box was created. Normally,
the list box is sized so partial items are not displayed. This option is
checked by default.

No Data Prevents the list box from storing item data.

Combo Boxes

Combo boxes combine the features of edit boxes and list boxes. They permit the
user to either select from a list or type an entry directly in the edit box.

Three styles of combo boxes are supported: simple, drop-down, and drop-
down-list combo boxes (use the Styles tab of the Combo Box Properties dialog
box to select these options). Custom combo boxes are defined using the Owner-
Draw option on the Styles tab as well. These options will be covered in more
depth in a moment.

As with the other resource types, the resource editor supplies a default ID
value, IDC_COMBOn, when you create the combo box, but you can enter or select
a new ID in the General tab of the Combo Box Properties dialog box. This dialog
box contains the properties listed earlier in the section titled “General Properties
for Other Controls.”

The Data tab of the Combo Box Properties dialog offers one additional prop-
erty, as shown in Figure S7.15. The Enter Listbox Items property is available only
in resource files using MFC library support. This property allows you to enter the
initial selections that will appear in the list portion of the combo box when the
dialog box is created. To add entries, press Ctrl+Enter (line feed) at the end of
each item to move to the next line.

F I G U R E S 7 . 1 5 :

Setting the list box contents
for combo boxes

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 24

http://www.sybex.com

25

WARNING A bug in Developer Studio 97 (Visual C++ version 5.0) causes the list box entry
field in the Data tab to be permanently disabled. Earlier versions of VC++ offered
this same functionality in a slightly different format without problems. At the time
of this writing, there is no known patch to fix this problem, but you can edit the
resource script directly—as ASCII text—to enter a default string list. Of course,
irrespective of the resource script, an application can always add string entries at
runtime.

The Styles tab of the Combo Box Properties dialog box allows you to set prop-
erties that affect the combo box’s appearance. Figure S7.16 shows this tab.

F I G U R E S 7 . 1 6 :

Setting combo box styles

The Styles tab contains the following properties for combo boxes:

Type Specifies the combo box as one of the following types:

• Simple, which creates a simple combo box combining an edit-box
control for user input with a list-box control. The list is visible at all
times, with the current selection from the list displayed in the edit-
box control.

• Dropdown, which creates a drop-down combo box. A drop-down
combo box is the same as a simple combo box, except the list is dis-
played only when the user selects the drop-down arrow at the right
of the edit-box control portion. Because the lists appears only on
demand, the area used can also be occupied by other controls. This
is the default type.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 25

http://www.sybex.com

26

• Drop List, which creates a drop-down-list combo box. A drop-down-
list combo box is similar to the drop-down combo box except that the
edit-box control is replaced by a static-text item displaying the current
list selection. It does not accept user input; edit field entries must corre-
spond to items already in the list.

Owner Draw Sets the owner-draw characteristics for the combo box
using one of the following values:

• No, which turns off the owner-draw style, limiting the list box contents
to strings. This is the default setting.

• Fixed, which makes the owner of the combo box responsible for draw-
ing the contents of the list box. All items in the list box must be the
same height. CWnd::OnMeasureItem is called when the list box is cre-
ated, and CWnd::OnDrawItem is called when a visual aspect of the list
box has changed.

• Variable, which makes the owner of the combo box responsible for
drawing the contents of the list box; however, list box items may be of
varying height. CWnd::OnMeasureItem is called for each item in the list
when the list box is created, and CWnd::OnDrawItem is called when a
visual aspect of the list box has changed.

Has Strings Specifies that an owner-drawn combo box contains string
items. The list box maintains the memory and pointers for the strings,
allowing the application to use the LB_GETTEXT message to retrieve the
text for a particular item. This option is available only if the Owner Draw
option is set to either Fixed or Variable. If Owner Draw is set to No, the
list box contains strings by default.

Sort Sorts the contents of the combo box alphabetically. This option is
checked by default.

Vertical Scroll Creates a vertical scrollbar for the list box. This option is
checked by default.

No Integral Height Specifies that the size of the combo box is exactly the
size specified by the application when the combo box was created. Nor-
mally, the combo box is sized so partial items are not displayed.

OEM Convert Converts text typed in the combo-box control from the
Windows character set to the OEM character set and then back to the Win-
dows set. This option ensures proper character conversion when the

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 26

http://www.sybex.com

27

application calls the AnsiToOem function to convert a Windows string in
the combo box to OEM characters. OEM Convert is most useful for combo
boxes that contain filenames.

Auto HScroll Scrolls text right automatically when the user types a char-
acter at the right end of the box.

Disable No Scroll Displays a disabled vertical scrollbar in the list box
when there are not enough items to scroll. By default, a scrollbar does not
appear until the list box contains enough items to scroll.

Uppercase Converts all characters typed to uppercase.

Lowercase Converts all characters typed to lowercase.

List Control Boxes

List control boxes are an extension of the list-box type, with the additional capa-
bilities of displaying either large or small icons, a multicolumn list with icons, or
in a report format, columnar lists with a header. The four styles of list control
boxes are illustrated in Figure S7.17.

F I G U R E S 7 . 1 7 :

Four list control box styles

When a list control box is created, the default ID value IDC_LISTn (which fol-
lows the same format as a list box) is supplied. You can enter a new ID or select
from a list of defined IDs in the General tab of the List Control Properties dialog
box. This dialog box contains the properties listed in the earlier section titled
“General Properties for Other Controls.”

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 27

http://www.sybex.com

28

You set the appearance of the list control box using the Styles tab of the List
Control Properties dialog box, shown in Figure S7.18.

F I G U R E S 7 . 1 8 :

Setting the styles of list
controls

The Styles tab contains the following properties for list control boxes:

View Sets the display view for the list control box as one of the following:

• Icon, which sets the large icon view with the icons in a multicolumn
arrangement. This is the default view.

• Small Icon, which sets the small icon view with the icons in a multi-
column arrangement.

• List, which sets a list view as a single-column display with small icons
(optional) along the left.

• Report, which sets a report view for a multicolumn text display with a
column header.

Align Sets the alignment of icons in the list as one of the following:

• Top, which aligns icons at the top of the view. This is the default
alignment.

• Left, which aligns icons at the left of the view.

Sort Sets the sort order for icons in the list as one of the following:

• None, which means no sort is applied. This is the default setting.

• Ascending, which sorts items in ascending order based on item text.

• Descending, which sorts items in descending order based on item text.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 28

http://www.sybex.com

29

Auto Arrange Automatically keeps icons arranged in both the Icon and
Small Icon views.

Single Selection Specifies that a user can select only one item at a time.
By default, a user can select multiple items.

Share Image List Specifies that the list control box does not assume
ownership of the image lists assigned to it; that is, the image lists are not
destroyed when the list control box is destroyed. This allows the same
image list to be used with multiple list-control-box view controls.

No Label Wrap Displays item text on a single line in Icon view. By
default, item text may wrap in Icon view.

Edit Labels Allows item labels to be edited in place. To support this, the
parent window must process the LVN_ENDLABELEDIT notification message.

Owner Draw Fixed Allows the owner window to paint items in the
Report view. The list-control-box view control sends a WM_DRAWITEM
message to paint each item but does not send separate messages for each
subitem. The itemData member of the DRAWITEMSTRUCT structure con-
tains the item data for the specified list-control-box view item.

No Scroll Disables scrolling; all items must appear within the client area.

No Column Header Specifies that no column header is displayed in the
Report view.

No Sort Header Prevents column headers from acting like buttons.
Commonly, clicking a column head sorts the list by the column entries,
but clicking may be implemented for some other action. If no action is
provided as a response to a column-header click, setting this option will
prevent a screen response.

Border Creates a border around the list-control-box view control. This
option is selected by default.

Tree Control Boxes

Tree control boxes are used to display hierarchical information in a tree format,
where branches can be collapsed or expanded. The branches in the tree control
may be displayed as a simple indented list or complete with node buttons and
lines. Two styles of tree control boxes are illustrated in Figure S7.19.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 29

http://www.sybex.com

30

F I G U R E S 7 . 1 9 :

Two formats for tree controls

When a tree control box is created, the default ID value IDC_TREEn is supplied.
You can enter a new ID or select one from a list of defined IDs in the General tab
of the Tree Control Properties dialog box. This dialog box contains the properties
listed in the earlier section titled “General Properties for Other Controls.”

In addition to the General properties for the tree control box, the Styles proper-
ties allow you to set the control’s appearance. Figure S7.20 shows this tab.

F I G U R E S 7 . 2 0 :

Setting tree control box styles

The Styles tab contains the following properties for tree control boxes:

Has Buttons Displays plus (+) and minus (–) buttons next to parent items
in the tree. These can be used to expand or collapse a parent item’s list of
child items. To include buttons with items at the root of the tree view, the
Lines at Root option must be selected.

Has Lines Uses lines to show the hierarchy for tree items.

Border Creates a border around the tree control box.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 30

http://www.sybex.com

31

Lines at Root Uses lines to link items at the root of the tree control. The
Lines at Root option is ignored if the Has Lines option is not selected.

Edit Labels Allows the user to edit the labels of tree control items.

Disable Drag Drop Prevents the tree control from sending TVN_BEGIN-
DRAG notification messages.

Show Selection Always Uses the system highlight colors to draw the
selected item.

Range and Adjustment Controls
Standard dialog box features include horizontal and vertical scrollbars. Rather
than being used to scroll the display within a window, dialog box scrollbars are
often used as range slider controls or sometimes as range meters. For example,
the Control Panel’s Colors dialog box uses scrollbars to adjust the RGB intensities
for custom colors. In like fashion, scrollbars might be used in a MIDI control
application to set tone, voice, fade, and reverb.

More modern control versions adapted from scrollbars include slider and spin
controls. In addition, the progress control, while not directly adapted from a scroll-
bar, shares some of the same characteristics. Figure S7.21 shows some examples of
dialog box scrollbars and other range and adjustment controls.

F I G U R E S 7 . 2 1 :

Scroll bars, sliders, and spin
controls

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 31

http://www.sybex.com

32

TIP Remember, edit boxes, list boxes, and combo boxes supply their own scrollbars.
They do not require separate provisions.

Horizontal and Vertical Scrollbars

Even though horizontal and vertical scrollbars are represented by different but-
tons on the dialog box editor’s toolbar, these buttons are essentially a single tool
differing only in their orientation. Both versions return the same event messages
and respond to the same instructions (as do, incidentally, the slider and spin con-
trols). The only real difference between the two forms of scrollbars is whether the
SB_HORZ or SB_VERT argument is used when the scrollbar is generated.

When a scrollbar is created, a default ID value is supplied: IDC_SCROLLBARn.
You can enter a new ID or select one from a list of defined IDs in the General tab
of the Scrollbar Properties dialog box, as shown in Figure S7.22.

F I G U R E S 7 . 2 2 :

The General tab of the Scroll-
bar Properties dialog box

This dialog box contains the properties listed in the earlier section titled “Gen-
eral Properties for Other Controls,” along with one additional property, Align.
The options for the Align property include the following:

None No special sizing or alignment is performed. The size of the scroll-
bar is the size specified in the resource script. This alignment is the default.

Top/Left The scrollbar is set to a standard width (thickness) and aligned
with the upper-left corner of the scrollbar window specified in the resource
script. The scrollbar length is not changed.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 32

http://www.sybex.com

33

Bottom/Right The scrollbar is set to a standard width (thickness) and
aligned with the lower-right corner of the scrollbar window specified in
the resource script. The scrollbar length is not changed.

NOTE Selecting either Top/Left or Bottom/Right alignment sets the thickness of the
scrollbar to match the width of the scrollbar’s endpads and thumbpad.

Sliders

A slider control (also called a trackbar) is a scrollbar where the endpads of the con-
ventional scrollbar are lost and the thumbpad is replaced by a choice of slider
tabs. Slider controls may also include tick marks along their length, have slider
tabs pointed to one side or the other, and be vertically or horizontally oriented.

The default resource ID for a new slider control is IDC_SLIDERn. You can
change this ID and set the other general properties for the slider control through
the Slider Properties dialog box. The General tab of this dialog box lists the same
properties described earlier in “General Properties for Other Controls.”

The Styles tab of the Slider Properties dialog box allows you to set orientation,
tick marks, and other options. This tab is shown in Figure S7.23.

F I G U R E S 7 . 2 3 :

Setting slider control styles

The Styles tab contains the following properties for slider controls:

Orientation Displays the slider (trackbar) with a Horizontal (default) or
Vertical orientation.

Point Displays tick marks (if the Tick Marks property is enabled) on
either or both sides of the slider and alters the slider knob. The tick marks
and knob have the following orientations:

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 33

http://www.sybex.com

34

• Both, which displays tick marks on both sides of the slider. The slider
knob is rectangular. This is the default setting.

• Top/Left, which displays tick marks on the top of a horizontal slider or
on the left of a vertical slider. The slider knob changes to point to the
selected side.

• Bottom/Right, which displays tick marks on the bottom of a horizontal
slider or on the right of a vertical slider. The slider knob changes to
point to the selected side.

Tick Marks Enables the display of tick marks on a slider.

Autoticks Sets a tick mark at each increment in the slider’s range of val-
ues. Tick marks are created automatically by sending the TBM_SETRANGE
message.

Enable Selection Changes the narrow slider (seen earlier in Figure S7.21)
to an open bar that can display a selection range with triangles and a high-
lighted area.

NOTE Selection limits are not created during dialog box design but may be set during execu-
tion. This means that the triangles and highlight area will not appear during testing
with the dialog box editor.

Border Creates a border around the slider control.

Spin Controls

A spin control is a second variation of the scrollbar. In this adaptation, only the
endpads remain in the form of two buttons; the body of the scrollbar and the
thumbpad have vanished. The default form of a spin control is vertically ori-
ented, with up and down arrows on the buttons. The alternative is a horizontal
control, with the arrow buttons pointing right and left.

The spin control has a set range (established by the application). It may wrap val-
ues when the limits are reached or simply stop when the limits are encountered.

While you can use a spin control by itself, the spin button is commonly linked
to an edit box (buddy window), as illustrated earlier in Figure S7.21, or to a static
text field. In these cases, the spin control operations are automatically reflected in
the buddy window.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 34

http://www.sybex.com

35

NOTE When an edit box is used as the buddy window and the CSpinButton class is
used, changes in the edit box value are automatically reflected in the spin control’s
value.

Spin controls have the same General tab properties as the other types of con-
trols (see the section “General Properties for Other Controls,” earlier in the chap-
ter). The default resource ID for a new spin button control is IDC_SPINn.

On the Styles tab of the Spin Properties dialog box, you can specify the control’s
orientation, alignment, and other options. Figure S7.24 shows this tab.

F I G U R E S 7 . 2 4 :

Setting spin button styles

The Styles tab contains the following properties for spin controls:

Orientation Sets the spin control display as Vertical (up/down, the
default) or Horizontal (right/left).

Alignment Sets the position where the spin control appears (on execu-
tion) relative to the buddy window. If no buddy window is established,
alignment is irrelevant. The alignment value can be one of the following:

• Unattached, so that the spin control is not associated with any other
control. This is the default setting.

• Left, so that on execution, the spin control is positioned next to the left
edge of the buddy window. At the same time, the buddy window is
moved right and the width adjusted to accommodate the width of the
spin control.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 35

http://www.sybex.com

36

• Right, so that on execution, the spin control is positioned next to the
right edge of the buddy window. At the same time, the buddy window
is moved left and the width adjusted to accommodate the width of the
spin control.

TIP Selecting Left or Right alignment does not change the layout of the controls dur-
ing resource editing. The selected alignment appears only during execution.

Auto Buddy Selects the previous window in the Z order (tab order) auto-
matically as the spin control’s buddy window. In turn, the buddy window
displays the values (as text) set by the spin control. Normally, the buddy
window will be an edit box or a static text field.

Set Buddy Integer Sets the text of the buddy window using the WM_
SETTEXT message when the up or down buttons of the spin control are
clicked. The text may have the setting value formatted as a decimal or
hexadecimal string.

No Thousands Prevents the buddy window from inserting a thousands
separator between every three digits in decimal format.

Wrap Wraps the spin-control value when it is incremented or decre-
mented beyond the ending or beginning of the range.

Arrow Keys Increments or decrements the value of the spin control auto-
matically when the up or down arrow keys are pressed. This option is
checked by default.

NOTE In theory, a spin control could be “buddied” with any other type of control. For
example, the label on a button might display the spin-control value, or a spin con-
trol might serve as a fine control for a slider or scrollbar. In practice, however, you
will probably need to write your own provisions to make a spin control interact
appropriately with anything except a numeric edit box or static text field.

Progress Bars

The progress bar is not a scrollbar derivative per se, even though it does have a
similar appearance and, in the past, scrollbars were sometimes used to provide

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 36

http://www.sybex.com

37

progress bar displays. The progress bar control is not a control in the usual sense.
It does not react to user input, nor send messages to the application; its function
is to show the progress of a task. For example, progress bars are commonly
used when installing new software products. Figure S7.25 shows an example of a
progress bar.

F I G U R E S 7 . 2 5 :

A progress bar

The general properties for a progress bar are the same as those on the General
tab of the other controls’ Properties dialog boxes (see “General Properties of
Other Controls,” earlier in the chapter). There is one addition, however: the Bor-
der property, which creates a border around the trackbar control. The Border
option is checked by default.

Other Control Types
The remaining control features are used to customize the appearance of a dialog
box. You can add icons or bitmaps, provide visual grouping, and use shading to
enhance the appearance of the dialog box. These controls include the following:

• Group boxes

• Hotkey controls

• Tab controls

• Pictures (bitmaps and icons)

• Animated controls

• Custom controls

With the exception of custom controls, each of these is illustrated in Figure S7.26.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 37

http://www.sybex.com

38

F I G U R E S 7 . 2 6 :

Other control features

Group Boxes

Group boxes are simply outline boxes used to visually group controls by enclos-
ing one or more controls in an outline with an optional group title.

The general properties for a group box are the same as for the other types of
controls (see “General Properties for Other Controls,” earlier in the chapter).
However, group boxes also have a Caption property, which provides a label that
appears in the upper-left corner of the group box frame.

The default resource ID for a group box is IDC_STATIC. This is the same ID
used for a static text field—and for the same reason: A group box normally is not
selectable and is not expected to receive or return messages.

Through the Styles tab of the Group Box Properties dialog box, you can set
the horizontal alignment, add an icon or a bitmap, and set other properties.
Figure S7.27 shows this tab.

F I G U R E S 7 . 2 7 :

Setting group box styles

Supplement 7 • Dialog Box Resources

Animation
Group box

Hotkey

Tab controls

Picture

2642S07.qxd 11/1/99 9:57 AM Page 38

http://www.sybex.com

39

The Styles tab contains the following properties for group boxes:

Horizontal Alignment Sets the position of the group box’s caption text
to the Center, Right, or Default (left) position.

Icon Indicates that the group box title displays an icon. The Caption field
in the General tab identifies the icon to display.

Bitmap Indicates that the group box title displays a bitmap. The Caption
field in the General tab identifies the bitmap to display.

Notify Notifies the parent window when the user clicks or double-clicks
a group box.

Flat Gives the group box a flat appearance, without three-dimensional
shading.

Pictures

The picture control is a static control element that does not respond to mouse
selection and, by default, does not return any event messages. Instead, picture
controls are customarily used simply to insert a graphic of some form into a dia-
log box.

Figure S7.28 shows the General tab of the Picture Properties dialog box. This
tab has the same general properties as the other types of controls (see “General
Properties for Other Controls,” earlier in this chapter), plus a few extra properties.

F I G U R E S 7 . 2 8 :

The General tab of the
Pictures Properties
dialog box

The following general properties are specific to pictures:

ID Sets the ID for a picture control. The default resource ID for a picture
control is IDC_STATICn, the same as for a static text field or group box. If
you want the picture to function as an active control—for example, as a

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 39

http://www.sybex.com

40

button—the control type should be icon, bitmap, or metafile, and you
should replace the default ID with a unique identifier. The new resource
ID may be a symbol, an integer, or a quoted string.

Type Sets the type of static graphic to display as one of the following:

• Frame, which displays a empty rectangle in the color specified in the
Color property. Like a group box, a frame may be used to visually
group controls. This is the default type.

• Rectangle, which displays a filled rectangle in the color specified in the
Color property.

• Icon, which displays an icon in the dialog box. The identifier of the icon
is specified in the Image property.

• Bitmap, which displays a bitmap in the dialog box. The identifier of the
bitmap is specified in the Image property.

• Enhanced Metafile, which displays an enhanced metafile in the dialog
box. The application must provide the means of identifying and execut-
ing the metafile.

NOTE A metafile is a graphic image recorded as a series of instructions for its creation.
Metafiles are discussed in Supplement 16.

Image Provides the identifier for the icon or bitmap to display.

Color Sets the color of a frame or rectangle to Black (the default), White,
Gray, or Etched (which provides a three-dimensional appearance).

Figure S7.29 shows the Styles tab of the Picture Properties dialog box, which
has properties for controlling the appearance of the picture.

F I G U R E S 7 . 2 9 :

Setting picture styles

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 40

http://www.sybex.com

41

The Styles tab contains the following properties for pictures:

Sunken Creates a border with a sunken edge around the picture control.

Border Creates a border around the picture. This option is selected by
default.

Notify Allows the picture to notify the parent window when it’s clicked
or double-clicked.

TIP Setting the Notify property allows an icon or bitmap image to respond as if it were
a button. When setting the Notify property, however, you should change the
default ID to a unique identifier to ensure proper handling and recognition of
the message.

Center Image Fills the rest of the client area with the color of the pixel in
the top-left corner of the bitmap or icon if the bitmap or icon is smaller
than the client area of the picture control.

Right Justify Sets the lower-right corner of a picture control to remain
fixed when the control is resized; only the top and left sides are adjusted to
accommodate.

Real Size Image Specifies that a static icon or bitmap control will not be
resized as it is loaded or drawn. If the image is larger than the destination
area, the image is clipped.

Hotkeys

A hotkey control is a simple input box in which a user can select a hotkey combi-
nation to assign to a particular task. When the hotkey control is selected, any key
combination pressed is displayed as a hotkey combination. Figure S7.26, shown
earlier, illustrates an example where pressing the H key while holding down the
Ctrl and Alt keys is recognized as Ctrl+Alt+H.

The Ctrl, Alt, and Shift keys may be combined with any of the following:

Alphanumeric keys Insert Right PgUp

Function keys Delete Left PgDn

Number pad keys Home Up CapsLock

Scroll Lock End Down NumLock

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 41

http://www.sybex.com

42

Keys or combinations that cannot be used include:

Ctrl+Alt+Delete Escape Backspace Tab

Windows key System key Enter / (on number pad)

WARNING The hotkey control does apply minimum validation and will refuse some key com-
binations when entered. However, this control does not provide complete valida-
tion and, except for certain system hotkey codes, does not check the hotkey
assignments against other conflicting assignments. Be sure to avoid assigning the
same hotkey twice in a dialog box.

The default resource ID for a group box is IDC_HOTKEYn. The general proper-
ties for a hotkey control are the same as for the other controls (see “General
Properties for Other Controls,” earlier in the chapter), with the addition of a
Border property. When the Border property is checked (the default), an outline
appears around the hotkey control.

Animation Controls

An animation control is used to play back an animated sequence. This could be a
simple sequence of images or a more elaborate video sequence. (But keep in mind
that AVI sequences require a lot of storage space.)

The default resource ID for a group box is IDC_ANIMATEn. The general properties
for an animation control are the same as for other controls, with these additions:

Center Centers the animation in the animation control window.

Transparent Draws the animation using a transparent background rather
than the background color specified in the animation clip.

Auto-play Sets the animation to begin playing as soon as the animation
clip is opened.

Border Creates an outline around the animation control. This option is
checked by default.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 42

http://www.sybex.com

43

Tab Controls

A tab control (see Figure S7.26, shown earlier) offers a method of arranging
groups of controls in a dialog box as a sequence of tabs, with each tab containing
a separate set of controls. The tab control may fill the dialog box or may use only
a part of the space, leaving the remainder of the space for controls common to all
tabs.

The number of tabs in a tab control and the labels for the tabs are set by the
application, and a dialog box can contain several rows of tabs. The contents of
the tabs are created as separate dialog boxes without title bars, system menus,
and so on, and are then assigned to tabs by the application.

The general properties for a tab control are the same as for the other controls.
The default resource ID for a tab control is IDC_TABn.

On the Styles tab of the Tab Control Properties dialog box, shown in Figure S7.30,
you can set the alignment, focus, and other features of the tab control.

F I G U R E S 7 . 3 0 :

Setting tab control styles

The Styles tab contains the following properties for tab controls:

Alignment Sets the tab control alignment as one of the following:

• Right Justify, which adjusts the width of each tab so each row of tabs
fills the entire width of the tab control. This is the default alignment.

• Fixed Width, which sizes all tabs to the width of the widest label.

• Ragged Right, which is used with multiline tabs; tab widths are not
adjusted to fill the rows.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 43

http://www.sybex.com

44

Focus Determines how tabs are selected; choose from one of the following:

• Default, so keyboard selection may be used to select a tab or a tab may
be selected by clicking with the mouse. (And of course, Default is the
default setting.)

• On Button Down, so tabs receive the input focus (come to the front)
when the tab is clicked.

• Never, so tabs do not receive the input focus when clicked. Instead,
tabs must be selected by the application.

Buttons Makes the tabs in the control resemble buttons. When tabs are
displayed in button format, they should perform the same function as
button controls; clicking a tab should carry out a task rather than display
a tab page.

ToolTips Creates a tooltip for each tab in the tab control.

Multi-line Displays multiple rows of tabs.

Border Creates an outline around the tab control.

Force Icon Left Left-aligns the icon; the label remains centered.

Force Label Left Left-aligns both the icon and the label.

WARNING The reference to icons in the Force Icon Left and Force Label Left options is some-
thing of a mystery since selecting either option expands the tabs—a feature that is
not mentioned—and the icons referred to are unknown. You can experiment for
yourself to see how these properties work.

Owner Draw Fixed Makes the parent window responsible for drawing
tabs in the control.

Custom Controls

The custom control is undefined but provides a placeholder—a dark gray rectan-
gle—representing a custom-control element. It is the responsibility of the appli-
cation (or a custom library) to handle the appropriate screen display, to issue and
respond to messages, and to handle any other required interactions. The General
tab of the Custom Control Properties dialog box is shown in Figure S7.31.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 44

http://www.sybex.com

45

F I G U R E S 7 . 3 1 :

The Custom Control Proper-
ties dialog box

The default resource ID for a custom control is IDC_CUSTOMn. The general prop-
erties for a custom control are the same as for the other types of controls, with the
following additional properties:

Caption Sets a string entry that appears as a label for the custom control.
To make one of the letters in the caption a mnemonic key (hotkey), place
an ampersand (&) directly before the letter. A default caption name is
supplied in the format “Caption n” (n represents a number matching the
resource identifier).

Class Sets the name of the control’s Windows class. The named class must
be registered before the dialog box containing the control is created. (Dur-
ing execution, the class must be registered before calling the dialog box.)

Style Sets a 32-bit hexadecimal value specifying the control’s style. This is
primarily used to edit the lower 16 bits making up a user control’s substyle.

ExStyle Sets a 32-bit hexadecimal value specifying the control’s extended
style.

NOTE The Style and ExStyle properties are undefined until a custom control is created.
How or if these properties are used depends on the design and functionality of the
custom control.

Dialog Box Control Elements

2642S07.qxd 11/1/99 9:57 AM Page 45

http://www.sybex.com

46

Alignment, Positioning, and Sizing Tools
You can position and size dialog box controls by using the mouse or, in some
cases, by entering position and size information directly, but the easiest way to
align controls is to use the tools provided by the resource editors.

Most of the Microsoft Developer Studio tools are accessible from its toolbar.
Figure S7.32 shows this toolbar, with labels to identify the buttons.

F I G U R E S 7 . 3 2 :

The Microsoft Developer
Studio toolbar

The toolbar buttons work as follows:

Test button Allows you to test a dialog box during development, before
the dialog box becomes part of an application.

Alignment buttons Provide left, right, top, and bottom alignment. To
align a group of controls, hold down the Shift key while clicking each
control. The last control selected will become the reference control, and
all other selected controls will be aligned to the position of that control.

Centering buttons Provide vertical and horizontal centering. These can
be used to center one or more controls relative to the dialog box itself. If
you select more than one control, the selected controls are centered as a
group but retain their positions relative to each other.

Spacing buttons Provide horizontal or vertical spacing. These buttons
give you the ability to select two (or more) controls and then space them
equally across or down. If you are spacing controls horizontally, the left-
most and rightmost extremes are taken as the limits, and all controls
selected are spaced equally between these two limits, without affecting

Supplement 7 • Dialog Box Resources

Test

Left
Align

Right
Align

Top
Align

Bottom
Align

Vertical
Center

Horizontal
Center

Horizontal
Spacing

Vertical
Spacing

Resize to
Same
Width

Resize to
Same
Height

Resize to
Same
Width and
Height

Grid

Ruler and
Guide

2642S07.qxd 11/1/99 9:57 AM Page 46

http://www.sybex.com

47

individual vertical positioning. For vertical spacing, the highest and lowest
extremes are taken as limits, and horizontal spacing remains unaffected.

Sizing buttons Allow you to resize controls. Again, you must select
more than one control, and the last control you select (identified by the
dark handles on the outline) serves as the size reference. Multiple controls
may be resized to the same width, to the same height, or with both height
and width adjusted at the same time.

Grid button Provides a background grid of fine dots, which can help
you align controls. When the grid is enabled, the ruler and guides are dis-
abled. Then, when you move a control, its position is snapped to the grid.
Likewise, when you resize a control, the size is snapped to the grid.

Ruler and Guide button Provides vertical and horizontal rulers in dia-
log box units, plus a guide that appears as a faint blue border or margin
around the dialog box. When the guide is enabled, controls moved toward
the guides tend to snap to the guide if they are close enough. From the
Layout menu, select the Guide Settings option to change the guide settings
and adjust grid spacing.

To adjust the tab ordering for dialog box controls, select Tab Order from the
Developer Studio’s Layout menu. When you select this option, all of the dialog
box controls are labeled with a tab order number, as shown in Figure S7.33. To
change the tab order, click the first control and then continue clicking controls in
the order desired. The tab order numbers will change to reflect the new order. To
stop setting the tab order, simply click anywhere except on a control.

F I G U R E S 7 . 3 3 :

Selecting the Tab Order
option from the Developer
Studio’s Layout menu shows
your dialog box with tab
order numbers.

Alignment, Positioning, and Sizing Tools

2642S07.qxd 11/1/99 9:57 AM Page 47

http://www.sybex.com

48

Dialog Box Testing Tips
When testing a dialog box during development, a few items to check in particular
include the following:

• Tab order for controls. Use the Tab key to move between controls and make
sure that the required groups, tab stops, and ordering are appropriate.

• Radio button groups. Be sure that radio button groups function correctly
and that buttons reset appropriately. If there is a problem, check the tab
order.

• Overlapping elements. Check particularly for static text elements that
may be larger than the text they contain and may overlap (and conceal)
other elements.

Three Dialog Boxes for FileView1
The FileView1 demo requires three dialog boxes: About, File Type, and Open File.
These three dialog boxes are described in the following sections and are included
in the FileView1.RC resource script on the CD accompanying this book. However,
even though you do not need to re-create these dialog boxes using a dialog box
editor, they illustrate some important features of dialog box construction.

NOTE The FileView2 demo uses the common dialog File Open facility, so it includes only
one dialog box resource: the About dialog box. The script for this resource is
included on the CD accompanying this book and needs no explanation.

The About Dialog Box
The About dialog box, shown in Figure S7.34, consists of a captioned dialog box
without a system menu. The title bar bears the text “About FileView.” Three dia-
log box elements appear as a centered text line, an icon box, and a single button.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 48

http://www.sybex.com

49

F I G U R E S 7 . 3 4 :

A simple About dialog box
with an icon

The single button returns a value, IDOK (0x01), which is defined in
Windows.H.

The File Type Dialog Box
The File Type dialog box, shown in Figure S7.35, again uses a captioned dialog box
with a static text instruction supplementing the caption. In this example, two con-
trol buttons appear at the bottom on either side of the File Type icon. The Okay
button, as the heavy outline illustrates, is the default.

F I G U R E S 7 . 3 5 :

The File Type dialog box

Inside the group box, 15 auto radio buttons offer a choice of file extensions.
When the dialog box is initialized by the FileView demo, the .* button will be
set as the default extension, but this is a provision of the program code, not the
dialog box.

Three Dialog Boxes for FileView1

2642S07.qxd 11/1/99 9:57 AM Page 49

http://www.sybex.com

50

Also, even though the auto radio buttons are enclosed by a group box outline,
this is for visual purposes only; the group box here does not control the grouping.
Instead, the grouping is assigned by setting the Group property for the first item
in the group and setting the tab order for all of the buttons.

NOTE The resources and dialog boxes created for the FileView1 demo may be edited
with either the Microsoft or Borland resource editor. The FileView2 application
files, however, are not compatible with the Borland compiler or resource editors.

The File Selection Dialog Box
In some respects, the File Selection dialog box used by the FileView demo is the
most complicated and the most important. This dialog box, shown in Figure S7.36,
offers two edit boxes, plus a list box where files matching the file specification will
be displayed (together, of course, with directory and drive IDs). In addition to the
customary Okay and Cancel buttons, a third button, File Type, is provided to call
the File Type dialog box.

F I G U R E S 7 . 3 6 :

The File Selection dialog box

Beginning at the top, the File Spec edit box has been provided with a default
test string, “*.*”. This text string, however, is superfluous; when the dialog box
is initialized, the application will provide its own string both here and in the
Drv/Path edit box below the File Spec edit box.

Supplement 7 • Dialog Box Resources

2642S07.qxd 11/1/99 9:57 AM Page 50

http://www.sybex.com

51

Next, when the dialog box is initialized, the list box will be filled with file, direc-
tory, and drive information using the application-assigned, default file specification
and the current (active) drive/path settings.

Last, the File Type button returns an IDM_TYPE message, which is used to
instruct the application to load the File Type dialog box.

This completes our discussion of working with dialog box resources. We’ve
covered all types of dialog box controls. Custom dialog box controls have been
mentioned only briefly, as alternatives to the standard controls. Fortunately, the
majority of applications will not require custom control designs.

Also, as you may have noticed, no mention has been made of adding menus to
dialog boxes. This is not because menus are not supported, but because the dialog
box editor is not the appropriate mechanism for constructing menus. We’ll cover
menu editors and menu construction in the next chapter.

Three Dialog Boxes for FileView1

2642S07.qxd 11/1/99 9:57 AM Page 51

http://www.sybex.com

S U P P L E M E N T
E I G H T

Menu Resources

� Menu editor features

� Menu item properties

� Menus in dialog boxes

� Menu scripts

S8

2642S08.qxd 11/1/99 9:58 AM Page 1

http://www.sybex.com

2

For many Windows applications, the primary entry point is a menu bar that
offers initial options and access to principal features. In other cases, dialog boxes
may use menus to present further choices or applications may present different
primary menus depending on the current operation.

In this chapter, we’ll look at how menus are constructed and some of the possible
arrangements for menus and submenus.

A Menu Editor
Menu resources are easy to create, and, in keeping with their text nature, require
little more than ASCII scripts for their design. However, menu editors provide an
easier way to construct and test menus. Menu editors can generate either an .RC
menu script or a compiled .RES resource.

In the Microsoft Developer Studio menu editor, the menu is presented in a
single window, and menu item properties are displayed in the pop-up Properties
dialog box. Figure S8.1 shows a menu under construction in this menu editor.

Here you should notice two blank rectangles: one at the end of the primary
menu bar and one at the bottom of the pull-down File menu. Neither of these
items actually appears in the menu; they are simply placeholders, ready for your
new entries.

To add a menu item, simply double-click the blank rectangle on the primary
menu bar or on the pull-down menu, This brings up the Menu Item Properties
dialog box for the item, as shown in Figure S8.2.

In the Menu Item Properties dialog box, enter an ID and caption (if appropri-
ate) or select an option for the entry. A new blank item will appear as soon as you
have entered the new caption or selected the Separator option. See the “Menu
Item Properties” section later in the chapter for details on setting properties for
your menu items.

To move a menu item to a different position in the menu, simply click and drag
the entry to the position desired.

To remove a menu item, highlight the item and press the Delete key.

Supplement 8 • Menu Resources

2642S08.qxd 11/1/99 9:58 AM Page 2

http://www.sybex.com

3

F I G U R E S 8 . 1 :

The Microsoft Developer
Studio menu editor

F I G U R E S 8 . 2 :

The Developer Studio’s Menu
Item Properties dialog box

Menu Size Limitations
Theoretically, you can create a menu of virtually any size. But in practical terms, too
large a menu probably means that you need to rethink your menu’s organization.

As an unwieldy example, Figure S8.3 shows a primary menu bar with a total of
31 entries, requiring five lines to display on a screen 420 pixels wide.

Obviously, there must be some actual limits on the number of menu elements
and the number of levels supported, although these limits have nothing to do
with the resource compiler or Windows 2000. To set practical limits, consider how
much is too much. At what point does a menu bar become too complex to be
comfortable to use? When does it become a liability instead of an asset?

Menu Size Limitations

2642S08.qxd 11/1/99 9:58 AM Page 3

http://www.sybex.com

4

F I G U R E S 8 . 3 :

An unwieldy primary menu

NOTE If you reduce the width of the window, the menu bar will be rearranged automat-
ically to use as many lines as necessary. (This automatic rearrangement does not
happen for toolbars, however.)

These questions apply not only to the number of primary entries but also to the
number of levels and pop-up (pull-down) submenus.

As a general rule of thumb, the primary menu should not exceed one line (in a
normal-size window), and the number of pop-up submenu levels should proba-
bly not go further than two or three. If your application needs more items than
a simple menu structure can supply, consider creating a very simple primary
menu, with the menu selections calling a series of dialog boxes to offer the more
complex options.

TIP For an alternative to overloaded menus, consider using pop-up menus. See
Chapter 5 in the book for details.

Text for Menu Entries
Individual menu entries can be as simple as a single word, a brief phrase, or some
combination of these. They may or may not include hotkey assignments or accel-
erator keys.

Supplement 8 • Menu Resources

2642S08.qxd 11/1/99 9:58 AM Page 4

http://www.sybex.com

5

The text for a menu entry is one of its properties (the Caption property). In the
Microsoft Developer Studio menu editor, enter the text in the Caption field of the
Menu Item Properties dialog box. (You will read more about setting menu prop-
erties in the “Menu Item Properties” section later in the chapter.)

Note that you cannot enter a tab character directly by pressing the Tab key while
typing in the menu item text. The C convention \t is recognized as a tab instruction
and is commonly used to identify accelerator keys by setting them flush-right in the
menu entry. (Accelerator keys are covered briefly in the next section and in detail in
Supplement 9.) The \a instruction also causes the text following it to be right-justified.

Also note that no provisions are made for multiline menu entries, and carriage
returns and line-feeds are not supported. Thus, even though the menu editor can
accept entries up to 255 characters, this does not mean that the menu can display
strings of that length (but certainly you should feel free to experiment).

Menu Hotkeys
The primary menu hotkeys, which are identified in the menus by the under-
score character and in the script by the ampersand character (&), are automatic
assignments generated when the menu script is compiled. By custom, most
menu entries use the first letter in each entry as the hotkey; however, the hot-
key does not need to be the first character. Also, Windows does not underscore
the entry unless it is specifically instructed to do so.

For example, to select the O in Open… as the hotkey for that menu entry, type
the text as &Open…. This entry will then appear in the menu as Open….

Within any menu or submenu, you cannot use the same hotkey twice at the
same level. Thus Cut, Copy, and Close Clipboard—items that are all on the same
level—use three different hotkeys (T, C, and L). However, if you added a Search
entry that called a pop-up menu that had a Stop entry, the S hotkey could be used
again because these items are on different levels.

TIP If more than one ampersand appears in a menu item, only the last ampersand
entry is recognized. If you want to include an actual ampersand in the menu entry
text, enter a double ampersand (&&). For example, to create the menu item Search
& Replace, enter Search && Replace. The ampersand will appear in the item as
a single & character and will not be treated as a hotkey identifier.

Menu Hotkeys

2642S08.qxd 11/1/99 9:58 AM Page 5

http://www.sybex.com

6

In many cases, menu entries have secondary hotkeys identified as Shift+key
or Ctrl+key. Another convention uses a simple syntax to identify hotkeys, with
the caret character (^) indicating the Ctrl key. Both conventions are acceptable;
however, simply identifying a secondary hotkey in the menu definition does not
assign the key definition as a functional hotkey. These hotkey assignments are
handled as accelerator keys.

Accelerator hotkeys, which are global, cannot be duplicated within a dialog box
or application window, although the same accelerator key combination can be
used for different purposes in different menus or in different dialog boxes. The
use of accelerators is covered in the next chapter.

Menu Item Properties
To set menu item properties in the Microsoft Developer Studio menu editor, double-
click a menu item to bring up the Menu Item Properties dialog box (see Figure S8.2,
earlier in the chapter).

The following menu item properties generally apply to menu items created
with menu editors, although they may be labeled with different names (for
example, the identifier property is named ID in the Microsoft Developer Studio
menu editor and Name in the Borland C++ Builder menu editor).

ID Acts as an identifier; it is commonly a mnemonic symbol, defined in
the header file. Unlike other resources, new menu resources do not get a
default ID. However, the prefix IDM_ is commonly used to identify menu
item messages. Pop-up menu items, which are handled internally, do not
have ID values and do not return messages when selected. Similarly, menu
separators, which cannot be selected, do not require ID values.

Caption Sets the menu item text (see the “Text for Menu Entries” section
earlier in the chapter).

Separator Specifies that the menu item is a separator. Separator items do
not have captions or IDs and cannot be selected.

Checked Specifies that the menu item is initially checked when the
menu opens.

Grayed Sets the menu item as initially inactive and grayed and also sets
the Inactive property. Before you can select an inactive (grayed) menu
item, it must be enabled by the application (see CMenu::EnableMenuItem).

Supplement 8 • Menu Resources

2642S08.qxd 11/1/99 9:58 AM Page 6

http://www.sybex.com

7

Prompt Supplies text to appear in the status bar when this menu item is
selected. The prompt entry is added to the resource string table using the
same ID as the menu item.

NOTE Unlike toolbar buttons, menu items do not support tooltips. Do not add a tip entry
to the prompt string entry.

Pop-up Sets the menu item as a pop-up item; that is, the primary item for
a pop-up submenu. This is the default setting for top-level menu items.

Inactive Sets the menu item as initially inactive, but not grayed. Before
you can select an inactive menu item, it must be enabled by the application
(see CMenu::EnableMenuItem).

Help Right-justifies the item on the menu bar at runtime, but not during
editing.

Break Sets the break style as one of the following:

• None, for no break (the default).

• Column, for a static menu-bar item that you want to place on a new
line. For a pop-up menu, the item is placed in a new column with no
dividing line between columns. Setting the Column property affects the
menu only at runtime, not during editing.

• Bar, for a static menu-bar item that you want to place on a new line.
For a pop-up menu, the item is placed in a new column with a vertical
dividing line between columns. Setting the Bar property affects the
menu only at runtime, not during editing.

Adding Menus to Dialog Boxes
Menu resources can also be attached to dialog boxes quite easily. To add a menu
to a dialog box, first create the menu as a resource.

Then, open the Dialog Properties dialog box for the dialog box resource and
select the menu to attach from the Menu pull-down list. In Figure S8.4, the menu
resource is identified by name (“FILETYPE”), but menu resources may also use
mnemonic identifiers (such as ID_FILETYPE_MENU).

Adding Menus to Dialog Boxes

2642S08.qxd 11/1/99 9:58 AM Page 7

http://www.sybex.com

8

F I G U R E S 8 . 4 :

Using the Dialog Properties
dialog box to attach a menu
to a dialog box

For an example of a menu in a dialog box, see the File Type dialog box in the File-
View1 demo (included on the CD accompanying this book, in the Supplement 10
folder).

Menu Scripts
A menu editor is a convenient tool, but it is not the only way to create menus. As
an alternative, you can use any plain text editor, such as the Windows Notepad,
to create a menu script. As an example, let’s see how to create a script for a simple
menu with four primary entries and an assortment of pull-down menus and fur-
ther submenus.

The menu script begins with a name, IDM_MENU1, followed by the resource type
identifier, MENU. On the next line, the keyword BEGIN identifies the start of the
menu definition.

IDM_MENU1 MENU
BEGIN

TIP You may see opening and closing brackets rather than BEGIN and END statements
in scripts. Both formats are correct, although the Borland and Microsoft compilers
may each complain about the other’s syntax when moving a resource file from
one compiler to the other.

The first menu item is identified by the keyword POPUP and followed by the
text for this item. Because the pop-up entry will then be followed by at least one
subentry, another BEGIN/END block is initiated on the next line.

Supplement 8 • Menu Resources

2642S08.qxd 11/1/99 9:59 AM Page 8

http://www.sybex.com

9

POPUP “&Edit”
BEGIN

The next few lines define menu entries for the Edit submenu, each begin-
ning with the keyword MENUITEM, followed by the entry text, the entry ID,
and, optionally, one or more flag arguments controlling how the menu entry
is initially displayed.

MENUITEM “C&ut\t^U”, 201, CHECKED
MENUITEM “&Copy\t^C”, 202
MENUITEM “&Paste\t^P”, 203, INACTIVE, MENUBARBREAK

In this fragment, the first item on this submenu is presented with a checkmark
(CHECKED). The third item uses the INACTIVE keyword to make the entry unselec-
table and the MENUBARBREAK keyword to cause a column break with a vertical sep-
arator bar.

Next, a new submenu entry is defined as an entry in the Edit submenu. The
Search submenu has two entries, without any special features, but it does require
a BEGIN/END pair to set off the submenu block.

POPUP “&Search\t^S”
BEGIN

MENUITEM “&Find\t^F”, 204
MENUITEM “&Replace\t^R”, 205

END

Following the Search submenu, a final entry is made in the Edit submenu but,
this time, is disabled using the GRAYED keyword. The MENUBREAK keyword pro-
duces a column break but does not produce a vertical separator. The Clear clip-
board menu entry is followed by an END statement to close the Edit submenu.

MENUITEM “C&lear clipboard\t^L”, 206, GRAYED, MENUBREAK
END

The remaining primary menu level entries are the next MENUITEMS. The Help
menu item uses the keyword HELP to set this entry flush-right on the main menu
bar. The script terminates with a closing END statement.

MENUITEM “&Print”, 101
MENUITEM “&File”, 102
MENUITEM “&Help”, 103, HELP

END

Menu Scripts

2642S08.qxd 11/1/99 9:59 AM Page 9

http://www.sybex.com

10

Now that you’ve seen the fragments and explanations, the entire Menu_1 script
follows, showing the overall structure and indentations (these indentations are
for the programmer’s benefit only and have no effect on how the menu script
compiles).

IDM_MENU1 MENU
BEGIN

POPUP “&Edit”
BEGIN

MENUITEM “C&ut\t^U”, 201, CHECKED
MENUITEM “&Copy\t^C”, 202
MENUITEM “&Paste\t^P”, 203, INACTIVE, MENUBARBREAK
POPUP “&Search\t^S”
BEGIN

MENUITEM “&Find\t^F”, 204
MENUITEM “&Replace\t^R”, 205

END
MENUITEM “C&lear clipboard\t^L”, 206, GRAYED, MENUBREAK

END
MENUITEM “&Print”, 101
MENUITEM “&File”, 102
MENUITEM “&Help”, 103, HELP

END

Two Menus for FileView
The one menu script command that does not appear in the preceding example is
the horizontal menu separator, SEPARATOR. This command is used in the follow-
ing script, which is the script for the FileView1 demo’s menu (the FileView1 and
FileView2 demos are discussed in Supplement 10 and included on the CD accom-
panying this book).

FILEVIEW MENU DISCARDABLE
BEGIN

POPUP “&File”
BEGIN

MENUITEM “&Open...\t^O”, IDM_OPEN // = 103
MENUITEM “&Type...\t^T”, IDM_TYPE // = 104
MENUITEM SEPARATOR

Supplement 8 • Menu Resources

2642S08.qxd 11/1/99 9:59 AM Page 10

http://www.sybex.com

11

MENUITEM “&About”, IDM_ABOUT // = 102
MENUITEM “E&xit\t^X”, IDM_QUIT // = 101

END
END

The FileView2 demo’s menu script, shown here, is slightly different.

IDR_MAINFRAME MENU PRELOAD DISCARDABLE
BEGIN

POPUP “&File”
BEGIN

MENUITEM “&Open...\tCtrl+O”, ID_FILE_OPEN
MENUITEM SEPARATOR
MENUITEM “E&xit”, ID_APP_EXIT

END
POPUP “&View”
BEGIN

MENUITEM “&Toolbar”, ID_VIEW_TOOLBAR
MENUITEM “&Status Bar”, ID_VIEW_STATUS_BAR

END
POPUP “&Help”
BEGIN

MENUITEM “&About FileView2...”, ID_APP_ABOUT
END

END

Notice that both the FileView1 and FileView2 menu scripts are written using
mnemonic identifiers rather than actual values. The constants are defined in the
FileView.H header file.

As you learned in this chapter, menu editors provide a convenient way to cre-
ate, define, and test application menus. If you prefer, you can also create menus
as scripts, using any plain-text editor, such as the Windows Notepad.

Two Menus for FileView

2642S08.qxd 11/1/99 9:59 AM Page 11

http://www.sybex.com

S U P P L E M E N T
N I N E

Accelerators, Strings, Header
Files, and Version Information

� Accelerators and accelerator editors

� String tables and string table editors

� Header files for resource IDs

� Version information

S9

2642S09.qxd 11/1/99 10:00 AM Page 1

http://www.sybex.com

2

In addition to the more obvious resource types we’ve discussed so far—
images, dialog boxes, and menus—you should know about two other resources:
accelerator keys and string resources. Although these are less graphic and less
impressive than other resources, they are just as important for the programmer.

Another type of programmer resource is the header definition file, which is
also discussed in this chapter. When used properly, header files can prevent a
great many errors that would otherwise be difficult to identify.

And finally, there are version resources. Even though these are very simple,
they provide a convenient location to record version, copyright, and source notes
within the application.

Accelerator Key Resources
Accelerator keys offer a fast shortcut—in the form of keyboard hotkey combi-
nations—for issuing application commands. Although conventional (DOS) pro-
grams have often provided similar services, frequently employing TSR utilities
to translate individual keystrokes or key combinations into command sequences,
accelerator keys take a rather different form.

One of the most important differences is that, unlike DOS-based TSRs, accel-
erator keys do not depend on interrupt processing by an outside application.
Instead, accelerator key processing is handled internally by Windows and is
part and parcel of the Windows messaging system.

As explained in Supplement 2,Windows does not send keystroke information
directly to the applications. Instead, all Windows applications rely on Windows
to intercept the hardware keyboard events, translate these as necessary, and then
forward them in the form of keyboard messages to the appropriate application.
This approach allows you to add provisions for special key combinations to gen-
erate custom messages in place of key-event messages; in Windows, this is only
a minor change. More important, each application can define its own accelerator
key combinations and the messages to be generated by each.

Still, no matter how convenient or how smooth this translation may be, it
remains the programmer’s responsibility to define these accelerator hotkey
combinations and to prepare this information in a form acceptable to the
resource compiler for inclusion in the application’s resources.

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 2

http://www.sybex.com

3

Accelerator Key Combinations
An accelerator key definition consists of two parts:

• A keyboard key or key combination

• A message value to be sent to the application when the key combination is
entered

In general, single keystrokes are not used as accelerator keys simply because
these key events have other purposes that take precedence. An accelerator key is
commonly defined as a key combination requiring one conventional key plus one
or more of the Ctrl, Alt, or Shift keys. For example, common shortcuts for Edit
menu commands are Ctrl+C for Copy, Ctrl+X for Cut, and Ctrl+V for Paste. The
conventional key can be defined as either an ASCII key or as a virtual key.

Virtual versus ASCII Keys

Virtually (the pun is unavoidable) all of the keys on the keyboard—whether a
standard or an enhanced keyboard—can be defined as accelerator keys using the
virtual key definitions provided in the WinUser.H header file.

Not all keys, however, have ASCII equivalents, and a few ASCII keys do not
have virtual key equivalents, such as the exclamation point (!). Furthermore,
some virtual key definitions do not correspond to anything found on the con-
temporary keyboard, such as the VK_ZOOM or VK_NONAME virtual keys; some
refer to a non-keyboard device, such as the VK_MBUTTON virtual key. Table S9.1
lists the key codes that you don’t want to use as accelerator keys.

TA B L E S 9 . 1 : Key Codes Not Recommended for Use as Accelerator Keys

Key codes* Comments

0Ch, 5Bh..5Dh, 60h..69h Special requirements and functions

6Ah..6Bh, 6Dh..7Bh, A0h..A5h Enhanced keyboards only

29h..2Fh, 2Ah..2Bh, 2Fh, 6Ch, 7Ch..87h, E5h, F6h..FEh OEM-specific keys

Not assigned

15h..19h, 1Ch..1Fh Reserved for Kanji system

05..07h, 0Ah..0Bh, 0Eh..0Fh, 1Ah, 3Ah..40h,
5Eh..5Fh, 88h..8Fh, 92h..9Fh, A6h..E4h, E6h..F5h

Accelerator Key Resources

2642S09.qxd 11/1/99 10:00 AM Page 3

http://www.sybex.com

4

NOTE Refer to Supplement 2 for more details on key codes and virtual key identifiers.

In general, however, an ASCII key refers to any of the alphanumeric keys that
produce displayable characters on the screen. These include the punctuation keys
and the spacebar.

Virtual key definitions (all of which begin with the prefix VK_) refer principally
to the function, arrow, and keypad keys. Thus, the F1 key is defined as VK_F1, the
PgDn key as VK_NEXT, the down-arrow key as VK_DOWN, and the left Shift key on
an enhanced keyboard as VK_LSHIFT. The standard alphanumeric keys, however,
are not excluded; they are identified as VK_A through VK_Z and VK_0 through VK_9.

NOTE Keep in mind that uppercase and lowercase keys are not differentiated either as
virtual keys or when used as accelerator keys employing an ASCII key definition.

Accelerator Key Scripts
Accelerator keys can be defined, in script form, using any plain-text editor, such
as the Windows Notepad. Here is a sample script for the FileView1 demo’s key-
board accelerators (the FileView demo is discussed in the next chapter):

FILEVIEW ACCELERATORS
BEGIN

“X”, IDM_QUIT, ASCII, CONTROL // = 101
“O”, IDM_OPEN, ASCII, CONTROL // = 103
“T”, IDM_TYPE, ASCII, CONTROL // = 104

END

In this example, the three accelerator keys are Ctrl+X, Ctrl+O, and Ctrl+T,
returning the values IDM_QUIT, IDM_OPEN, and IDM_TYPE, respectively.

In the following example, the preceding accelerator keys are repeated in a dif-
ferent format, together with five new accelerator keys showing various Ctrl, Alt,
and Shift key modifiers.

ACCLDEMO ACCELERATORS
BEGIN

VK_X, IDM_QUIT, VIRTKEY, CONTROL // = 101
VK_O, IDM_OPEN, VIRTKEY, CONTROL // = 103
VK_T, IDM_TYPE, VIRTKEY, CONTROL // = 104

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 4

http://www.sybex.com

5

VK_F1, 105, VIRTKEY
VK_F4, 106, VIRTKEY
VK_F6, 107, VIRTKEY, SHIFT
“s”, 108, ASCII, ALT, SHIFT
“G”, 109, ASCII, CONTROL, SHIFT

END

NOTE The spacing is irrelevant to the resource compiler and has been added only to
make the various elements of each definition easier to read. Also notice that it
does not matter whether the ASCII key definition is entered as uppercase or
lowercase, and the CapsLock status does not affect recognition of the accelera-
tor key combination.

For non-ASCII keys, this virtual-key definition format is almost essential.
However, a more convenient entry method is provided by an accelerator editor.

An Accelerator Editor
The Microsoft Developer Studio offers an accelerator editor, which includes
the Accel Properties dialog box for entering or editing an accelerator table item.
Figure S9.1 shows the accelerator editor and the Accel Properties dialog box.

F I G U R E S 9 . 1 :

The Microsoft Developer
Studio accelerator editor

The editor offers the following properties for accelerators:

ID Sets the resource ID, which is normally a mnemonic symbol defined
in the header file, but it may also be an integer value or a quoted string.

Accelerator Key Resources

2642S09.qxd 11/1/99 10:00 AM Page 5

http://www.sybex.com

6

Modifiers Indicate whether the accelerator key is a combination formed
with the Ctrl, Alt, or Shift keys. If the key value is an ASCII value, the Alt
and Shift key combinations are not accepted. Instead, the defaults are True
for Ctrl, but False for Alt and Shift. The Alt and Shift combinations can be
used only with VK_xxxx (virtual key) combinations such as the Backspace
(VK_BACK) or Delete (VK_DELETE) keys

Key Specifies the accelerator key. It can be one of the following:

• Integer, in the range 0 to 255. Integers are interpreted as ASCII or virtual-
key values, depending on the Type property.

NOTE Any single digit is interpreted as a key value. To enter an ASCII value from 0 to 9,
precede the number with two zeros (for example, 006). In like fashion, two digit
codes may be preceded with a single zero, although this is not a firm requirement.

• Character, for a character value. Optionally, the character value may be
preceded by a caret (^) to signify a control character.

• Virtual-key identifier, for any virtual-key identifier. Select the desired
VK_xxxx value from the drop-down list.

Type Identifies a key value as an ASCII value or a virtual key (VirtKey)
value.

Next Key Typed Accepts the next key combination typed as the accelera-
tor key. The Key and Modifiers values are changed to match. If possible,
the key selected is always interpreted as a virtual key. The choice between
entering an accelerator key definition directly or using the Next Key Typed
option is purely a matter of personal preference.

String Resources
Treating strings as resources instead of scattering the strings throughout the
program code is a distinct departure from conventional programming prac-
tices. Most compilers gather such static data together, usually positioning this
data toward the end of the .EXE code, along with other static-data elements.

Defining strings as resources has three advantages:

• Like other resources, strings are loaded into memory only when and as they
are needed.

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 6

http://www.sybex.com

7

• Strings in a string table can be modified more conveniently than strings
scattered throughout the source code.

• Multiple string tables can be defined. Each table can provide different lan-
guage versions and be loaded according to the user’s preference.

• Standardization of error message syntax is more easily controlled when all
strings are grouped in one location rather than scattered through multiple
source files or even scattered within a single source file.

As with menu and accelerator key resources, string tables can be created using a
plain-text editor, such as the Windows Notepad, Write, or Unipad (for non-English
languages). Alternatively, you can create string tables using a resource editor.

String Resource Definition
String resources may consist of any type of string data and may be used for any
of the same purposes as conventional string data, including window captions,
messages, labels, or even brief explanations. (String table entries are generally not
used for button and control captions or menus because these text strings can be
handled through an image or menu editor.)

TIP Previously, in 16-bit systems, string table entries were limited to a length of 255
characters. Today, in 32-bit systems, this limitation has been raised to a generous
(and useful) 32KB. This means that you can put far more than simple messages in
string tables—anything from .RTF and .HTML texts to custom-formatted mes-
sages. For examples of how string table entries can be put to new and expanded
uses, see Windows Error Messages, also written by Ben Ezzell (published by
O’Reilly & Associates).

Individually, each string definition follows C conventions and is enclosed in
double quotation marks. Strings also accept C’s special embedded characters,
such as \n for a line feed, \r for a carriage return, \t for a tab character, \\ for a
single backslash, and \” for an embedded double-quotation mark.

String Table Construction
A typical (if brief) string table might look something like the following (this is
excerpted from the FileView1.RC resource script):

STRING TABLE
BEGIN

String Resources

2642S09.qxd 11/1/99 10:00 AM Page 7

http://www.sybex.com

8

IDS_NAME, “FileView”
IDS_ERROR1, “File size indeterminate”
IDS_ERROR2, “File too large for present example”

END

Each string in a string table is identified by a short integer value, placing an
upper limit of 65,535 strings in the string table. In this example, the string IDs are
provided by constants defined in the FileView.H header.

In the second version of this string table, the actual values are substituted for
the mnemonic constants, and there are a few additional strings.

STRING TABLE
BEGIN

1, “FileView”
2, “File size indeterminate”
3, “File too large for present example”
16, “this string belongs to another group”
17, “together with this second string”
32, “and a third group”

END

STRING TABLE
BEGIN

44, “this string is defined in a second string table”
45, “as is this second string”
46, “and this third string”

END

In this second example, two string table segments have been defined, but notice
that there is nothing in the labels to identify these as separate segments.

More immediately important, strings are loaded in groups of 16, with all strings
in a group loaded when any one of the strings is required. Groups are identified by
their ID number, with numbers 0 through 15 forming the first group, 16 through 31
forming a second group, and so on. Thus, in the examples, strings 1, 2, and 3 form
one group, strings 16 and 17 form a second group, string 32 is in a group by itself,
and strings 44, 45 and 46 form a final group.

The programmer’s objective is to group strings so strings that are needed will
be loaded together, without loading unnecessary resources at the same time.

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 8

http://www.sybex.com

9

A String Table Editor
The Microsoft Developer Studio offers a separate string table editor, as shown in
Figure S9.2.

F I G U R E S 9 . 2 :

The Developer Studio string
table editor

You can work in the Developer Studio string editor as follows:

• Add a string table entry by clicking the blank entry and entering a new ID
and Caption in the Properties dialog box.

• Delete an individual string by selecting the string and pressing the Delete key.

• Move a string from one segment to another by changing the ID values.

• Move strings from one resource script (.RC) file to another by using the Cut
and Paste options.

• Change a string or its identifier by editing the entry.

• Add formatting or special characters to a string.

String Resources

2642S09.qxd 11/1/99 10:00 AM Page 9

http://www.sybex.com

10

Of course, you can accomplish the same tasks with a plain-text editor; the
Developer Studio simply offers a more convenient tool for working with strings.

TIP In the Developer Studio string editor, click the right mouse button to display a
pop-up menu of resource-specific commands.

The string editor does not permit the creation of empty string tables. If you
create a string table with no entries, it will be deleted automatically when you
exit the Developer Studio.

Header File Resources
Header files provide a convenient place to define mnemonic constants used as
links between resource files and application source code. It’s far easier to remem-
ber that a radio button labeled IDD_RES, if selected, identifies a request for .RES
source files than to remember that this button has a numeric identifier of 213.

Of course, once the .RC resource script has been compiled and linked with
the application’s executable code, the defined constants will all be replaced, but
because the computer does lack a few of the programmer’s more human short-
comings, this isn’t the point. After all, the header file and the mnemonics are for
the programmer’s benefit, not the computer’s.

Like the other application resources discussed in this chapter, you can create
header files using a plain-text editor. However, you can also use a resource edi-
tor’s facilities for maintaining ID constants.

An Editor for Headers
To create headers using the Microsoft Developer Studio editor, choose Resource
Symbols from the View menu to see the dialog box shown in Figure S9.3.

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 10

http://www.sybex.com

11

F I G U R E S 9 . 3 :

The Developer Studio
Resource Symbols
dialog box

The Resource Symbols dialog box displays identifiers specific to the current
project. It shows the value of the identifier, whether the identifier is used in the
application (unchecked items are often orphaned IDs that you could remove),
and where the selected ID is being used. If the ID is being used in more than one
location, which is common, all of the uses will be listed.

When you select a use location and click the View Use button, the Developer
Studio takes you directly to the appropriate source file.

The weakness of the Resource Symbols dialog box is that it does not function
well with some non-MFC application source files. For example, the dialog box
fails completely using the FileView1 project, where the identifiers are all in the
FileView.H header and not in a Resource.H header. However, in most circum-
stances, the Resource Symbols dialog box is a valuable tool.

TIP If you need to search for an identifier that is defined in one of the multitude of
associated library headers, use the Find in Files button (or menu option) in the
Developer Studio.

Header File Resources

2642S09.qxd 11/1/99 10:00 AM Page 11

http://www.sybex.com

12

The Version Resource
The Version resource is a structured text block that contains company and prod-
uct identification, a product release (version) number, and copyright and trade-
mark notifications. The Version resource editor allows you to add or delete string
blocks or to modify individual string values. Figure S9.4 shows the Microsoft
Developer Studio version resource editor.

F I G U R E S 9 . 4 :

The version resource editor in
the Developer Studio

NOTE The Windows standard is for an application to contain only one version resource
under the name VS_VERSION_INFO.

To use version information within an application, the GetFileVersionInfo
and VerQueryValue functions offer access to the file. While this version informa-
tion is not required by any application, it is a convenient location to collect infor-
mation identifying the application and version.

Supplement 9 • Accelerators, Strings, Header Files, and Version Information

2642S09.qxd 11/1/99 10:00 AM Page 12

http://www.sybex.com

13

A Header File for FileView1
The following is the FileView.H header file, which is shown in text format, for the
FileView demo (discussed in Chapter 12).

#define IDS_NAME 1
#define IDS_ERROR1 2
#define IDS_ERROR2 3

#define IDD_FNAME 16
#define IDD_FPATH 17
#define IDD_FLIST 18

#define IDM_QUIT 101
#define IDM_ABOUT 102
#define IDM_OPEN 103
#define IDM_TYPE 104

#define IDD_BMP 201
#define IDD_C 202
#define IDD_COM 203
#define IDD_CUR 204
#define IDD_DAT 205
#define IDD_DBS 206
#define IDD_DLG 207
#define IDD_DLL 208
#define IDD_EXE 209
#define IDD_H 210
#define IDD_PAL 211
#define IDD_RC 212
#define IDD_RES 213
#define IDD_TXT 214
#define IDD_ANY 215

This chapter completes our discussion of individual application resources. In
the next chapter, we will look at the FileView1 and FileView2 demos, of which
you’ve seen only fragments so far.

A Header File for FileView1

2642S09.qxd 11/1/99 10:00 AM Page 13

http://www.sybex.com

S U P P L E M E N T
T E N

Application Resources
Working Together

� Global application resources

� Three dialog box resources for the FileView application

� A common dialog box resource for Windows 98
applications

S10

2642S10.qxd 11/1/99 10:01 AM Page 1

http://www.sybex.com

2

So far, we’ve discussed each of the individual application resources. You’ve
seen fragments of the FileView1 and FileView2 demos as examples. In this chapter,
we will focus on how all of the application resources work together in these two
demos.

The FileView1 Demo:
Using Application Resources

The FileView1 demo is a relatively simple application designed to open a file of
any type and display the contents in a columnar, hexadecimal format. It shows
the file offset addresses at the right and the corresponding ASCII characters at the
left. Figure S10.1 shows a composite of the application with its three dialog boxes.

F I G U R E S 1 0 . 1 :

The completed
FileView1 demo

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 2

http://www.sybex.com

3

NOTE The FileView1 demo is included on the CD in the Supplement 10 folder.

WinMain Operations
As you know, Windows loads application resources only when and as they are
required and discards them when they are no longer needed. However, in the
FileView1 demo, one resource is required during initialization of the first instance
of FileView: the application title. This title is contained in the string table, not in
the source code. Thus, if no previous instance of FileView1 is active, the Load-
String function is called during the instance initialization to retrieve the appro-
priate entry from the string table:

if(!hPrevInstance) // if no prev instance, t’is first
{

LoadString(hInstance, IDS_NAME, (LPSTR) szAppName, 10);
wc.lpszClassName = szAppName;

Because the application title is global in this case, this string resource will be
retained in memory without being discarded. In similar fashion, the application’s
cursor, icon, and menu are loaded as global resources:

wc.hCursor = LoadCursor(NULL, IDC_ARROW);
wc.hIcon = LoadIcon(hInstance, szAppName);
wc.lpszMenuName = (LPSTR) szAppName;

This case is not unique to the FileView1 application; a similar set of assignments
appears in all Windows applications. However, when using an MFC-based
application, most of these operations are concealed from the programmer, as you
may observe (or not observe) by checking the FileView2 version.

Variable Initialization

Immediately following the instance initialization, provisions are also included to
set default values for several global data variables:

iFileType = IDD_ANY - IDD_BMP; // initial file type
lstrcpy(szFileExt, szFileType[iFileType]);

The iFileType variable is initialized using two symbolic constants, which are
defined in the FileView.H header and which are used in the application resources.

The FileView1 Demo: Using Application Resources

2642S10.qxd 11/1/99 10:01 AM Page 3

http://www.sybex.com

4

Once this is done, the szFileExt variable is initialized to match. Notice, however,
that only global variables are being initialized, and this does not affect the initial
settings of the dialog boxes.

Keyboard Accelerator Loading

Later, but still in the WinMain procedure, another set of resources is required,
because these, too, are global to the application and cannot be discarded until
FileView1 terminates. This resource is the accelerator resource set, which is
loaded immediately after the application has been initialized:

hAccel = LoadAccelerators(hInst, “FILEVIEW”);
while(GetMessage(&msg, NULL, 0, 0))
{

if(!TranslateAccelerator(hWndMain, hAccel, &msg))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

} }

The LoadAccelerators function returns a handle to the accelerator resource table.
However, because this handle is a global variable, the handle could be assigned to a
different accelerator table elsewhere in the program as required, but it would still be
used in the TranslateAccelerator call in the WinMain message loop.

The TranslateAccelerator function filters all of the keyboard-event mes-
sages directed to the application, permitting the majority of these to simply
pass through without interference. However, when a key combination—or,
more accurately, a key event accompanied by the appropriate shift-state flags—
matches one of the resource accelerator-key events, this keyboard message is
trapped or diverted. A new message—the action message defined for the accel-
erator event—is issued in its place.

Even applications that do not use accelerator keys will still call the message
loop, but without the TranslateAccelerator invocation, as in:

while(GetMessage(&msg, NULL, 0, 0))
{

TranslateMessage(&msg);
DispatchMessage(&msg);

}

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 4

http://www.sybex.com

Long Filenames
The FileView1 demo can display complete long filenames. It is not limited to the older
DOS-style 8.3 filename format, even though it uses only the standard Windows API
functions.

For example, in the File Selection dialog box shown in Figure S10.1, you can see the long
directory names chapter 17 and fileview1 in the Drv/Path edit box, and three filenames
with more than eight characters appear in the file list.

If you browse around your hard drive using the FileView1 demo, you should notice that all
of your long filenames and long directory names—no matter how long they are—appear
without any conversions to the archaic 8.3 format.

And, considering that this is accomplished without any special provisions in the code, you
may wonder why so many applications that purport to be Windows NT/95/98 compatible
or even “Designed for Windows NT/95/98” remain incapable of displaying anything
except the old and obsolete 8.3 filename formats.

A certain amount of ire is a natural response as you go searching through a series of 30 or
40 subdirectories, each rendered as CHAP~nn, trying to find out where your Chapter 17
directory actually is. And, finally, if you are lucky and persevere, you may discover that
Chapter 17 has been hashed to appear as CHAP~11— not exactly how you expected to
find it.

Is this the product of a conspiracy of recalcitrant programmers who have banded together
to attempt to preserve the old format in the same fashion that Le Academy Francais is
attempting to preserve seventeenth-century French? Or is there some special stupidity at
work here? It is definitely a mystery! (The solution appears later in this chapter.)

Dialog Box Handling
As discussed in Supplement 7, the FileView1 demo uses three dialog boxes: About
FileView, File Selection, and File Type. The three dialog boxes in the FileView1
application were created as dialog box resources and are handled by procedures
declared in FileView.DEF as exported.

5The FileView1 Demo: Using Application Resources

2642S10.qxd 11/1/99 10:01 AM Page 5

http://www.sybex.com

6

NOTE Exported procedures are simply procedures that need to be visible (accessible)
from outside their immediate scope; that is, from outside the source file or class
where they are declared. Procedures that are used only locally do not require
export declarations. As a general rule, all functions that are used only within an
EXE application are purely local. Functions within a DLL that are only called (used)
by other functions and procedures belonging to the DLL are also local. This is true
even for member functions—in either EXE applications or DLLs—belonging to one
class that will be used by another class; as long as both classes exist in the same
application; even if they are in multiple source files, they are still local functions.
However, all functions within a DLL that will be called by applications using the
DLL must be “exported” to make them accessible.

Once a dialog box has been invoked, the dialog box procedure exists as an
effectively independent subprogram. The exported procedure receives its own
messages from Windows, not directly from the parent application. Thus, declar-
ing a procedure as exported makes the procedure’s address available to the
Windows kernel so messages can be passed to the dialog box.

The three dialog box procedures are invoked from instructions in the WndProc
procedure, with very minimal invocations, as:

case IDM_ABOUT:
DialogBox(hInst, “ABOUT”, hwnd, About);
break;

case IDM_TYPE:
DialogBox(hInst, “FILETYPE”, hwnd, FileType);
break;

Under Windows 3.1, this dialog box invocation would be somewhat more
complex and would look something like this:

case IDM_ABOUT:
lpProc = MakeProcInstance(About, hInst);
DialogBox(hInst, “ABOUT”, hwnd, lpProc);
FreeProcInstance(lpProc);
break;

In fact, this format is still acceptable under Windows 9x/2000, but it is unneces-
sary. The MakeProcInstance procedure from Windows 3.1 is now defined as a

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 6

http://www.sybex.com

7

macro that simply returns the first argument, with nothing required to create an
instance of the procedure. And, because there is no requirement to create a proce-
dure instance, the FreeProcInstance has also been redefined as a macro; this
macro does absolutely nothing (aside from preventing the compiler from returning
an error message because of an unrecognized term).

When the IDM_OPEN message is received, a slightly different response is used. It
begins by initializing a directory path string and a file specification, passing these
as arguments to the local CallFileOpen procedure, as:

case IDM_OPEN: // set initial search path
lstrcpy(szTmpFileSpec, szTmpFilePath);
lstrcat(szTmpFileSpec, “*”);
lstrcat(szTmpFileSpec, szFileType[iFileType]);
if(CallFileOpen(hInst, hwnd,

szTmpFileSpec, szFileType[iFileType],
szTmpFilePath, szTmpFileName))

{

The CallFileOpen procedure performs a few minor tasks of its own before
using the same DialogBox API function, as was used to call the preceding two
dialog boxes.

The About dialog procedure does very little except wait for the user to click
the Okay button, after which it returns. There is no return value—or, at least, no
response to a returned value—because nothing is decided in this dialog box.

The FileType and FileOpen dialog box procedures, however, are not as
simple. Even though they return Boolean values, the major part of their work
involves setting global string variables. This type of information cannot be
conveniently treated as a returned value, even under Windows 9x/2000. How-
ever, the Boolean value returned by the exported FileOpen procedure to the
CallFileOpen procedure and then to the WndProc procedure is used because
there is no reason to attempt to open a file if the user hasn’t selected one; that is, if
the Cancel button was selected instead of the Okay button.

Before either of these procedures can return anything, the dialog box proce-
dures themselves still have several tasks to perform, including initializing the
dialog boxes before they are displayed.

The FileView1 Demo: Using Application Resources

2642S10.qxd 11/1/99 10:01 AM Page 7

http://www.sybex.com

8

Dialog Box Initialization
The FileType and FileOpen dialog box procedures handle a number of opera-
tions, but at the moment, their responses to the WM_INITDIALOG messages are the
important topic.

The FileType dialog box procedure has only two important tasks. The first of
these tasks is setting the check state of the radio button to match the iFileType
variable, thus:

case WM_INITDIALOG:
CheckRadioButton(hDlg, IDD_BMP, IDD_ANY,

IDD_BMP + iFileType);
iInitType = iFileType;
return(TRUE);

However, because the radio buttons used for the 15 file extensions were defined
as auto radio buttons belonging to a single group, you are not required to reset
the remaining 14; this part of the task is handled automatically.

This leaves the second task: setting the local variable iInitType so it’s equal to
the global iFileType. Once this is done, the File Type dialog box is ready for dis-
play and awaits the user’s selection.

On the other hand, the File Selection dialog box is a bit more complicated
to initialize. First, the FileOpen dialog box procedure retrieves the current or
active drive and directory path and then sends the filename list box an initial-
ization instruction setting the length of each entry to a generous 80 characters
(just in case we want the long filenames supported by the NTFS file system or
by the Windows 98 extended filename format).

case WM_INITDIALOG:
GetCurrentDirectory(sizeof(OrgPath), OrgPath);
SendDlgItemMessage(hDlg, IDD_FNAME, EM_LIMITTEXT, 80, 0L);
DlgDirList(hDlg, szFileSpec, IDD_FLIST, IDD_FPATH,

wFileAttr);

After initializing the list box, the next task is to fill it with entries from the cur-
rent directory. The DlgDirList API function makes this task almost automatic.
After all, aside from a handle to the dialog box (hDlg), the application is required

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 8

http://www.sybex.com

9

only to provide a file specification (szFileSpec), a destination (a list box identi-
fied as IDD_FLIST), a directory path specification (IDD_FPATH), and the desired
file-attribute flags (wFileAttr).

In other circumstances, you might want to use two list boxes: one for filenames
and the other for drive and directory information. This format is a convenient
one used by many Windows applications. For this purpose, the wFileAttr flags
would specify files for one list. For the other list, a wDirAttr flag variable would
request directory information.

Finally, as a last step, the current file specification is added to the edit text box
above the list box, as:

SetDlgItemText(hDlg, IDD_FNAME, szFileSpec);
return(TRUE);

Long Filenames: The Solution
The solution to limiting filenames and directory names to the obsolete 8.3 format is actu-
ally quite simple. By specifying a 12-character limit—8 for the filename, 1 for the dot, and
3 for the extension—in the SendDlgItemMessage EM_LIMITTEXT instruction, the system
is forced to report only the old-style filename whenever a longer format filename is
encountered.

case WM_INITDIALOG:
GetCurrentDirectory(sizeof(OrgPath), OrgPath);
SendDlgItemMessage(hDlg, IDD_FNAME, EM_LIMITTEXT, 12, 0L);
DlgDirList(hDlg, szFileSpec,

IDD_FLIST, IDD_FPATH, wFileAttr);

This limitation is definitely a stupid one and does not excuse programmers from recogniz-
ing (or failing to recognize) new realities.

The guilty parties—and you know who you are—are sentenced to 50 lashes with a wet
data stream…and no excuses.

Conversely, by specifying a larger entry size—such as the 80 character size used in the
FileOpen procedure—the system is allowed to report the new, long filename format.

Of course, in all fairness, if any of you are using filenames longer than 80 characters, the
FileView1 demo will truncate your filenames. But, somehow, I can’t find it in my heart to
worry unduly about this possibility.

The FileView1 Demo: Using Application Resources

2642S10.qxd 11/1/99 10:01 AM Page 9

http://www.sybex.com

10

Dialog Box Information Retrieval
In addition to setting initial information in the two dialog boxes, provisions are
also required to retrieve information from them. And, as mentioned previously,
each of these dialog box procedures is essentially an independent subprogram.

The FileType Procedure

In the FileType dialog box procedure, the important task is tracking the array
of radio buttons; fortunately, this task is easily accomplished. Within the File-
Type dialog box procedure, button selections are tracked using the local variable,
iInitType, leaving the global variable, iFileType, unaffected. In this fashion,
when the user clicks any of the radio buttons, the array of buttons automatically
resets because these were defined as auto radio buttons belonging to a single
group. The selected button, however, sends an event message, which is inter-
cepted, to the FileType dialog box procedure:

case WM_COMMAND:
switch(LOWORD(wParam))
{

case IDD_BMP: case IDD_C:
case IDD_COM: case IDD_CUR:
case IDD_DAT: case IDD_DBS:
case IDD_DLG: case IDD_DLL:
case IDD_EXE: case IDD_H:
case IDD_PAL: case IDD_RC:
case IDD_RES: case IDD_TXT:
case IDD_ANY:

iFileType = LOWORD(wParam) - IDD_BMP;
lstrcpy(szFileExt, szFileType[iFileType]);
return(TRUE);

Remember, the wParam argument contains the button identifier, which is a value
that will be in the range of 201 to 215. The array of file-type extensions, however,
has indexes from 0 to 14. Therefore, the constant IDD_BMP is subtracted from the
low word in wParam to provide a usable index value.

Last, if the user clicks the Okay button, the global variable iFileType can
be reset. If the user clicks the Cancel button instead, the global variable is left
unchanged, despite any local selections.

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 10

http://www.sybex.com

11

The FileOpen Procedure

In the FileOpen dialog box procedure, the responses are not quite as simple.
First, in addition to the Okay and Cancel buttons, a third button, labeled File
Type, returns the command message IDM_TYPE if selected. This offers an alter-
native method of calling the FileType dialog box procedure from within the
FileOpen dialog box procedure. The response provided is very similar to the
provisions in the WndProc procedure:

case IDM_TYPE:
if(DialogBox(hInst, “FILETYPE”,

hDlg, FileType))

If FileType returns TRUE, meaning that a new file type was selected, the file
specification is reset, and the DlgDirList function is called to update the direc-
tory list box, much the same as when the dialog box was initialized.

The list box, identified as IDD_FLIST, handles most of its own operations auto-
matically, including scrolling, displaying text, and highlighting selections. There
are, however, two messages that require handling within the dialog box procedure:
the LBN_SELCHANGE and LBN_DBLCLK arguments accompanying an IDD_FLIST com-
mand message. These arguments are passed as high-word values in the wParam
argument and must be tested using the HIWORD macro:

case IDD_FLIST:
switch(HIWORD(wParam))
{

case LBN_SELCHANGE:

The LBN_SELCHANGE message simply states that a new item in the list box was
selected and, in response, the edit file (IDD_FNAME) should be updated accord-
ingly. As an alternative, if the dialog box had used a combo list box (combining a
list box and edit box in a single feature), this task would be handled automati-
cally, without involving the dialog box procedure.

The second IDD_FLIST argument, LBN_DBLCLK, states that an item in the list
box has been double-clicked, indicating an immediate selection. In response, the
first step is to call the DlgDirSelectEx API function to check if the selected entry
is a directory or a file:

case LBN_DBLCLK:
if(DlgDirSelectEx(hDlg, szFileName,

sizeof(szFileName), IDD_FLIST))
{

The FileView1 Demo: Using Application Resources

2642S10.qxd 11/1/99 10:01 AM Page 11

http://www.sybex.com

12

lstrcat(szFileName, szFileSpec);
DlgDirList(hDlg, szFileName,

IDD_FLIST, IDD_FPATH,
wFileAttr);

SetDlgItemText(hDlg, IDD_FNAME,
szFileSpec);

}

If DlgDirSelectEx reports TRUE, meaning the selected entry is a new directory,
the DlgDirList function is called to update the list box and the edit box, and the
process proceeds as before.

On the other hand, if a FALSE result is reported, the selection must be a file-
name rather than a directory and, therefore, the edit box is updated before send-
ing an IDOK message to complete the selection process.

else
{

SetDlgItemText(hDlg, IDD_FNAME,
szFileName);

SendMessage(hDlg, WM_COMMAND,
IDOK, 0L);

}
return(TRUE);

Because the edit box offers the user a chance to type in an entry directly, the
IDD_FNAME message is also checked for the EN_CHANGE argument in the high-
word value of the wParam argument.

Two final provisions are responses for the IDOK and IDCANCEL command
messages. In the case of an IDOK message, the response required is simply to
check the edit box and retrieve the current entry before saving this as the
selected filename.

case IDOK:
GetDlgItemText(hDlg, IDD_FNAME, szFileName, 80);
...
EndDialog(hDlg, TRUE);
return(TRUE);

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 12

http://www.sybex.com

13

The provisions for parsing the filename and the path/directory information are
omitted here. The dialog box then closes with a return message TRUE to indicate
to the calling procedure that a filename has been selected.

For the IDCANCEL message, the response is simple. After restoring the original
drive/directory, the dialog box closes with a return message of FALSE to report
that no selection has been made.

case IDCANCEL:
SetCurrentDirectory(OrgPath);
EndDialog(hDlg, FALSE);
return(TRUE);

The FileView2 Demo:
Using a Common Dialog Box

The FileView2 demo performs essentially the same task as FileView1, but instead
of the File Type and File Selection dialog boxes, it uses the common File Open
dialog box. Its main purpose is to demonstrate how an application can be revised
to take advantage of the MFC libraries and of supplied resources.

The FileView2 version has only one resource dialog box, the About dialog box,
because the File Open dialog box is a common dialog box resource supplied by
Windows 98, not by the application. Also, where the FileView1 demo employed a
File Type dialog box, the FileView2 version omits this resource by loading the list
of file types and associated extensions in the File Open dialog box, where they
appear in the Files of Type pull-down list. Figure S10.2 shows the FileView demo
with its two dialog boxes.

NOTE The FileView2 demo is included on the CD in the Supplement 10 folder.

The FileView2 Demo: Using a Common Dialog Box

2642S10.qxd 11/1/99 10:01 AM Page 13

http://www.sybex.com

14

F I G U R E S 1 0 . 2 :

The completed
FileView2 demo

A Pointer to the CFileDialog Class
The main reason for discussing this second version is to show how the File Type
and File Selection dialog boxes were replaced by the common File Open dialog
box. The heart of this part of the operation occurs in the OnFileOpen method in
the CFileView2View class, where we begin by defining a pointer to the CFile-
Dialog class.

void CFileView2View::OnFileOpen()
{

// TODO: Add your command handler code here
CFileDialog* pFileDlg;
CString csFilter;

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 14

http://www.sybex.com

15

The CFileDialog class encapsulates the Windows common File dialog box,
which implements both the File Open and File Save As (or File Save) dialog
boxes.

TIP The File Open and File Save As dialog boxes can also serve for any other file-
selection functions. Refer to the CFileDialog class documentation for details.

The Filter List
Defining a pointer to the class rather than an instance of the class provides a
handle that will, in a moment, point to an instance of the class. Before creating
an instance of the class, however, you must prepare.

csFilter =
“Bitmaps (*.bmp)|*.bmp|”
“C/C++ files (*.C,*.CPP)|*.c;*.cpp|”
“Com files (*.com)|*.com|”
“Cursors (*.cur)|*.cur|”
“Data (*.dat)|*.dat|”
“DBase files (*.dbs)|*.dbs|”
“Dialogs (*.dlg)|*.dlg|”
“Dynamic link libraries (*.dll)|*.dll|”
“Executables (*.exe)|*.exe|”
“Headers (*.h,*.hpp)|*.h;*.hpp|”
“Palettes (*.pal)|*.pal|”
“Resource scripts (*.rc)|*.rc|”
“Resource files (*.res)|*.res|”
“Text files (*.txt)|*.txt|”
“All files (*.*)|*.*||”;

The csFilter variable is an instance of the class CString and now contains a
complete list of the file types and the file extensions for each type, with the |
character used as a separator. Note also the doubled ||, which terminates the
string. When the csFilter string is passed to the CFileDialog instance, the |
characters are interpreted as 0x00—null characters that serve as delimiters.

Notice that each entry consists of two substrings. The first is the descriptive
string, which will be displayed for selection. The second substring contains the
file mask. In two cases—C/C++ and header files—two separate file masks are
included by separating them with a semicolon (;).

The FileView2 Demo: Using a Common Dialog Box

2642S10.qxd 11/1/99 10:01 AM Page 15

http://www.sybex.com

16

There are no limits on the length of the prompt strings or file masks. Also,
because a CString instance is not limited in length, there are no limitations on
how many prompts and file masks can be included.

The only real stipulation that you need to observe is that the list provided will
be presented in the exact same order; that is, the list of prompts and file masks
will not be sorted.

The CFileDialog Instance
Now, once we have the filter list, the CFileDialog instance can be created thus:

pFileDlg = new CFileDialog(TRUE, NULL, NULL,
OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
csFilter);

The calling parameters for CFileDialog are defined as:

CFileDialog(BOOL bOpenFileDialog, LPCTSTR lpszDefExt = NULL,
LPCTSTR lpszFileName = NULL,
DWORD dwFlags = OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT,
LPCTSTR lpszFilter = NULL, CWnd* pParentWnd = NULL);

The parameters used are defined as follows:

bOpenFileDialog Set to TRUE to construct a File Open dialog box or to
FALSE to construct a File Save As dialog box.

lpszDefExt A default filename extension. If the filename edit box entry
does not include an extension when the File Open dialog box returns, the
lpszDefExt extension will be appended to the filename automatically. If
this parameter is NULL, no filename extension is appended.

lpszFileName A default filename that will appear in the filename edit
box. If NULL, no initial filename appears.

dwFlags Flags that are used to customize the dialog box. For a complete list
of flags and options, refer to the OPENFILENAME structure in the Win32 SDK
documentation.

lpszFilter A sequence of string pairs that specify the filters that may be
applied to the files. If no filter is supplied, all files are accepted, unless the
user supplies a file mask.

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 16

http://www.sybex.com

17

pParentWnd A pointer to the parent or owner window. If no parent or
owner is specified, the Desktop becomes the parent.

Having provided the appropriate parameters, the CFileDialog instance is
called using the DoModal method.

if(pFileDlg->DoModal() == IDOK)
{

Assuming that DoModal returns TRUE—meaning the user has selected the Open
(IDOK) button rather than the Cancel button—the GetPathName method is called
to retrieve the selected filename and the complete path/directory specification.

Note that this information is available after the dialog box returns but only as
long as the CFileDialog instance has not closed. And, once you have this infor-
mation, the OpenFile method is called.

m_csFilePath = pFileDlg->GetPathName();
OpenFile();

}

You can call the OpenFile method, which is a member of the CFileView2View
class, without passing any arguments because the file information is contained in
another member variable. This is the CString member m_csFilePath, which is
directly available to the OpenFile method.

Last, call the delete operator to close the CFileDialog instance:

delete pFileDlg;
}

At this point, even though you’re not finished with the file information (the file
access and display is handled by other procedures), you are finished with the
CFileDialog instance. Now you need to clean up to avoid a memory leak, which
may be minor but can cause problems. In any case, all class instances should be
closed when they are no longer needed.

WARNING Memory leaks are very easy to cause and very, very hard to identify later when they
begin causing major debugging headaches and other problems. This is an area where
the proverbial ounce of prevention is worth far more than many pounds of cure.

The FileView2 Demo: Using a Common Dialog Box

2642S10.qxd 11/1/99 10:01 AM Page 17

http://www.sybex.com

18

The remainder of the FileView2 demo provisions are quite similar to the ones in
the FileView1 demo. Its differences are the obvious changes appropriate to using
an MFC-based application and some other changes to make appropriate use of
object classes, such as CStrings, to replace more conventional variable types. If
you are interested, take a look at the OpenFile, FormatLine, and PaintFile
methods in the CFileView2View class.

TIP Because the main point of FileView2 is to demonstrate a few interactions between
the program code and the application resources, this chapter has not explained all
of that program’s operations. Feel free to experiment with the source code listing
(on the CD that accompanies this book), where you will find annotations to iden-
tify other areas of interest.

We’ve gone through the main types of application resources under Windows 98
and illustrated how they can be put together in your applications. In a sense, all of
these elements are simply background—the nuts and bolts used for Windows
applications. But, without the basic foundation, there’s no point in trying to build
more complete systems.

In the supplements that follow, we’ll look at more advanced topics. We’ll focus
on creating tools and building simple applications to illustrate how the tools
function.

Supplement 10 • Application Resources Working Together

2642S10.qxd 11/1/99 10:01 AM Page 18

http://www.sybex.com

S U P P L E M E N T
E L E V E N

Colors and Color Palettes

� The Windows standard palette

� How dithering works

� Custom color palettes

� Windows color drawing modes

� Color-to-gray-scale conversions

S11

2642S11.qxd 11/1/99 10:02 AM Page 1

http://www.sybex.com

2

The procedures for handling colors under Windows are distinctly different
from the color procedures under DOS. In part, this causes some additional complex-
ity for the programmer, but overall, it provides greater flexibility. The application
programmer no longer needs to make separate provisions for various hardware
capabilities. Rather, you are free to devote your time to the application’s principal
objectives instead of writing code for a multitude of display systems.

For the application developer, one of the most important reasons to use color is
to provide information in forms more readily recognizable than a simple mono-
chrome display. Even for such simple tasks as spreadsheets or editing program
code, the addition of color to highlight various elements provides additional, eas-
ily recognized information that could be lost on a simple black-and-white (or
black-and-amber or black-and-green) display. With color, when an accountant
says that a company is in the red, he can be speaking quite literally, without need-
ing to reach for a red pen to make an entry in a ledger sheet.

In part, the use of color (or shades of gray) simply presents a display with the
appearance of greater depth and detail than a monochrome display. And, even
though first impressions are hardly an appropriate basis for judging an applica-
tion’s design and usefulness, they are still important. Your current and prospec-
tive clients will take that first look, and decide how much consideration to give to
your application and how much effort they will expend in discovering the real
strengths of your design.

Of course, there’s also a flip side to this coin. Excessively elaborate graphics
or absurdly garish color choices may have precisely the opposite of the desired
effect: a bad first impression or, worse, general confusion while operating an
application. Thus, restraint is also appropriate.

This is not, however, a lecture on the aesthetics of design (regardless of how
relevant the topic might be). Instead, the present topic is how colors can be used.
How you choose to use them remains up to you.

Windows Palettes
The earliest video cards provided video RAM (VRAM) on the order of 32KB to
64KB, enough for simple displays with limited colors. Today, even an inexpensive
video card is expected to provide at least 1MB of RAM—enough for a 1024×768

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 2

http://www.sybex.com

3

display with a 256 color palette. And many video cards include twice this amount
of RAM or more.

Color Definitions
Video uses an RGB color scheme to create colors. When painting a screen with
light, combinations of red, green, and blue lights are sufficient to create an entire
range of colors; black is the absence of any colored light, and white is a balanced
combination of the three primary colors.

Using DOS, the video palette was defined in a relatively restrictive fashion with
a fixed palette of 16 colors. These colors were defined using the RGBI flag system,
where the flag bits controlled the red, green, and blue color guns together with a
single intensity flag.

With the introduction of the EGA/VGA video boards, the palette expanded to
64 colors by exchanging the single intensity bit for three separate intensity bits:
one each for the red, green, and blue color guns.

Today, both of these color specification systems have been supplanted by the
Windows 32-bit color specification, where each color value is defined as a DWORD
value in the format 0x00BBGGRR. In this format, the least-significant byte (eight
bits) holds the value for red, the second byte is green, and the third byte is blue.
The fourth, most-significant byte remains zero.

You may wonder why this is a 32-bit color specification when we’ve been talk-
ing about 24-bit color. The remaining eight bits in the DWORD value are used for a
different purpose, which we’ll discuss later in the chapter.

Table S11.1 shows the CGA, EGA/VGA, and Windows equivalents for a 16-
color palette.

TA B L E S 1 1 . 1 : System Color Definitions

Color names CGA Colors EGA/VGA Colors Windows
Equivalents*

binary iRGB binary rgbRGB 0x .. BB GG RR

Black 0000 –––- 000000 0x00 00 00 00

Dark Blue 0001 ...B 000001B 0x00 77 00 00

Continued on next page

Windows Palettes

2642S11.qxd 11/1/99 10:02 AM Page 3

http://www.sybex.com

4

TA B L E S 1 1 . 1 (C O N T I N U E D) : System Color Definitions

Color names CGA Colors EGA/VGA Colors Windows
Equivalents*

binary iRGB binary rgbRGB 0x .. BB GG RR

Dark Green 0010 ..G. 000010G. 0x00 00 77 00

Dark Cyan 0011 ..GB 000011GB 0x00 77 77 00

Dark Red 0100 .R.. 000100 ...R.. 0x00 00 00 77

Dark Magenta 0101 .R.B 000101 ...R.B 0x00 77 00 77

Brown 0110 .RG. 000110 ...RG. 0x00 00 77 77

Light Gray 0111 .RGB 000111 ...RGB 0x00 77 77 77

Dark Gray 1000 i... 111000 rgb... 0x00 3F 3F 3F

Light Blue 1001 i..B 111001 rgb..B 0x00 FF 00 00

Light Green 1010 i.G. 111010 rgb.G. 0x00 00 FF 00

Light Cyan 1011 i.GB 111011 rgb.GB 0x00 FF FF 00

Light Red 1100 iR.. 111100 rgbR.. 0x00 00 00 FF

Light Magenta 1101 iR.B 111101 rgbR.B 0x00 FF 00 FF

Yellow 1110 iRG. 111110 rgbRG. 0x00 00 FF FF

White 1111 iRGB 111111 rgbRGB 0x00 FF FF FF

*In a Windows color specification, the most-significant byte is used, in other circumstances, as a flag value indicating the type of color reference.

In the Windows color specification system, each primary color (red, green,
or blue) has a possible range of 0 to 255, and individual colors are identified by
24-bit combinations of the RGB components, yielding a total of 16,777,216 pos-
sible hues.

However, because video boards (with the exception of the newest 24-bit video
board) cannot support individual pixel color specifications, these 24-bit values
are written to a color palette. The pixels in the image map itself consist of 8-bit
index references to the color palette.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 4

http://www.sybex.com

5

Thus, while an SVGA video card can support 24-bit color specifications, it can
only do so as a palette containing 256 entries. Furthermore, partially in support of
earlier 16-color standards, Windows reserves 20 of these palette entries, leaving
236 colors for custom use.

From the 16-Color to the True-Color Palette
Earlier EGA/VGA devices were limited to16 colors, which were pixel colors defined by four
color planes, each holding one bit per pixel. For the EGA/VGA drivers, the four color
planes consisted of red (R), green (G), blue (B), and intensity (i). The intensity plane (or bit)
shifted between green and light green, blue and light blue, and so forth. Thus, the 16 col-
ors in the standard palette were determined by the available combinations of the three
primary colors and the intensity of the color combination. White consisted of RGB and i,
light gray was produced by RGB without the intensity bit, and dark gray was set by the
intensity bit alone; that is, by very low levels of RGB combined.

For a VGA system, despite limitations inherited from the EGA color schema, there were
actually six color planes consisting of both a high- and a low-intensity red (R and r), a high-
and low-intensity green (G and g), and a high- and low-intensity blue (B and b). Thus, the
VGA video card actually supported 64 (26) individual colors.

For the SVGA system, today’s de facto standard, the color definition shifts from four or
six color planes with one bit per pixel to one color plane holding eight bits per pixel,
yielding a palette with 256 color entries (20 of which are reserved by the system for pre-
defined hues).

Each of these palette entries is defined by three eight-bit values (RGB), giving each pure
color a total of 256 levels (from black to full intensity) and a total of 16,777,216 possible
colors (combining all possible RGB level combinations). Remember, however, that only
256 of these 16 million possible colors can be defined in the device palette, and the
device—the video card—has only one palette.

For most purposes, a palette of 256 colors is adequate. Even my wallpaper and screen
savers (which include paintings by Rousseu, wildlife and landscape photographs, and
undersea images) are excellent when displayed in a 256-color palette. Of course, they are
even more colorful when rendered using 24 bits per pixel color.

Generically titled true color, today’s high-resolution video cards do not use palettes at all.
Instead, they provide a full 24 bits of color information for each and every pixel in the dis-
play: eight bits each for the red, green, and blue components of every pixel.

Continued on next page

Windows Palettes

2642S11.qxd 11/1/99 10:02 AM Page 5

http://www.sybex.com

6

To provide this capability, the memory requirements rise drastically. For a 1024×768 dis-
play using 24-bit color, more than 2MB of VRAM is required. And, for a 1280×1024
display, the requirements jump to 4MB of VRAM.

But the VRAM requirements are only a part of the story. These upper-end video cards (as
well as most of today’s less expensive cards) use sophisticated graphics coprocessors, such
as the Tseng ET-4000 or the newest S3 graphics coprocessors, because the amount of
information required to render the screen display requires sophisticated processing as well
as adequate storage. Without these coprocessors, rendering the screen display can slow
the CPU to a crawl.

Ideally, true-color video boards provide enough memory to hold a full 24 bits of color.
As a trade-off, however, some otherwise sophisticated video cards save memory by dis-
playing only 16 bits per pixel rather than 24, using 5 bits each for the red, green, and
blue components and using the sixteenth bit as an intensity flag applied equally to
these components.

Because the human eye cannot distinguish between the 16- and 24-bit results—we simply
cannot distinguish 16 million plus hues—the real requirements for high-resolution 24-bit
color become somewhat problematic. Still, as memory costs fall and monitor sizes and res-
olutions rise, the overkill of full 24-bit color is the sunrise on the horizon.

But, even when every system sold is a true-color video system, there will still be a use for
color palettes. The 256-color palette will be with us for a long time to come.

The Standard Palette
In DOS, the standard palette consisted of the 16 colors originally defined by EGA
video cards or their VGA/SVGA equivalents.

Windows defines a standard palette of 20 static colors (the default palette).
On an EGA or VGA system, where only 16 of the 20 colors are actually available,
Windows emulates the remaining 4 colors by dithering (a process which will be
demonstrated in a moment). On contemporary SVGA systems, where the hard-
ware supports a device palette of 256 colors, the 20 default entries appear as indi-
vidual hues without adjustments. Table S11.2 shows the RGB color values for
each of the standard palette’s 20 colors.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 6

http://www.sybex.com

7

TA B L E S 1 1 . 2 : The Windows Default Palette Values

Index Color R G B Index Color R G B

0 Black 0 0 0 10 Off-white 266 251 240

1 Dark Red 128 0 0 11 Med. Gray 160 160 164

2 Dark Green 0 128 0 12 Dark Gray 128 128 128

3 Gold 128 128 0 13 Red 255 0 0

4 Dark Blue 0 0 128 14 Green 0 255 0

5 Violet 128 0 128 15 Yellow 255 255 0

6 Dark Cyan 0 128 128 16 Blue 0 0 255

7 Light Gray 192 192 192 17 Magenta 255 0 255

8 Pale Green 192 220 192 18 Light Cyan 0 255 255

9 Pale Blue 166 202 240 19 White 255 255 255

Technically, these 20 standard colors belonging to the stock system palette are
inviolable and cannot be altered by an application, even when the application
defines its own color values for corresponding palette entries. Because color
priority is given to the foreground application, however, and the application’s
palette takes priority over the standard palette, background displays may be
remapped.

Background displays may appear in whichever application colors provide the
closest match to the standard colors, even when this results in a distinct change in
the screen appearance. In some cases, the color difference may be quite striking,
such as when a 256-color bitmap is used as wallpaper and an application has
defined its own 256-color palette. But once the new image is displayed, the back-
ground colors should return to their original palette colors. Similar effects can be
observed using a paint program (such as PhotoShop Pro) when multiple images
are loaded or while switching between images when a few moments are required
to change between two quite different palettes.

NOTE The ViewPCX demo, discussed in Supplement 15, provides a striking example of
the effect of changing background display colors. As ViewPCX is loading an image
from a file (having already defined a new palette), the background image is dis-
played using the ViewPCX palette.

Windows Palettes

2642S11.qxd 11/1/99 10:02 AM Page 7

http://www.sybex.com

8

The Color1 Demo: Painting with the Standard Palette
The Color1 demo was created to demonstrate the Windows standard color palette.
As you can see in Figure S11.1, except for an optional icon, Color1 has no menu,
dialog boxes, or other resources. Execution occurs entirely within the exported
WndProc procedure, with a minimum of operations.

F I G U R E S 1 1 . 1 :

The Colors1 display of the
Windows standard palette

Because all that we intend to accomplish in the Color1 demo is to paint squares
using the default (stock) palette entries, we divide the client window into four
rows of five squares each, defining these dimensions as XSTEPS and YSTEPS.

Within the WndProc procedure, in response to the WM_SIZE message, when we
receive the client window size in the lParam argument, the x and y sizes for the
individual rectangles are calculated.

case WM_SIZE:
xSize = (LOWORD(lParam)) / XSTEPS;
ySize = (HIWORD(lParam)) / YSTEPS;

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 8

http://www.sybex.com

9

InvalidateRect(hwnd, NULL, TRUE);
break;

Then, in response to the WM_PAINT message, we set up two loops:

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
for(j=0; j<YSTEPS; j++)

for(i=0; i<XSTEPS; i++)
{

Within the loops, the first step is to use the PALETTEINDEX macro to convert
the i and j values into a rectangle number and then, in the COLORREF crColor
variable, into a palette index in the form 0x010000xx. PALETTEINDEX sets the
high byte of the high word to 0x01, indicating that this COLORREF value is a
palette-entry specification rather than an absolute RGB color value (see the
next section, “Types of RGB Color Specifications”).

crColor = PALETTEINDEX(i + (j * xSteps));
hPen = CreatePen(PS_SOLID, 1, crColor);
hOldPen = SelectObject(hdc, hPen);
hBrush = CreateSolidBrush(crColor);
hOldBrush = SelectObject(hdc, hBrush);

Next, we need to create a pen and a brush using the crColor specification and
then select the new pen and brush, making them the active drawing pen/brush
for the next operations. Notice that we keep handles to the old pen and brush,
supplied when SelectObject is called, so that we can reselect the original objects
before deleting the two we created.

Once we have both a pen and brush in the desired color, we call the Rectangle
function to draw a solid rectangle. The active (selected) pen is used to outline
the rectangle and the active brush to fill it, but because both of these are the same
color, we simply see a solid rectangle with no outline except the white back-
ground of the underlying window.

Rectangle(hdc, i * xSize + 2, j * ySize + 2,
(i + 1) * xSize - 2,
(j + 1) * ySize - 2);

SelectObject(hdc, hOldPen); // restore original pen
SelectObject(hdc, hOldBrush); // and brush then delete
DeleteObject(hPen); // discards so we don’t
DeleteObject(hBrush); // run out of handles

Windows Palettes

2642S11.qxd 11/1/99 10:02 AM Page 9

http://www.sybex.com

10

Finally, as mentioned, we reselect the original pen and brush and then delete the
new pen and brush. If we did not do this, we could run out of available handles.

TIP To experiment, comment out the closing SelectObject and DeleteObject
statements, then recompile and execute the demo. Then drag or resize the win-
dow—either of which results in redrawing the window. You should see the
squares come up as white with a black outline once the custom brush and pen
handles are exhausted. (The stock black pen and white brush remain available and
are used by default when new handles are no longer available.)

Next, we call the GetNearestColor function, using the crColor palette-index
specification, to get the actual RGB color values for the index entry. We report
these, now using the default black pen and white brush, on top of the colored rec-
tangles. The results are visible in Figure S11.1 (shown earlier).

// report palette entries as RGB values
crRGB = GetNearestColor(hdc, crColor);
wsprintf(szColor, “ RGB: %02X %02X %02X “,

GetRValue(crRGB), GetGValue(crRGB),
GetBValue(crRGB));

TextOut(hdc, i * xSize + 20, j * ySize + 20,
szColor, strlen(szColor));

}
EndPaint(hwnd, &ps);

This is a fairly simple process, but it does demonstrate the standard palette col-
ors. It also leads to an explanation of three types of RGB color specifications.

NOTE The complete listing for the Color1 demo is included on the CD in the Supplement 11
folder.

Types of RGB Color Specifications
Three types of RGB color specifications are demonstrated in the Color1 program:
absolute, palette-index, and palette-relative values.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 10

http://www.sybex.com

11

Absolute RGB COLORREF Values

Both the CreatePen and CreateBrush functions are called with a color reference
parameter. Conventionally, this parameter is an RGB long integer (DWORD) follow-
ing the form 0x00BBGGRR, as shown in Table S11.1. Thus, for a white brush, the
color value would be specified as 0x00FFFFFF; for black brush, the value would
be 0x00000000.

In all cases, the most-significant byte is 0; the red, green, and blue values are
each specified by byte (8-bit) values in the range 0 to 255. If necessary for display,
the system will map the specified color to the nearest available color in the active
palette.

Palette-Index RGB COLORREF Values

In the Color1 demo, instead of using absolute RGB values, a second COLORREF for-
mat is used. In this format, the color parameter is a palette index identifying an
existing palette value. For palette-index entries, the COLORREF value takes the
form 0x0100xxxx. with the low word (16 bits) providing an index to a logical
palette or, in this case, the system palette.

Palette-Relative RGB COLORREF Values

Windows 98 also supports a third format for specifying COLORREF values: the
palette-relative RGB value. For this format, the high-order byte value is 2 and
the COLORREF value takes the format 0x02BBGGRR. This format is used for out-
put devices that support logical palettes, allowing Windows to match a palette-
relative RGB value to the nearest actual color supported by the output device.

Alternatively, if the output device doesn’t support a logical palette (probably
because it is a video card supporting 24-bit true-color), Windows treats the
palette-relative value as if it were an absolute RGB value; that is, instead of
palette mapping, Windows attempts to handle the RGB value directly.

Dithered Colors
Although individual palette colors can be assigned to any of the 16 million possible
hues, this does not guarantee that the physical device is capable of displaying such
a wide range of colors. As explained previously, this limitation is imposed by the

Dithered Colors

2642S11.qxd 11/1/99 10:02 AM Page 11

http://www.sybex.com

12

graphics video card’s limits more than by the video monitor’s limits. Most moni-
tors are capable of near-infinite color resolution.

Limitations imposed by the graphics hardware can be circumvented through a
process known as dithering. The Sunday newspaper comic pages and comic books
don’t use the same precise techniques but the end results are very similar. In the
comics and in colored ads, a fairly wide range of colors is produced by combining
three or four primary colors to create what the eye perceives as many gradations
of color.

The computer (or TV) screen creates colors by combining red, green, and blue
light against a black background. Printed materials use a white background (the
paper) and combine light-absorbing inks consisting of cyan, magenta, yellow, and
black (CMYK). In this fashion, a strong brown, for example, is produced by plac-
ing dots of black or magenta and cyan over a nearly solid yellow background; a
softer brown consists of a halftone of yellow with fewer blacks. Similarly, pinks
and certain flesh tones combine yellow and magenta with the white paper show-
ing through; dark colors use greater or lesser degrees of black.

On the computer screen, the same principle applies, except that the lights—the
pixels—in primary colors are used rather than their complements as inks.

The Color2 Demo: A Dithering Demonstration
The Color2 demo demonstrates this principle on an SVGA graphics system
by setting the background color to a specific color configuration. Because the
requested color is not provided as a palette color, Windows attempts to render
the requested color by dithering entries from the default 20-color entries.

As shown in Figure S11.2, three scrollbars are used to select color settings for a
single colored area, which displays dithered colors created from the standard
palette.

F I G U R E S 1 1 . 2 :

Creating dithered colors

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 12

http://www.sybex.com

13

NOTE The complete listing for the Color2 demo is included on the CD accompanying
this book, in the Supplement 11 folder. If your system is set for 24-bit color (true-
color) or for anything greater than a 256-color palette, the Color2 demo will ren-
der solid hues rather than dithered mixes. To execute the Color2 demo, you must
select a 256-color palette system.

Figure S11.3 shows a series of dithered color samples (unfortunately, rendered
here in black and white).

F I G U R E S 1 1 . 3 :

Dithered samples

Characteristics of Dithered Colors
Although dithered color patterns are a feature provided by Windows and do not
require nor demand your attention, you should note the following characteristics:

• Dithered colors are always an 8×8 pattern, spreading the simulated color
over a minimum area of 64 pixels.

• Dithering cannot be used for lines that are always drawn using a primary
hue supported by the display device.

• Even though 20 (or more) individual hues are available, dithered colors
are composed of 4 individual colors. (These are not, of course, the same
4 shades in all cases.)

• Although dithered colors will fill irregular outlines, individual pixels in the
fill may combine (visually) with outlines or borders, creating some appear-
ances of irregularity.

Dithered Colors

2642S11.qxd 11/1/99 10:02 AM Page 13

http://www.sybex.com

14

Dithering is not limited to color systems. It is also applied to monochrome and
gray-scale displays, as will be discussed presently.

Custom Colors
In many cases, whether the resulting color specification appears as a solid hue
or as a dithered pattern is irrelevant and makes no difference to your application.
In other cases, however, precise color control can be a very important element.
When this is the case, dithered colors just aren’t in the running; it’s either precise
color control or nothing!

When exact colors are required, the solution is to reset one or more palette
entries to produce the desired hues. Although this sounds simple enough, in
practice, there are a few requirements and limitations.

The primary limitation is physical. Windows, no matter how sophisticated, can-
not change the physical characteristics of the system video card. If the physical
device supports a palette of only 16 colors, then only 16 custom colors can be
displayed and all remaining palette entries will be mapped to the 16 supported
physical colors. In like fashion, on an SVGA system, a physical palette limitation
of 256 colors may be imposed by the system hardware.

Of course, if you are using one of the new true-color video cards that supports
24 bits of color information per pixel instead of palettes, all of this becomes moot,
and you’re free to write any information desired to the screen. This particular free-
dom, however, applies to very few programmers. Therefore, we’ll assume that your
programs are still bound by hardware limitations.

The Color3 Demo: A Custom Color Palette
The Color3 demo creates a new palette using custom color settings, which can be
adjusted using the same scrollbar controls illustrated in Color2. Figure S11.4
shows the Color3 display.

NOTE For demonstration purposes, the custom palette used in this example is limited to
eight entries. This is a range supported by all graphics cards. It’s also large enough
to compare several color samples but still small enough to present a clean display.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 14

http://www.sybex.com

15

F I G U R E S 1 1 . 4 :

The Color3 display of a
custom color palette

In the Color3 demo, the three scrollbars control the red, green, and blue color
specifications and also show the present levels for the selected color sample. The
–Select– and +Select+ menu items step through the eight palette entries, identify-
ing the active selection with a gray outline.

The first step in creating a custom palette requires a few declarations:

long APIENTRY WndProc(...)
{

static LPLOGPALETTE lPal;
...
HPALETTE NewPal;
HBRUSH NewBrush, OldBrush;
HPEN NewPen, OldPen;
...

The lPal variable is a static pointer to a logical palette structure. The remaining
variables provide handles (pointers) to two palettes, two brushes, and two pens,
all of which will be used presently. Also defined, but not shown here, is an array
of eight RGB color values that is used to initialize the color palette and to track
changes in the color palette settings.

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 15

http://www.sybex.com

16

The logical palette structure (LOGPALETTE) referenced by lPal is defined in
WinGDI.H as:

typedef struct tagLOGPALETTE
{

WORD palVersion; // Windows version (0x0300)
WORD palNumEntries; // size of array
PALETTEENTRY palPalEntry[1]; // array of palette entries

} LOGPALETTE;

The version number is always 0x0300 (version 3.0), regardless of the version of
Windows (3.1, 3.11, 95, 98, or NT) being used.

The palPalEntry field specifies an array of PALETTEENTRY data structures
defining the actual color entries. The PALETTEENTRY structure is defined as:

typedef struct tagPALETTEENTRY
{

BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTEENTRY;

The three color bytes accept values in the range 0 to 255. The peFlags field
accepts a flag value identifying how the palette entry will be used, or it may be
NULL. The following are the valid flag values:

PC_EXPLICIT Identifies the palette entry as a hardware palette index,
allowing the application to use the display driver’s palette. The RGB color
specification will be used to find the nearest matching device palette entry.

PC_NOCOLLAPSE Specifies that the color will be placed in an unused entry
in the system palette rather than being matched to an existing palette
entry. If no unused entries are available, the color is matched normally.
Once a new color entry has been made, further palette entries can be
matched to this entry.

PC_RESERVED Indicates that the logical palette entry will be used for ani-
mation and, therefore, is changeable. As such, other palette entries should
not be matched to this entry. If no unused palette entries are available for
this color specification, the color specification is not matched to any other
existing entries and is not available for animation.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 16

http://www.sybex.com

17

If the peFlags field is NULL, the palette entry is added to the palette if space is
available. If not, the entry is matched to the nearest system palette entry.

Much of the processing in Color3 should be familiar to you from earlier exam-
ples in this and preceding chapters. The principal elements here are found in the
WndProc procedure’s message-handling provisions.

The initial color-processing provision is found in the response to the WM_CREATE
message. Here, memory allocation is performed for the lPal palette structure
and two initial values are assigned: the palette version and the number of palette
entries.

switch(msg)
{

case WM_CREATE: // initialize the logical palette
lPal = (LPLOGPALETTE)
LocalAlloc(LMEM_FIXED | LMEM_ZEROINIT,

sizeof(LOGPALETTE) + sizeof(PALETTEENTRY) * 8);
lPal->palVersion = 0x300;
lPal->palNumEntries = 8;
break;

Next, in response to the WM_COMMAND message, the IDM_PLUS (+Select+) and
IDM_MINUS (–Select–) instructions step through the palette entries. As they step
through the entries, they update the positions of the three scrollbars and the text
displays for each to correspond to the current (active) palette settings.

case WM_COMMAND:
switch(LOWORD(wParam))
{

case IDM_PLUS:
nPal++;
if(nPal >= 8) nPal = 0;
for(i=0; i<3; i++)
{

SetScrollPos(hwndScrl[i], SB_CTL, CVal[i][nPal], TRUE);
SetWindowText(hwndVal[i], itoa(CVal[i][nPal], szBuff, 10));

}
InvalidateRect(hwnd, 0L, TRUE);
break;

case IDM_MINUS:
nPal—;
if(nPal < 0) nPal = 7;

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 17

http://www.sybex.com

18

for(i=0; i<3; i++)
{

SetScrollPos(hwndScrl[i], SB_CTL, CVal[i][nPal], TRUE);
SetWindowText(hwndVal[i], itoa(CVal[i][nPal], szBuff, 10));

}
InvalidateRect(hwnd, 0L, TRUE);
break;

case IDM_HELP: ...
}
break;

The scrollbars used for controls in both the Color2 and Color3 demos are the
Windows analog of a vernier or sliding potentiometer control and should be
familiar to you from many Windows applications. Their use here demonstrates
how scrollbars can be used in any context where a variable control is needed.

TIP Normally, to select a color specification, instead of placing scrollbars (or slider or
other types of controls) in the main application or in a resource dialog box, the
common dialog class CColorDialog is used.

Handling for the three scrollbars is found in three separate locations: one in
the WinMain procedure, where the scrollbars are created, and two in the message
responses in the WndProc procedure.

The first provision in the WinMain procedure, occurring at the same time the
three scrollbars are created, is to assign a range to each scrollbar, consisting of
a minimum and a maximum value. In each of the scrollbars used, the range
assigned is 0 to 255, which is the range of the RGB color values. Initial values, or
thumbpad positions, are also assigned at this time.

for(i=0; i<=2; i++)
{

hwndScrl[i] = CreateWindow(“scrollbar”, 0L, CHILD_STYLE | WS_TABSTOP | SBS_HORZ,
0, 0, 0, 0, hwnd, (HMENU) i, hInst, 0L);

hwndTag[i] = CreateWindow(“static”, szColorLabel[i], CHILD_STYLE | SS_CENTER,
0, 0, 0, 0, hwnd, (HMENU)(i+4), hInst, 0L);

hwndVal[i] = CreateWindow(“static”, itoa(CVal[i], szBuff, 10),
CHILD_STYLE | SS_CENTER,
0, 0, 0, 0, hwnd, (HMENU)(i+7), hInst, 0L);

SetScrollRange(hwndScrl[i], SB_CTL, 0, 255, 0);
SetScrollPos(hwndScrl[i], SB_CTL, CVal[i], 0);

}

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 18

http://www.sybex.com

19

Next, in the response to the WM_SIZE message, the scrollbars are positioned
within the application window and sized to fit appropriately.

case WM_SIZE:
cxWnd = LOWORD(lParam);
cyWnd = HIWORD(lParam);

hdc = GetDC(hwnd);
GetTextMetrics(hdc, &tm);
cyChr = tm.tmHeight;
cxChr = tm.tmAveCharWidth;
ReleaseDC(hwnd, hdc);
xOffset = cxChr * 26;

xSize = (cxWnd - xOffset) / xSteps;
ySize = cyWnd / ySteps;
MoveWindow(hwndRect, 0, 0, cxChr * 26, cyWnd, TRUE);
for(i=0; i<=2; i++)
{

MoveWindow(hwndTag[i], cxChr * ((i * 8) + 2),
(INT)(cyChr * 0.5), cxChr * 6, cyChr, TRUE);

MoveWindow(hwndVal[i], cxChr * ((i * 8) + 2),
cyWnd - (INT)(cyChr * 1.5),
cxChr * 6, cyChr, TRUE);

MoveWindow(hwndScrl[i], cxChr * ((i * 8) + 2),
(INT)(cyChr * 1.5), cxChr * 6,
cyWnd - (3 * cyChr), TRUE);

}
SetFocus(hwnd);
break;

Last, in the response to the WM_HSCROLL message in the Color2 demo (with hori-
zontal scrollbars) or the WM_VSCROLL message in the Color3 demo (with vertical
scrollbars), the position of each scrollbar’s thumbpad is adjusted according to
where the scrollbar was clicked or where the thumbpad was dragged.

case WM_VSCROLL:
i = GetWindowLong((HWND) lParam, GWL_ID);
switch(LOWORD(wParam))
{

case SB_PAGEDOWN: CVal[i][nPal] += 15; // no break!
case SB_LINEDOWN: CVal[i][nPal] = MIN(CVal[i][nPal]); break;
case SB_PAGEUP: CVal[i][nPal] -= 15; // no break!
case SB_LINEUP: CVal[i][nPal] = MAX(CVal[i][nPal]); break;

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 19

http://www.sybex.com

20

case SB_TOP: CVal[i][nPal] = 0; break;
case SB_BOTTOM: CVal[i][nPal] = 255; break;
case SB_THUMBPOSITION:
case SB_THUMBTRACK: CVal[i][nPal] = HIWORD(wParam); break;

}
SetScrollPos(hwndScrl[i], SB_CTL, CVal[i][nPal], TRUE);
SetWindowText(hwndVal[i], itoa(CVal[i][nPal], szBuff, 10));
InvalidateRect(hwnd, 0L, TRUE);
break;

The CVal variable array consists of a 3x8 array of byte values containing the
RGB color values for the eight palette entries used.

The real work of displaying the palette begins in response to the WM_PAINT mes-
sage. It starts, as usual, with a BeginPaint instruction. However, before painting
anything, a loop is used to read the present values from the CVal array into the
palette entries indicated by lPal.

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
for(i=0; i<8; i++)
{

lPal->palPalEntry[i].peRed = CVal[0][i];
lPal->palPalEntry[i].peGreen = CVal[1][i];
lPal->palPalEntry[i].peBlue = CVal[2][i];
lPal->palPalEntry[i].peFlags = PC_RESERVED;

}
NewPal = CreatePalette(lPal);
SelectPalette(hdc, NewPal, FALSE);
RealizePalette(hdc);

After initializing the palette values in memory, the CreatePalette function
creates a new logical palette before SelectPalette makes NewPal the current
(active) palette. Optionally, SelectPalette returns a handle to the old (default)
palette.

Last, RealizePalette is called to activate the newly selected palette; that is,
to make this the current drawing palette within the present device-context
handle (hdc).

At this point, the device-context handle is ready for drawing using the new
palette. The next segment of code consists of provisions to draw the eight rectan-
gles composing the palette display.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 20

http://www.sybex.com

21

for(i=0; i<8; i++)
{

j = i % 4;
k = (int) i / 4;
if(i == nPal)

NewPen = CreatePen(PS_SOLID, 5, 0x007F7F7F);
else

NewPen = CreatePen(PS_SOLID, 1, PALETTEINDEX(i));
OldPen = SelectObject(hdc, NewPen);

NewBrush = CreateSolidBrush(PALETTEINDEX(i));
OldBrush = SelectObject(hdc, NewBrush);

Rectangle(hdc, xOffset + j * xSize, k * ySize,
xOffset + (j + 1) * xSize - 1,
(k + 1) * ySize - 1);

Notice that within the loop, a parallel to the CreatePalette/SelectPalette
provisions occurs as the CreatePen/CreateSolidBrush and SelectObject
instructions create and select a pen and brush to draw each rectangle. The original
(default) pen and brush have been saved as the OldPen and OldBrush handles.

SelectObject(hdc, OldBrush);
DeleteObject(NewBrush);
SelectObject(hdc, OldPen);
DeleteObject(NewPen);

After each pen and brush is used, the original pen and brush are reselected and
the new pen and brush deleted.

Once the paint operation is completed, the new palette is deleted.

}
EndPaint(hwnd, &ps);
DeleteObject(NewPal);
break;

Each of these closing provisions is every bit as important as creating the palette,
pens, and brushes in the first place. As stressed in Supplement 12, Windows can
support only a finite number of handles to logical devices, so you must release
handles when you no longer need them.

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 21

http://www.sybex.com

22

As a final provision, the new palette is deleted before the WM_PAINT message
response concludes. The memory allocated for the palette structure and the
pointer lPal is not released, however, and remains available for further use.
This memory will be needed the next time the window is updated. All that has
been lost is a temporary palette, a temporary pen, and a temporary brush. The
originals have been restored, leaving the Windows system in the proper condi-
tion for other applications or for other actions by the present application.

WARNING Remember, restoring the original condition is not just good manners—it’s essen-
tial! If these handles are not released when they are no longer needed—immedi-
ately after use—and the originals restored, not only can the current application fail
suddenly, but Windows itself can be left in a very hazardous state. If you wish to
experiment, simply comment out the restoration provisions (but be sure to save
your work before trying this).

There is one more element of cleanup required. This last bit is only necessary
when the application exits and is handled in response to the WM_DESTROY message:

case WM_DESTROY:
LocalFree(lPal);
PostQuitMessage(0);
break;

The WM_DESTROY message is an application’s opportunity for a final cleanup
before exiting. In previous examples, it has responded simply by posting a quit
message to notify any child processes of an impending exit (a standard default
provision even when there are no child processes). In this case, however, this
is the appropriate point in time to release the memory allocated for the palette
structure, as shown above, before notifying WinMain’s message loop to exit, com-
pleting the shutdown.

All special brushes and pens and the logical palette have already been taken care
of within the paint procedure, and this concludes cleanup for the application.

NOTE The complete listing for the Color3 demo is included on the CD that accompanies
this book, in the Supplement 11 folder.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 22

http://www.sybex.com

23

Custom Brushes and Color Messages
In the Color2 demo, a custom color was demonstrated by changing the back-
ground color. Then, in the Color3 demo, custom colors were demonstrated by
creating solid color brushes.

In both the Color2 and Color3 demos, an interesting addition would be to color
the three scrollbars using the individual red, green, and blue settings. This is
something you can try on your own. However, to facilitate the experiment, a few
comments and suggestions follow.

In Windows 3.1, when a window control was to be redrawn, the parent window
was sent a WM_CTLCOLOR message with the high word in the lParam argument
containing the control type and the low word containing the control element’s ID
value. Both values, of course, were 16 bits.

Under Windows 9x/2000, where control elements are now 32-bit rather than
16-bit, the WM_CTLCOLOR message has been replaced by a series of seven WM_CTL-
COLORxxxxxx messages, which explicitly identify the control element type, as
shown in Table S11.3.

TA B L E S 1 1 . 3 : CTLCOLOR Messages

Message Constant Control Type

WM_CTLCOLORMSGBOX Message box

WM_CTLCOLOREDIT Edit control

WM_CTLCOLORLISTBOX List box control

WM_CTLCOLORBTN Button control

WM_CTLCOLORDLG Dialog box

WM_CTLCOLORSCROLLBAR Scrollbar control

WM_CTLCOLORSTATIC Static control

Accompanying the WM_CTLCOLORxxxxxx message, the wParam argument con-
tains a handle to the display context for the child window (the control to be
repainted). The lParam argument contains the 32-bit child window handle.

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 23

http://www.sybex.com

24

There are a few cautions involved with using these messages. First, when an
application explicitly processes any of these messages, the application must
return a handle to a brush to paint the control background. If this is not done,
the application will probably crash. A fragmentary example follows:

case WM_CTLCOLORxxxxxx:
hCtrlBrush = GetWindowLong(lParam, GWL_ID);
DeleteObject(hCtrlBrush);
RGBColor = RGB(rVal, gVal, bVal);
hCtrlBrush = CreateSolidBrush(RGBColor);
UnrealizeObject(hCtrlBrush);
return(hCtrlBrush); // return the handle to the GDI

Another, less critical precaution, is to make sure that the application aligns the
brush origin with the upper-left corner of the child window. If you don’t accom-
plish this, particularly when you’re using patterned brushes, the control may not
be painted properly.

The MFC OnCtlColor Method

In applications using MFC classes, the corresponding operation is the OnCtl-
Color method, which is called when a child control is about to be drawn. Most
controls send this message to their parent (usually a dialog box) to prepare the
pDC for drawing the control using the correct colors.

In the OnCtlColor method, to change the text color used by a control, call the
SetTextColor member function with the desired red, green, and blue values.
To change the background color of a single-line edit control, the brush handle is
set in both the CTLCOLOR_EDIT and CTLCOLOR_MSGBOX message codes. Also, in
response to the CTLCOLOR_EDIT code, call the CDC::SetBkColor function.

Because the list box in a drop-down combo box is actually a child window
belonging to the combo box but is not a child of the window, the OnCtlColor is
not called for the list box. Thus, to change the color of the drop-down list box,
create a custom CComboBox class that includes an override of OnCtlColor that
checks for CTLCOLOR_LISTBOX in the nCtlColor parameter. In this handler, the
SetBkColor member function must be used to set the background color for
the text.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 24

http://www.sybex.com

25

NOTE The OnCtlColor member function is called by the framework to allow an applica-
tion to handle a Windows message. The parameters passed to the function reflect
the parameters received by the framework when the message was received. If the
base-class implementation of this function is called, the implementation will use
the parameters originally passed with the message and not any of the custom
parameters supplied.

The UnrealizeObject Function

The UnrealizeObject function, called with a handle to an object, is used to reset
the origin of the object. In the preceding example, the object was the handle to a
brush that would be used to paint a control object’s background. When you use
UnrealizeObject, the GDI is directed to reset the origin of an object, such as a
brush, when the object is next selected. The UnrealizeObject function is also
used with logical palettes as an instruction to the GDI to remap the logical pal-
ette to the system palette.

The UnrealizeObject function should not be called while a drawing object,
such as a brush or pen, is currently selected in a device context. However, when
you use this function to remap a palette, the palette specified may be the cur-
rently selected palette in a device context.

The DeleteObject Function

During execution of the Color2 demo, each time a WM_HSCROLL message is received,
the existing background brush is deleted before a new brush (using the new color
settings) is created. But before the application exits, a final call to the DeleteObject
function is needed:

case WM_DESTROY:
DeleteObject((HGDIOBJ) GetClassLong(hwnd, GCL_HBRBACKGROUND));
PostQuitMessage(0);
break;

If we had included provisions to paint the scrollbars or other controls, these
brushes would also need provisions to delete each object before exiting. In earlier
examples, the only objects used were standard objects—brushes, pens, and the
like—and so no special provisions for cleanup were needed. However, custom
brushes, as well as other custom objects, require some memory. If you do not

Custom Colors

2642S11.qxd 11/1/99 10:02 AM Page 25

http://www.sybex.com

26

delete custom objects prior to exit, they will continue to occupy memory (at least,
until the computer is rebooted).

NOTE An advantage in using C++ object classes, such as the MFC classes, is that class
objects are self-destroying and delete themselves when they go out of scope, thus
relieving the programmer of some of the cleanup tasks.

Color Drawing Modes
Under DOS, only one graphics drawing mode is supported. In this mode, each
pixel drawn (including pixels comprising lines and the like) simply overwrites or
replaces the existing pixels using the current drawing color.

In contrast, Windows supports multiple drawing modes, in which the image
is combined with the existing (background) image in a variety of fashions. These
drawing modes are referred to variously as bit-wise Boolean operations or, in Win-
dows, as raster operations.

Windows ROP2 Operations
Since the drawing-mode operations involve two pixel patterns—the object image
and the screen image—they are also referred to as ROP2 operations. In WinGDI.H,
they are identified by R2_xxxx constants. Sixteen ROP2 operations are defined, as
shown in Table S11.4.

TA B L E S 1 1 . 4 : Binary Raster Operations

Mode Constant Operation Resulting Image

R2_NOP Screen Screen not affected (no operation)

R2_NOT ~Screen Existing screen inverted

R2_COPYPEN Pen Pen overwrites screen (default)

R2_NOTCOPYPEN ~Pen Inverted pen overwrites screen

Continued on next page

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:02 AM Page 26

http://www.sybex.com

27

TA B L E S 1 1 . 4 (C O N T I N U E D) : Binary Raster Operations

Mode Constant Operation Resulting Image

R2_MASKPEN Pen & Screen Pen ANDed with screen

R2_MASKNOTPEN ~Pen & Screen Inverted pen ANDed with screen

R2_MASKPENNOT Pen & ~Screen Pen ANDed with inverted screen

R2_NOTMASKPEN ~(Pen & Screen) Pen ANDed with screen, result inverted

R2_MERGEPEN Pen | Screen Pen ORed with screen

R2_MERGENOTPEN ~Pen | Screen Inverted pen ORed with screen

R2_MERGEPENNOT Pen | ~Screen Pen ORed with inverted screen

R2_NOTMERGEPEN ~(Pen | Screen) Pen ORed with screen, result inverted

R2_XORPEN Pen ^ Screen Pen XORed with screen

R2_NOTXORPEN ~(Pen ^ Screen) Pen XORed with screen, result inverted

R2_BLACK 0 Black line (drawing color ignored)

R2_WHITE (R2_LAST) 1 White line (drawing color ignored)

The ROP2 constants listed are ordered according to function, not according to
integer values. Thus, the first ROP2 mode listed, R2_NOP, has no effect on the
screen image at all. However, it is still useful, since the current position (cp) is
updated by LineTo or LineRel operations when using the R2_NOP mode.

The second ROP2 mode, R2_NOT, draws by inverting the existing image (for
example, white becomes black) using bit-wise color inversion. This is useful for
two reasons:

• It ensures absolute screen visibility (with the exception of screen areas that
are approximately 50 percent gray).

• The original screen can be restored by executing a second, identical drawing
operation.

The third ROP2 mode, R2_COPYPEN, is the default drawing mode, correspond-
ing to the conventional DOS drawing mode discussed previously.

Color Drawing Modes

2642S11.qxd 11/1/99 10:02 AM Page 27

http://www.sybex.com

28

The next 11 ROP2 modes produce varying effects, which are more readily
demonstrated by the PenDraw1 demo than by description. The PenDraw demo
is discussed in the next section.

The last two ROP2 modes, R2_BLACK and R2_WHITE, draw lines using complete
black or white, respectively, regardless of the current drawing color.

The PenDraw1 Demo: Demonstrating Drawing Modes
The PenDraw1 demo begins by writing labels along the right side of the screen
before drawing a background. The background drawing starts at the left with five
vertical gray bars, ranging from 0 percent black (white) to 100 percent black; then
continues with six color bars in blue, green, cyan, red, magenta, and yellow.

NOTE The labels at the right in PenDraw1 are intended to extend into the color bars at
the left, further demonstrating how the ROP2_xxxx operations interact with back-
ground images.

Against this background, 16 horizontal lines are drawn using the 16 drawing
modes (in the functional order listed in Table S11.4, not in numerical order), each
employing the active drawing color. A range of eight drawing colors can be
selected from the menu. Figure S11.5 shows an example of the PenDraw1 display.

F I G U R E S 1 1 . 5 :

Binary raster operations

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:03 AM Page 28

http://www.sybex.com

29

Notice in Figure S11.5 and when executing the PenDraw1 demo that the default
white background is not treated in the same fashion as a white background drawn
by a brush or as background to the text display. This is easily observed by select-
ing the yellow drawing color and observing the effects where the lines overlap the
labels: R2_NOT, R2_MASKPEN, and R2_NOTXORPEN. Because the lines drawn
are slightly wider than the text labels, a thin section of background white appears
above and below the labels.

NOTE The PenDraw1 demo is included on the CD in the Supplement 11 folder.

Color to Gray-Scale
Windows has its own provisions for handling most gray-scale conversions for
color programs executing on monochrome video systems. On some plasma and
LCD screens (displays that are virtually an endangered species), even though
the display is technically monochrome, the video system still accepts color-input
information, translating the color data into 16, 32, or 64 gray levels.

In both of these situations, not only is the process of converting colors to gray-
scale handled without the programmer’s participation, but the programmer is
effectively forbidden to intervene (except for offering palette choices that produce
optimum contrast and clarity).

Even though most gray-scale conversions are handled by Windows, some
circumstances do remain where programmers must supply their own conver-
sions (for example, to show how a color image would appear on a monochrome
printer, as explained in Supplement 17). How this is done depends on the circum-
stances, the equipment, and the desired results. There are no hard and fast rules,
nor are there any absolutes.

Following are a few suggestions for producing color to gray-scale conversions.
You can apply these techniques to hard-copy devices, such as printers, as well as
to monitors.

Color to Gray-Scale

2642S11.qxd 11/1/99 10:03 AM Page 29

http://www.sybex.com

30

Gray-Scale Palettes
One popular method of accomplishing gray-scale conversion is to create a palette
of grays suitable for mapping the original color palette. For example, assume a
palette of 16 colors (as per EGA/VGA) ranging from white to black. The obvious
gray scale for correspondence would be a 4×4 pixel (or dot) pattern, as shown in
Figure S11.6.

F I G U R E S 1 1 . 6 :

A 16-bit gray scale

Here, the 16-bit patterns range from solid black to one-sixteenth black. (Reduced
views of the same patterns appear at the lower right.) As an alternative, you could
drop one of the intermittent patterns to adjust the gray scale from solid black to
solid white.

But remember, dithered colors use an 8×8 pattern. Applying similar patterns in
black and white would offer a possible scale of 64 grays, providing a wider range
of grays or a finer texture for hard-copy output.

WARNING Adjacent elements in a 64-level, gray-scale palette can be very difficult to distin-
guish. Select carefully.

The gray-scale patterns suggested in Figure S11.6 form a uniform range that is
about the best that can be accomplished with only 16 elements. Moving up to a
64-bit pattern presents the possibility of matching the gray-scale density to the
intensity (or darkness) of the color being mapped.

To do so, the first step is to understand a few basic principles of color percep-
tion. The human eye does not perceive all colors equally, in terms of absolute
intensity. Of the three primary colors—red, green, and blue—the eye perceives

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:03 AM Page 30

http://www.sybex.com

31

green almost twice as strongly as red. In turn, the eye’s response to blue is
approximately one-third the response to red. Thus, an approximate gray-scale
formula reflecting the perception curve of the human eye is:

Intensity = Red * 0.30 + Green * 0.59 + Blue * 0.11

Thus, since Windows uses the RGB values in the range 0 to 255, the gray equiv-
alent matching a 24-bit color specification becomes:

 R * 0.30 G * 0.59 B * 0.11
W = ---------- + ---------- + ----------

 255 255 255

Using this formula, if the R, G, and B are all at maximum (255), resulting in
white on the screen, the formula yields a value of 100 percent white and 0 per-
cent black.

On the other hand, for a soft blue with an RGB value of 43, 128, 210, here’s the
formula:

 43 * 0.30 128 * 0.59 210 * 0.11
W = ----------- + ------------ + ------------

 255 255 255

and the equivalent proportions of white to black become:

W = (0.050) + (0.296) + (0.090) = 43.6% white (or 56.4% black)

Calculating a gray-scale using an 8x8 pattern, the optimum gray would be
36 black pixels (or dots) to 28 white pixels.

The problem in converting colors to grays is that quite distinct colors can yield
the same gray values simply because they have the same relative intensities. For
this problem, there is no simple cure.

On the other hand, optimizing printing a color image by creating 8×8 blocks
for each pixel in the image is a rather frustrating process, if only in the annoy-
ances involved in creating the 64-dot patterns need. Instead, there is a simpler
approach.

Rather than creating an elaborate system of dots, you can simply convert the
color image to a gray image by mapping the color pixels to their gray-intensity
equivalents. For this, you can use the original formula:

I = (R * 0.30) + (G * 0.59) + (B * 0.11)

Color to Gray-Scale

2642S11.qxd 11/1/99 10:03 AM Page 31

http://www.sybex.com

32

Once I has been calculated, the equivalent gray palette entry would be created as:

RGB(I, I, I)

Or, even easier, begin by creating a palette with gray-scale entries:

for(i=0; i<256; i++)
{

lPal->palPalEntry[i].peRed = i;
lPal->palPalEntry[i].peGreen = i;
lPal->palPalEntry[i].peBlue = i;
lPal->palPalEntry[i].peFlags = PC_RESERVED;

}
NewPal = CreatePalette(lPal);
SelectPalette(hdc, NewPal, FALSE);
RealizePalette(hdc);

This code fragment would create and realize a palette with 256 shades of gray
ranging from black to white. To convert a color image to gray, the only real require-
ment would be to calculate the intensity, using the perception-response formula, for
each pixel and then assign the intensity as the pixel’s palette index.

Once this is done, simply printing to any hard-copy device, which has its own
routines to print gray equivalents, results in a black-and-white image that main-
tains the intensities of the original.

Gray Scales and Plaiding
There is one hazard inherent in using gray scale on black-and-white output
devices: Plaiding can occur when the gray-scale pattern is not matched to the
device resolution. Figure S11.7 shows an example of plaiding deliberately pro-
duced on the screen, showing that video devices are no more immune than print-
ers to this problem. The illustration in Figure S11.7 is an excerpt from Figure S11.6,
enlarged to show the mismatch between the image’s dot pattern and the screen
resolution.

As a simple rule of thumb, to prevent plaiding, make sure that the pixel dimen-
sion of the image (or dot dimension on a printer) after conversion to gray scale is
an even multiple of the dot resolution of the reproduction size.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:03 AM Page 32

http://www.sybex.com

33

F I G U R E S 1 1 . 7 :

Plaiding in gray-scales

For example, assume a 200×150 pixel bitmap is converted to a 16-shade gray
scale. After conversion, the result is 800×600 pixels. To reproduce this image on
a laser printer with a resolution of 300 dpi, without plaiding, the minimum size
would be 2.666 inches wide by 2 inches high. Or, for a larger image, a print size of
8 inches wide by 6 inches high would also fit with the image scaled to 2400×1800
pixels.

Alternatively, if the image used a 64-shade gray scale, the smallest acceptable
image would be 5.333 inches by 4 inches.

How you employ gray scaling is up to you and your requirements. Moreover, if
you are content with the conversion capabilities provided by Windows and many
output devices, you’ll probably have little need for this facility. But if you do, you
now know the basics of color-to-gray-scale conversion.

Gray Scale to Color Conversions
A less common requirement than color to gray scale is converting a gray scale to
color. This process is commonly referred to as false-color conversion. Normally, this
is not an attempt to reproduce a color image from a monochrome source, since
there simply is not enough information for that task to be accomplished automat-
ically. The automatic gray-to-color (false-color) conversion is an attempt to render
an image where the only information is gray to a form where colors are used to
make differences in intensity stand out.

Exotic examples include radio-star maps rendered in full glorious false color, or
topological or meteorological maps, where color enhances readability. In infrared
images, false-color assignments make it possible to print thermographic maps
where temperatures are easily recognized as ranges of color.

Color to Gray-Scale

2642S11.qxd 11/1/99 10:03 AM Page 33

http://www.sybex.com

34

TIP The false-color process can be applied to virtually any type of information. There is
just one thing that you must remember: The color information applied is purely
arbitrary and should be chosen only for ease of recognition, not for artistic whim.
Producing an image in alternating shades of chartreuse and puce may get you into
the Guggenheim, but it’s not a good way to convey information (unless you’re try-
ing to tell the world that you’re color blind).

Implementation of false coloration is simple. Just decide on a color range and
what levels of intensity to depict, and then construct a palette where the intensity
levels (as palette indexes) have the appropriate color values.

Regardless of the number of levels in the original, it is often a good idea to
restrict the false-color palette to a reasonably small number of hues, such as 20
or 32, rather than implementing a large palette of 256 shades. You should experi-
ment to find the base palette size.

This chapter has covered all you need to know about handling color in your
Windows 9x/2000 applications. We have discussed color palettes, custom colors,
and gray-scale conversions. In the next chapter, we’ll talk about the Windows
drawing tools.

Supplement 11 • Colors and Color Palettes

2642S11.qxd 11/1/99 10:03 AM Page 34

http://www.sybex.com

S U P P L E M E N T
T W E L V E

Drawing Tools

� Line styles

� Hatch-fill styles

� Shape-drawing functions

� Business graphs: bar and pie charts

S12

2642S12.qxd 11/1/99 10:04 AM Page 1

http://www.sybex.com

2

While folk wisdom maintains that a picture has value equal to a thousand
words, this same adage has been most honored in dispute, disagreement, sarcastic
rebuttal, and jest—not to mention outright subversion by pundits found every-
where from Madison Avenue to the halls of government. Still, the real truth might
better be that, more often than not, a picture is preferred to a thousand words.

And, in like fashion, a graphic is often preferred to a thousand words. This
preference, despite rumors concerning the literary acuity of CEOs and other
board members, is not so much founded in any relative values but is based on
the simple fact that a good graphic can convey information in a form more read-
ily understood than many thousands of words or columns of figures.

One popular example of this principal is found in data-generated graphics in
which images are created as visual analogs of numerical or scalar data, giving
clarity to the relative relationships between elements at the expense of absolute
magnitudes. Graphics of this type may be composed of simple shapes, such as
those used in pie or bar graphs; may be less structured forms, such as with flow
charts, schematics, or other diagrams; or may be composed of bitmapped images,
as with the iconized buttons and controls found in any of a variety of Windows
applications.

The topic of this chapter is creating graphics images using the drawing tools
supplied by the Windows API functions. We will look at the various tools avail-
able, and then see how these tools work in applications.

Graphics Tools and Shapes
In Supplement 11, we discussed Windows color palettes and line-drawing modes.
Those are the simplest of the tools supplied. Windows also offers a wide variety
of other drawing features, including a selection of standard shapes, varying line
styles, and a selection of fill styles for solid shapes.

Standard Shapes
Windows provides a series of functions to draw standard shapes, either as solids
or outlines. Table S12.1 lists the functions and the shapes that they draw.

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 2

http://www.sybex.com

3

TA B L E S 1 2 . 1 : Standard Shapes

Function Shape

Arc Open curve, either elliptical or circular

Chord Arc with the endpoints connected by a chord

Ellipse Closed curve, either elliptical or circular

Pie Arc with endpoints connected to center

Polygon Any multisided figure

Polypolygon Multiple multisided figures

Rectangle Rectangle with square corners

RoundRect Rectangle with rounded corners

NOTE The PenDraw2 demo illustrates five of these eight shape functions, and the Pen-
Draw3 demo demonstrates two others. Both of these demos are discussed later in
this chapter.

You’ll see how to use these functions to create shapes presently. However,
before these shapes can be drawn, a drawing pen is also required.

Logical Pens
Windows defines a selection of logical pens, each with a predefined pattern. The
default pen if no other selection has been made is a solid, black line with a width
of one logical unit. The defined pen (line) styles are listed in Table S12.2.

TA B L E S 1 2 . 2 : Pen (Line) Styles

Style ID Line Type

PS_SOLID ———————––—

PS_DASH — — — — — —

PS_DOT · · · · · · · · · · · ·

Graphics Tools and Shapes

Continued on next page

2642S12.qxd 11/1/99 10:04 AM Page 3

http://www.sybex.com

4

TA B L E S 1 2 . 2 C O N T I N U E D : Pen (Line) Styles

Style ID Line Type

PS_DASHDOT — · — · — · — · — ·

PS_DASH2DOT — · · — · · — · · — · ·

PS_NULL No line (blank)

PS_INSIDEFRAME If the pen width is greater than one logical unit, ensures that the line is drawn
inside the closed shape. Valid with all primitive shapes except polygons.

NOTE The PS_INSIDEFRAME style may be used in combination with any of the other line
styles listed in Table S12.2. If the pen color does not match an available RGB
palette color, the pen is drawn with a dithered (logical) color. If the pen width is
one, PS_INSIDEFRAME is treated as PS_SOLID.

The initial step in selecting a new logical pen is to call the CreatePen function
with specifications for the style, width, and drawing color.

hPen = CreatePen(nPenStyle, nPenWidth, RGBColor);
hOldPen = SelectObject(hdc, hPen);

After creating a new pen, the SelectObject function is called to associate the
new pen with the device context, returning a handle to the previous pen.

Optionally, you could create a selection of pens—for example, as an array of
handles—and then select each pen as needed (using SelectObject). But remem-
ber, each pen (or brush) you create consumes some memory. When the object is
no longer needed, dispose of it via the DeleteObject function.

DeleteObject(hPen);

One caution: A created pen (or brush) should not be deleted while associated
with a device context (unless, of course, the device context is about to be closed).
Instead, before deleting a pen (or brush), the SelectObject function can be
called to restore the original pen. For example, instead of simply calling Delete-
Object with the handle of the pen to delete, use a compound statement:

DeleteObject(SelectObject(hdc, hOldPen));

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 4

http://www.sybex.com

5

Logical Brushes
Windows also defines a selection of logical brushes, each with a color specifica-
tion and a predefined pattern. (Width, of course, does not apply.) Windows 98
provides a variety of hatched brushes (identifying constants are defined in
WinGDI.H), which correspond to hatch-fill patterns supported by Windows 3.x.
The hatch-fill styles are listed in Table S12.3.

TA B L E S 1 2 . 3 : Hatch-Fill Patterns

Hatch Fill Style Pattern

HS_HORIZONTAL Horizontal lines

HS_VERTICAL Vertical lines

HS_FDIAGONAL Forward diagonal (forward slash marks, approximately 45°)

HS_BDIAGONAL Backward diagonal (backslash marks, approximately 45°)

HS_CROSS Horizontal cross-hatch

HS_DIAGCROSS Diagonal cross-hatch

A logical hatch-fill brush is created in the same fashion as a logical pen, as
explained in the previous section, and is subject to the same restrictions.

hBrush = CreateBrush(nHatchStyle, RGBColor);
hOldBrush = SelectObject(hdc, hBrush);

As with any other object, when you no longer need the brush, you should
dispose of it.

DeleteObject(SelectObject(hdc, hOldBrush));

Guarding Against Squandered Memory
Unfortunately, you are allowed to create a brush or a pen without the formalities of saving
a handle to either the new brush or pen, or the old brush or pen; that is, without making
any provisions to delete the new object or restore the original. The following code will
function without reporting any errors or warnings:

SelectObject(hdc, CreatePen(nPen-IDM_SOLID, 1, cColor));
SelectObject(hdc, CreateHatchBrush(nHatch-IDM_HORIZ, cColor));

Graphics Tools and Shapes

Continued on next page

2642S12.qxd 11/1/99 10:04 AM Page 5

http://www.sybex.com

6

Each CreateHatchBrush and CreatePen call allocates memory for the brush or pen,
which is not disposed of until either Windows is exited or the system is rebooted. The bot-
tom line is simple: There are no guards against this type of error except for your awareness
and careful programming practices.

The PenDraw2 Demo: Drawing Shapes
The PenDraw2 demo illustrates five of the eight shape-drawing functions: Rec-
tangle, Ellipse, Arc, Chord, and Pie. This program permits you to select
shape, line, and fill styles from a menu. The menu also offers a choice of colors,
with a palette of eight shades predefined as RGB color values. Figure S12.1 shows
an example of a shape drawn in PenDraw2.

F I G U R E S 1 2 . 1 :
The PenDraw2 demo

NOTE The PenDraw2 demo is included on the CD in the Supplement 12 folder.

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 6

http://www.sybex.com

7

Drawing Rectangles and Squares

The Rectangle function requires only four parameters to specify the coordinates
(in device-context terms) for the upper-left and lower-right corners.

Rectangle(hdc, xUL, yUL, xLR, yLR);

A square is simply a special case of a rectangle and can be provided as:

Rectangle(hdc, xUL, yUL,
xUL + min(xLR-xUL, yLR-yUL),
yUL + min(yLR-yUL, xLR-xUL));

The demo draws the rectangle or square using the current color, pen, line style,
and fill style.

The RoundRect function (which is not demonstrated in PenDraw2) operates in
the same fashion as the Rectangle function, except for the addition of two param-
eters specifying the x and y radii for the ellipsis forming the corners.

RoundRect(hdc, xUL, yUL, xLR, yLR, xRadius, yRadius);

In general, xRadius and yRadius are equal, making the corner arc circular, but
this is not a fixed requirement; the corner ellipse can be elongated in either dimen-
sion. Figure S12.2 shows three corner examples: the left with xRadius > yRadius,
the middle with xRadius = yRadius, and the right with xRadius < yRadius.

F I G U R E S 1 2 . 2 :

Three corners using
RoundRect

Drawing Ellipses

In Windows, an ellipse is defined in terms of a theoretical rectangle bounding
the ellipse. Like the Rectangle function, the Ellipse function is called with

Graphics Tools and Shapes

2642S12.qxd 11/1/99 10:04 AM Page 7

http://www.sybex.com

8

four coordinates identifying the upper-left and lower-right corners of a bound-
ing rectangle.

Ellipse(hdc, xUL, yUL, xLR, yLR);

NOTE Mathematically and in more sophisticated applications, ellipses are described in
terms of x and y radii and loci coordinates. In comparison, the C/C++ version of an
ellipse is rather restricted in orientation.

Also, just as a square is a special case of a rectangle, a circle is simply a special
case of an ellipse, in which the x and y radii are equal.

Ellipse(hdc, xUL, yUL,
xUL + min(xLR - xUL, yLR - yUL),
yUL + min(yLR - yUL, xLR - xUL));

Figure S12.3 shows three elliptical shapes together with their bounding rectan-
gles. (These bounding rectangles are not drawn by the Ellipse function but are
provided simply as illustration.)

F I G U R E S 1 2 . 3 :

Three ellipses

Drawing Arcs, Chords, and Pies

Like the Ellipse function, the Arc, Chord, and Pie functions also use coordi-
nate parameters to define a bounding rectangle that determines the shape of the
arc, chord, or pie. But in addition to the basic curve, each of these functions also
requires two pairs of additional coordinate parameters to identify the beginning

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 8

http://www.sybex.com

9

arc position (xp1,yp1) and the ending arc position (xp2,yp2). The three functions
are called as:

Arc(hdc, xUL, yUL, xLR, yLR, xStart, yStart, xEnd, yEnd);
Chord(hdc, xUL, yUL, xLR, yLR, xStart, yStart, xEnd, yEnd);
Pie(hdc, xUL, yUL, xLR, yLR, xStart, yStart, xEnd, yEnd);

Figure S12.4 shows arc, chord, and pie shapes, together with the bounding rec-
tangles and the radii determining the begin and end angles.

F I G U R E S 1 2 . 4 :

Arc, chord, and pie shapes

NOTE Under DOS, using C++ functions, an arc (or associated shape) is drawn by defining
a center point, the radius (or x and y radii) and defining the beginning and end-
points as angles, with the 0° angle located horizontally to the right. In Windows,
the shape of the arc segment, like the ellipse, is defined by a bounding rectangle.

The beginning and endpoints of arcs are defined, not by angles, but by points
defining radii intersecting the arc. As shown in Figure S12.5, the arc is drawn
counterclockwise, beginning at an angle defined by the xStart,yStart coordi-
nates and ending at the angle defined by the xEnd,yEnd point.

The xStart,yStart point identifies a radius drawn from the center of the arc
through the point specified and does not necessarily lie on the arc itself (though
it may). The arc begins at the point where the radius and arc intersect. Or, if you
prefer, the xStart,yStart point, together with the centerpoint, defines an angle
for the arc starting point. In like fashion, the xEnd,yEnd point defines a radius set-
ting the endpoint of the arc.

Graphics Tools and Shapes

2642S12.qxd 11/1/99 10:04 AM Page 9

http://www.sybex.com

10

F I G U R E S 1 2 . 5 :

Defining arc angles

For the Arc function, the process ends with determining the starting point and
endpoint of the arc. For an arc, the resulting shape is not closed and no fill brush
is used, although the arc itself is drawn using the current line style and color.

For the Chord function, the endpoints of the arc are connected with a straight
line to complete a closed figure, which is filled in the PenDraw2 demo using the
selected hatch brush.

For the Pie function, the endpoints of the arc are also connected, but instead of
a line between the two arc ends, two lines connect the endpoints with the center-
point of the arc to create a pie slice. Again, the closed figure is filled using the
selected hatch brush.

NOTE Remember, for the Chord and Pie functions, the points used are the endpoints of
the arc, not the points passed as arguments to define the radii, which, in turn,
determine the arc endpoints. Later, in the PieChart demo, we’ll use conventional
trigonometry to calculate points that do lie on the arc (which is easier than calcu-
lating points that do not). Just keep in mind that these determining points are not
required to lie on the arc itself.

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 10

http://www.sybex.com

11

Creating Business Graphs
One useful application for the shape-drawing functions is to create business
graphs, such as bar graphs and pie charts. Although business graphs may not
be your favorite subjects for programming (and certainly aren’t mine), business
applications are often required to produce such graphs. So, setting aside personal
preferences, I’ve developed the BarGraph and PieGraph demos to illustrate how
the Rectangle and Pie functions can be used with data sets.

Both the BarGraph and PieGraph demos use data arrays that are declared as sta-
tic information within the program source code. In actual applications, of course,
business graphs would use data either read directly from an external source or
data calculated from external sources. For demo purposes, defining a data format
and creating external source files is unnecessary for the actual objective. Do note,
however, that both demos use the same data sets.

The BarGraph Demo: Building a Bar Graph
The BarGraph demo displays four years’ worth of data broken down into eight
categories. Colors identify data by years, and the bars are grouped by category.

TIP Optionally, you could also use varying fill patterns to identify category groups or to
replace the year colors (for example, for monochrome displays).

In this application, there are advantages to using separate horizontal and vertical
scale ranges and, therefore, it uses the MM_ANISOTROPIC mode. Another advantage
of using anisotropic mapping is that it allows you to change the vertical scaling to
accommodate variations in the maximum values that need to be graphed.

Once the mode is selected, the origin point is set near the lower-left corner of
the window but slightly up and to the right, leaving room to accommodate labels
below each group of bars. Also, after the client window is painted, the original
(entry) mapping mode, which was saved when the MM_ANISOTROPIC mode was
set, is restored, as are the original pen and brush sets. Figure S12.6 illustrates a
sample bar graph.

Creating Business Graphs

2642S12.qxd 11/1/99 10:04 AM Page 11

http://www.sybex.com

12

F I G U R E S 1 2 . 6 :

A sample bar graph

The principal elements specific to the BarGraph demo are found in the
WM_PAINT response.

for(j=0; j<4; j++)
{

TextOut(hdc, (j + 1) * 70 + 20, -2 * MaxVal - 20,
szBuff, sprintf(szBuff, “%d”, Years[j]));

hPen = CreatePen(PS_SOLID, 1, lpColor[j+1]);
SelectObject(hdc, hPen);
hBrush = CreateSolidBrush(lpColor[j+1]);
SelectObject(hdc, hBrush);
Rectangle(hdc, (j+1)*70, 2*MaxVal+20, (j+1)*70+15, 2*MaxVal+5);

The outer loop executes for the four years, writing a label to identify each year
before creating a small block showing the color used for the year.

The next step executes a loop through the data elements for the year, creating a
rectangle for each category using the brush and color created for the current year.

for(i=0; i<8; i++)
Rectangle(hdc, j * 15 + 1 + i * 70, 0, (j + 1) * 15 + i * 70,

2 * Accounts[j][i]);
DeleteObject(hPen);
DeleteObject(hBrush);

}

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 12

http://www.sybex.com

13

Last, the pen and brush objects are deleted because they are no longer neces-
sary. However, compare the present usage to the methods suggested previously
where the original pen and brush handles were saved and restored before the
new pen and brush objects were deleted.

NOTE The BarGraph demo is included on the CD that accompanies this book, in the
Supplement 12 folder.

The PieGraph Demo: Building a Pie Graph
The PieGraph demo displays data for one year at a time in a pie-section format.
Of course, pie graphs are generally expected to be round rather than elliptical.
Instead of the MM_ANISOTROPIC mode, the PieGraph demo uses the MM_ISOTROPIC
mode with the viewport origin in the center of the client window—a format
selected for the convenience of the application.

Also, because C/C++ lack a predefined value for pi, PI2 is defined as a macro
with the value 2.0 * 3.14159, providing a means to convert values to angles (in
radians) before using the derived angles to calculate points on the circumference.

The data used for the pie graph is an array of individual values. To draw the
pie graph, these values must be converted into proportions of a total (proportions
of the total circumference) before they can be converted to angles. Therefore, a
loop is used to determine the total for the year:

TotVal[0] = 0;
for(i=0; i<8; i++)

TotVal[i+1] = TotVal[i] + Accounts[Year][i];

Once this has been done, the array TotVal contains the values necessary to cal-
culate an angle for each category (in radians).

Before each pie section is calculated, a new pen and colored brush are created.

for(i=0; i<8; i++)
{

...
hPen = CreatePen(PS_SOLID, 1, lpColor[i]);
SelectObject(hdc, hPen);
hBrush = CreateSolidBrush(lpColor[i]);
SelectObject(hdc, hBrush);
...

Creating Business Graphs

2642S12.qxd 11/1/99 10:04 AM Page 13

http://www.sybex.com

14

Pie(hdc, -Radius, Radius, Radius, -Radius,
(int) (Radius * cos(PI2 * TotVal[i] / TotVal[8])),
(int) (Radius * sin(PI2 * TotVal[i] / TotVal[8])),
(int) (Radius * cos(PI2 * TotVal[i+1] / TotVal[8])),
(int) (Radius * sin(PI2 * TotVal[i+1] / TotVal[8])));

Because the mapping mode is isotropic and the viewport origin is at the center
of the window, the rectangle bounding the pie section (or, more accurately,
bounding the circle from which the pie section will be cut) requires no more cal-
culation than the simple coordinate point pairs: -Radius, Radius and Radius,
-Radius. However, we do need to calculate the point coordinates for the starting
and ending points for each pie section. For simplicity, these are calculated as
points on the circumference of the pie.

And that’s it. Each pie section is created as a fraction of the total circle using a
different pen color for the outline and a brush with the corresponding color for
the interior. The results are shown in Figure S12.7.

NOTE The PieGraph demo is included on the CD that accompanies this book, in the Sup-
plement 12 folder.

F I G U R E S 1 2 . 7 :

A sample pie graph

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 14

http://www.sybex.com

15

Drawing Polygon Figures
Like the Rectangle, Ellipse, and Pie functions, the Polygon and PolyPolygon
functions draw bordered, closed, and filled shapes, but with a few differences.
The first and principal difference is that the shapes can be more complex than a
simple rectangle, although they are limited to straight lines; unlike the shapes
drawn with the Ellipse or Pie function, the shapes drawn by either of the poly-
gon functions cannot include curves.

The second difference is how you specify the data describing the shape. Where
the Rectangle function expects a fixed set of coordinates, the Polygon function is
more flexible and accepts a pointer to an array of coordinates (an array of POINT)
with a further parameter specifying the number of points in the array.

Polygon(hdc, lpPoints, nPoints);

Each coordinate pair in the array of POINT identifies one vertex in a polygon.
The Polygon function connects successive points with straight lines, finishing by
connecting the last vertex to the first if necessary to close the shape. (For open
shapes, use the PolyLine function.)

Similarly, the PolyPolygon function creates a series of closed polygons and is
called as:

PolyPolygon(hdc, lpPoints, lpPolyCounts, nPolygons);

Again, the lpPoints parameter is a pointer to an array of POINT, identifying
coordinates for each vertex in the polygon. The next parameter, lpPolyCounts,
is a pointer to an array of integers, which defines the number of points in each
polygon. The final argument, nPolygons, identifies the number of polygons (or,
equally, the number of entries in lpPolyCounts).

Unlike the Polygon function, the PolyPolygon vertex arrays must be explicitly
closed. The final vertex in each polygon must have the same coordinates as the
first vertex, because PolyPolygon does not automatically close each figure. Also,
using either function, individual polygons may overlap, but this is not required.

Polygon Fill Modes
The shapes we’ve used so far are simple, closed outlines with contiguous interi-
ors, which did not require special handling to fill. However, the interior areas of
polygon shapes may or may not be contiguous; if the area is not contiguous, it
requires a different approach for filling.

Drawing Polygon Figures

2642S12.qxd 11/1/99 10:04 AM Page 15

http://www.sybex.com

16

For this reason, two different fill modes are supported (the names describe the
algorithms used to determine which points lie inside the figure and which lie
outside):

Alternate This fill mode considers regions as interior only when they
are reached by crossing an odd number of boundaries (1, 3, 5, and so on).
Regions reached by crossing an even number of boundaries are not filled.

Winding This fill mode, although slower to calculate, has the advan-
tage of filling all interior (bounded) regions irrespective of the number of
boundaries crossed.

The PenDraw3 Demo: Creating Polygons
The PenDraw3 demo demonstrates the Polygon function by drawing two poly-
gons: a five-pointed star and a seven-pointed star, as shown in Figure S12.8. In
the figure, each shape has been filled using the alternate algorithm. The winding
algorithm is available as a menu selection and will fill all interior spaces.

F I G U R E S 1 2 . 8 :

Polygons and fill modes

The demo draws the shapes after calculating the appropriate vertexes, using
simple trigonometric functions similar to those employed in the PieGraph demo.
For the five-pointed star, the vertex coordinates are calculated in the order 0, 2, 4,
1, 3, using the formula j=(j+2)%5. (If these points were calculated in successive
order, the result would be a simple pentagon with a contiguous interior.)

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 16

http://www.sybex.com

17

for(i=j=0; i<5; i++, j=(j+2)%5) // 5 points
{

pt[0][i].x = (int)(sin(j*PI2/5) * 100) - 110;
pt[0][i].y = (int)(cos(j*PI2/5) * 100);

}

For the seven-pointed star, the formula j=(j+3)%7 serves the same purpose,
with the points calculated in the order 0, 3, 6, 2, 6, 1, 4.

for(i=j=0; i<7; i++, j=(j+3)%7) // 7 points
{

pt[1][i].x = (int)(sin(j*PI2/7) * 100) + 110;
pt[1][i].y = (int)(cos(j*PI2/7) * 100);

}

The constants used—+110 and –110—offset each star to the right of center and
the left of center.

Alternatively, to use the PolyPolygon function, instead of calculating the points
for the two shapes, you could use a static array of points:

static POINT pts[] =
{ -110, 100, -52, -80, -205, 30, -15, 30,

-168, -80, -110, 100, 110, 100, 153, -90,
32, 63, 207, -22, 13, -22, 188, 62,
67, -90, 110, 100);

static int poly[] = { 6, 8 };

The array pts provides the vertexes for the two shapes, and the array poly
declares the number of points in each polygon. With this data available, the
PolyPolygon function could be called as:

PolyPolygon(hdc, &pt, &poly,
sizeof(poly) / sizeof(POINT));

Remember, where the Polygon function for our example requires only five and
seven vertex coordinate points, respectively, the PolyPolygon function requires
six and eight vertex coordinate pairs. The final coordinate points in each set are
the same as the first, thus closing each figure.

NOTE The PenDraw3 demo is included on the CD in the Supplement 12 folder.

Drawing Polygon Figures

2642S12.qxd 11/1/99 10:04 AM Page 17

http://www.sybex.com

18

We’ve covered four graphics elements in this chapter: pen styles, fill patterns,
drawing functions for regular shapes, and drawing functions for irregular shapes.
These are only a few of the graphics functions supported by Windows, and they
are also the simplest. More sophisticated graphics functions are demonstrated in the
following chapters, beginning in Supplement 13 with bitmap graphics operations.

Supplement 12 • Drawing Tools

2642S12.qxd 11/1/99 10:04 AM Page 18

http://www.sybex.com

S U P P L E M E N T
T H I R T E E N

Brushes and Bitmaps

� Data-array defined bitmaps

� Resource bitmaps

� Old-style bitmaps

� Device-independent bitmaps

S13

2642S13.qxd 11/1/99 10:07 AM Page 1

http://www.sybex.com

2

In Supplement 12, you learned how to use a variety of solid and hatched (or
patterned) brushes to fill shapes. In this chapter, you’ll learn that any pattern
(bitmap), within certain limitations, can be used as a brush pattern.

Of course, fill patterns are only one of many uses for bitmaps. Because bit-
mapped brushes provide both a beginning point and one of the simplest uses,
we’ll start our coverage of bitmaps with this subject. Later chapters will cover
more complex uses of bitmaps.

Bitmaps Defined as Arrays
While obvious to the point of being trite, the first step in creating a bitmapped
brush is creating the bitmap itself. For a brush, this will be a (minimum) 8×8
bitmap image.

You could define a bitmap image within the source code as an array of BYTE, for
example:

static BYTE wBricks[] = { 0xFF, 0x08, 0x08, 0x08, 0xFF, 0x80, 0x80, 0x80 };

This array defines an 8×8 bit pattern similar to the BRICKS image shown in
Figure S13.1, which appears a bit later in the chapter, and could be used to pro-
duce a pattern brush similar to the one shown in Figure S13.4 (left half of pentag-
onal star), also presented later in the chapter. However, notice that the preceding
statement has been qualified using the condition “similar.” Even though the pat-
terns are similar, the array wBricks describes a monochrome pattern, while the
brush patterns used in the two illustrations are polychrome.

Array to Bitmap Conversion
In order to use wBricks as a brush pattern, the next step is to call the API function
CreateBitmap to convert the value array into a (memory) bitmap image:

hBitmap = CreateBitmap(8, 8, 1, 1, (LPSTR) wBricks);

The CreateBitmap function creates a device-dependent bitmap (in memory)
for monochrome images. The parameters work as follows:

• The first two parameters (8, 8) are the width and height specifications.

• The third parameter (1) sets the number of color planes in the bitmap (each
plane has nWidth * nHeight/nBitCount bits).

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 2

http://www.sybex.com

3

• The fourth parameter (1) sets the number of color bits per display pixel.
(Remember that wBricks describes a monochrome image pattern, which is
compatible with all video systems.)

• The final parameter is a pointer to the array of bytes, which defines the initial
bitmap bits. If this argument is NULL, the bitmap will remain uninitialized.

After you create a device-dependent bitmap, the next step is to create a brush
using the pattern.

A Brush with the Bitmap Pattern
To create a brush using the bitmap pattern, you use the bitmap handle with a call
to CreatePatternBrush:

hBrush = CreatePatternBrush(hBitmap);
SelectObject(hdc, hBrush);

After calling SelectObject, the new pattern becomes the current brush object.

Don’t forget that you should delete both the bitmap and the brush when they
are no longer needed:

DeleteObject(hBrush);
DeleteObject(hBitmap);

Disadvantages of Bitmaps Defined as Arrays
Even though bitmaps can be defined as arrays of data within the program source
code, this approach has three principal drawbacks:

• With the exception of monochrome images, the bitmaps created using
CreateBitmap are device-dependent. Thus a bitmap defined for VGA,
using four color planes with one color bit per pixel (per plane), will not be
compatible with an SVGA system that uses a quite different arrangement.

• Although monochrome bitmaps can be written out as hex data, color
bitmaps in the same format are a real pain to create.

• Static data arrays within the compiled application waste memory during
execution—and do so quite unnecessarily. Granted, under Windows 9x/2000,
this may be less of a problem than with previous Windows versions, but
why bother when there are simpler ways?

Bitmaps Defined as Arrays

2642S13.qxd 11/1/99 10:07 AM Page 3

http://www.sybex.com

4

Resource Bitmaps
Resource bitmaps offer an alternative to bitmaps defined as arrays, without the
problems. This approach has the following advantages:

• Using a bitmap editor (or any other paint program) makes creating bitmaps
convenient, regardless of whether they are monochrome or color.

• The bitmaps created are device-independent, whether in monochrome or
color, and can be displayed on any video system. Windows supplies any
necessary conversions.

• Since the bitmap data is contained in the resource section and loaded into
active memory only as needed, the data does not waste memory when not
required.

For our example of how to use resource bitmaps, we’ll use four bitmap images.
The first three are for the stripes, diamond, and bricks brushes, as shown in Fig-
ure S13.1. The fourth is the chains bitmap, shown in Figure S13.2.

F I G U R E S 1 3 . 1 :

Three 8×8 bitmap patterns

The three bitmaps in Figure S13.1 are acceptable for use as brushes under Win-
dows 98 (as well as under Windows 95/NT/2000). However, under Windows 98
(or Windows 95 or Windows 3.1), if the bitmap pattern is larger than 8 pixels
square, only the upper-left corner (8×8) of the image is used. Under
Windows NT/2000, there is no limit on bitmap brush size.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 4

http://www.sybex.com

5

F I G U R E S 1 3 . 2 :

A 24×24 bitmap pattern

This discrepancy between Windows NT/2000 and Windows 98 can be seen in
Figure S13.3, where the same bitmap (24×24) results in quite different brush pat-
terns. When you execute the PenDraw4 demo (discussed next) under Windows
98 and select the chains bitmap, the resulting brush fill pattern will look like the
one shown on the left side of Figure S13.3. When the application is executed
under Windows NT/2000 and the chains bitmap is selected, the resulting fill
pattern uses the entire bitmap image, as shown on the right side in Figure S13.3.

F I G U R E S 1 3 . 3 :

The chains bitmap under
Windows 98 and NT/2000

After the bitmap images have been created, either as part of a .RES resource file
or as external .BMP images referenced by a .RC resource script, the linker combines
these with the rest of the resources as a part of the .EXE executable. Remember that
the resource section of the application is not loaded on execution. Instead, elements
from the resource section are loaded on demand as required and discarded when
no longer required.

Resource Bitmaps

Image in
Windows NT/2000

Image in
Windows 98

2642S13.qxd 11/1/99 10:07 AM Page 5

http://www.sybex.com

6

The PenDraw4 Demo:
Using Resource Bitmaps for Brushes

The PenDraw4 demo uses four bitmaps to create four patterned brushes, which
are selected from the menu. The brushes are used to draw the same five- and
seven-pointed stars that the PenDraw3 demo creates, as described in Supplement 12.

Besides the resource bitmaps used for the brushes, there is one other important
difference between the PenDraw3 and PenDraw4 demos. In PenDraw3, the two fig-
ures are created from calculated data using the Polygon function. In PenDraw4, a
single static array of coordinates is used together with the PolyPolygon function,
which was discussed but not demonstrated in Supplement 12.

The PenDraw4 demo uses only one brush at a time. However, for illustration
purposes, Figure S13.4 shows a composite of the four bitmapped brushes.

F I G U R E S 1 3 . 4 :

Four patterned brushes for
the PenDraw4 program

NOTE The PenDraw4 demo is included on the CD in the Supplement 13 folder.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 6

http://www.sybex.com

7

Loading the Bitmaps

Using these bitmaps as resources begins with a LoadBitmap instruction. In the
PenDraw4 demo, this is accomplished in the exported WndProc procedure in
response to a WM_CREATE message:

static HBITMAP hBitMap[4];
...

switch(msg)
{

case WM_CREATE:
hBitMap[0] = LoadBitmap(hInst, “BRICKS”);
hBitMap[1] = LoadBitmap(hInst, “CHAINS”);
hBitMap[2] = LoadBitmap(hInst, “DIAMOND”);
hBitMap[3] = LoadBitmap(hInst, “STRIPES”);
break;

The four bitmap images are loaded using a static array of handles (hBitMap[]).
The LoadBitmap function loads the bitmap resource specified (by the lpBitmap-
Name argument) from the resource section of the executable or, optionally, from
some other module specified by the hInst parameter.

TIP Alternatively, you could load individual bitmaps as they are selected, load them
globally from the WinMain procedure, or, in another application, load them when
some subprocedure is initiated.

Creating and Selecting the Brush

After loading a bitmap, the next steps are to create the brush and select the brush
as the active object. In PenDraw4, these tasks are executed in response to the
WM_PAINT message.

hBrush = CreatePatternBrush(hBitMap[nBitMap]);
SelectObject(hdc, hBrush);

When the brush is no longer needed, DeleteObject is called to cancel the
brush handle.

DeleteObject(hBrush);

Resource Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 7

http://www.sybex.com

8

Note that DeleteObject is not called for the bitmaps themselves. This is
because these bitmaps are resource elements, and they were not created using
the CreateBitmap function.

Predefined Bitmaps
In addition to loading resource bitmaps, the LoadBitmap function can access the Win-
dows predefined bitmaps. For this usage, the hInst parameter is specified as NULL,
and the lpBitmapName parameter must be one of the values shown in Table S13.1.

TA B L E S 1 3 . 1 : Predefined Windows Bitmaps

Win3.x, Win98/95 or WinNT Win98/95 or WinNT* pre-Win3.0**

OBM_CLOSE OBM_BTNCORNERS OBM_OLD_CLOSE

OBM_UPARROW OBM_UPARROWD OBM_UPARROWI OBM_OLD_UPARROW

OBM_DNARROW OBM_DNARROWD OBM_DNARROWI OBM_OLD_DNARROW

OBM_RGARROW OBM_RGARROWD OBM_RGARROWI OBM_OLD_RGARROW

OBM_LFARROW OBM_LFARROWD OBM_LFARROWI OBM_OLD_LFARROW

OBM_REDUCE OBM_REDUCED OBM_OLD_REDUCE

OBM_ZOOM OBM_ZOOMD OBM_OLD_ZOOM

OBM_RESTORE OBM_RESTORED OBM_OLD_RESTORE

OBM_MNARROW OBM_COMBO

OBM_BTSIZE OBM_CHECK

OBM_SIZE OBM_CHECKBOXES

*These four bitmaps are not supported by Windows 3.x.

**All bitmap names with the form OBM_OLD_xxxxx represent bitmaps used by Windows versions prior to version 3.0.

NOTE For an application to use any of the OBM_xxxxxx constants, the constant
OEMRESOURCE must be defined before including the Windows.H header.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 8

http://www.sybex.com

9

Alternatively, you can use the MAKEINTRESOURCE macro to create a DWORD value
with the bitmap ID as the low-order word and the high-order word NULL. Then
you can use the resulting value in place of the lpBitmapName argument, serving
the same purpose.

The predefined bitmaps listed are used in a variety of Windows resources. For
example, the OBM_UPARROW bitmap should be familiar from Windows 3.x, where
it appears in the upper-right corner of every application’s frame as the Maximize
button. For Windows 2000 (and Windows 9x), the OBM_ZOOM bitmap is the current
equivalent. The OBM_CHECK bitmap, as its name might suggest, is a simple check-
mark. The OBM_SIZE bitmap provides the diagonal marker that appears in the
lower-right corner of a resizable window.

If you would like a simple way to experiment with these, modify the PenDraw4
demo as follows:

case WM_CREATE:
hBitMap[0] = LoadBitmap(NULL, MAKEINTRESOURCE(OBM_UPARROW));
hBitMap[1] = LoadBitmap(NULL, MAKEINTRESOURCE(OBM_ZOOM));
hBitMap[2] = LoadBitmap(NULL, MAKEINTRESOURCE(OBM_CHECK));
hBitMap[3] = LoadBitmap(NULL, MAKEINTRESOURCE(OBM_SIZE));
break;

Remember that the DeleteObject function must be called to delete each
bitmap handle returned by the LoadBitmap function.

NOTE Because the PenDraw4 demo uses these bitmap resources as brush patterns,
under Windows 98, only the upper-left 8×8 pixels of the bitmap become the
brush pattern. If you run the demo under Windows NT/2000, the bitmap patterns
will be fully visible.

Old-Style Bitmaps
The old-style bitmaps originated with Windows 1.0. These bitmaps have the prin-
cipal drawback of being device-dependent, which means that old-style bitmaps
are structured to match specific display formats and cannot be conveniently
transported to other device contexts.

Old-Style Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 9

http://www.sybex.com

10

Functions for Old-Style Bitmaps
Windows provides four principal functions for creating old-style bitmaps:

hBitmap = CreateBitmap(cwWidth, cyHeight, nPlanes, nBitsPixel, lpBits);
hBitmap = CreateBitmapIndirect(&bitmap);
hBitmap = CreateCompatibleBitmap(hdc, cxWidth, cyHeight);
hBitmap = CreateDiscardableBitmap(hdc, cxWidth, cyHeight);

The cxWidth and cyHeight arguments define the width and height, in pixels,
of the bitmap. As described earlier in the chapter, the CreateBitmap function
accepts specifications for the number of color planes and number of bits per pixel,
matching the image to the device-context requirements.

As alternatives, in the CreateCompatibleBitmap and CreateDiscardable-
Bitmap functions, the device-context handle (hdc) permits Windows to access
the number of color planes and the color bits per pixel directly. However, both of
these functions create uninitialized bitmap images and require the SetBitmap-
Bits function to include image information (see the following discussion of the
SetBitmapBits and GetBitmapBits functions).

The CreateBitmapIndirect function uses the structure BITMAP to define the
bitmap data, including size, colors, and image, in a fashion paralleling the origi-
nal CreateBitmap function. The BITMAP structure is defined in WinGDI.H as:

typedef struct tagBITMAP
{ LONG bmType; // should be 0

LONG bmWidth; // width in pixels
LONG bmHeight; // height in pixels
LONG bmWidthBytes; // width in bytes (must be even)
WORD bmPlanes; // number of color planes
WORD bmBitsPixel; // color bits per pixel
LPVOID bmBits; // pointer to image data

} BITMAP, *PBITMAP, NEAR *NPBITMAP, FAR *LPBITMAP;

Bitmap Image Data
The SetBitmapBits function is used to copy a char (or byte) array into an exist-
ing bitmap, usually an unititialized bitmap.

SetBitmapBits(hBitmap, dwCount, lpBits);

As an alternative, the image data can be retrieved from an existing bitmap via
the GetBitmapBits function.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 10

http://www.sybex.com

11

GetBitmapBits(hBitmap, dwCount, lpBits);

The GetBitmapBits function copies dwCount bits from hBitmap to the array
addressed as lpBits. If the size information is not known, you can calculate
dwCount by first calling the GetObject function to retrieve the bitmap struc-
ture data:

GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bm);

And, once the data is available in bm, dwCount can be calculated as:

dwCount = (DWORD)(bm.bmWidthBytes * bm.bmHeight * bm.bmPlanes);

Finally, because these bitmaps are GDI objects, you should use the Delete-
Object function to cancel the object when it is no longer needed.

DeleteObject(hBitmap);

Old-Style Monochrome Bitmaps
Earlier in the chapter, we discussed using the wBricks array to create an 8×8
monochrome brush from an array of byte values. For bitmaps not intended sim-
ply for use with brushes, the 8×8 limitation does not apply, even though each scan
line of the bitmap must be an even number of bytes in width (some multiple of
16 bits with zeros used to right-pad the data).

For example, a simple monochrome bitmap consisting of a 9×9 square with two
diagonals crossing in the center could be defined as:

1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 = FFh 80h
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 = C1h 80h
1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 = A2h 80h
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 = 94h 80h
1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 = 88h 80h
1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 = 94h 80h
1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 = A2h 80h
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 = C1h 80h
1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 = FFh 80h

To make the bitmap 9×9, each scan line requires 7 pad bits (zeros), for a total
width of 16 bits or 2 bytes.

To implement this particular image, the corresponding BITMAP structure could
be defined as:

static BITMAP bm = { 0, 9, 9, 2, 1, 1 };

Old-Style Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 11

http://www.sybex.com

12

The corresponding image data would be stored in an array of bytes as:

static BYTE CheckBox[] =
{ 0xFF, 0x80, 0xC1, 0x80, 0xA2, 0x80, 0x94, 0x80, 0x88,

0x80, 0x94, 0x80, 0xA2, 0x80, 0xC1, 0x80, 0xFF, 0x80 };

NOTE For old-style bitmaps, the images are coded from the top down. In the new DIB
format, images are coded from the bottom up. Of course, because the present
example is symmetrical, direction becomes irrelevant.

The simplest method of creating a bitmap from the sample data is to use the
CreateBitmap function.

hBitmap = CreateBitmap(9, 9, 1, 1, CheckBox);

Alternatively, you could use the CreateBitmapIndirect function.

bm.bmBits = (LPSTR) CheckBox;
hBitmap = CreateBitmapIndirect(&bm);

However, there is a potential bug in this format. Because Windows expects to
be able to move data around as necessary, the address returned for CheckBox
may or may not remain valid after it has been assigned. This potential error can
be avoided by first creating the bitmap and then transferring the bitmap image
to the display (device) context.

hBitmap = CreateBitmapIndirect(&bm);
SetBitmapBits(hBitmap, (DWORD) sizeof(CheckBox), CheckBox);

Old-Style Color Bitmaps
For color bitmaps, using Windows old-style is both extremely device-dependent
as well as quite a bit more complex than for monochrome bitmaps. To illustrate
why, following is the 16-color equivalent of CheckBox, using only two colors: dark
green and white (assuming a standard palette). The bitmap image is calculated as:

F F F F F F F F F 0 0 0 = FFh FFh FFh FFh F0h 00h
F F 2 2 2 2 2 F F 0 0 0 = FFh 22h 22h 2Fh F0h 00h
F 2 F 2 2 2 F 2 F 0 0 0 = F2h F2h 22h F2h F0h 00h
F 2 2 F 2 F 2 2 F 0 0 0 = F2h 2Fh 2Fh 22h F0h 00h
F 2 2 2 F 2 2 2 F 0 0 0 = F2h 22h F2h 22h F0h 00h
F 2 2 F 2 F 2 2 F 0 0 0 = F2h 2Fh 2Fh 22h F0h 00h

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 12

http://www.sybex.com

13

F 2 F 2 2 2 F 2 F 0 0 0 = F2h F2h 22h F2h F0h 00h
F F 2 2 2 2 2 F F 0 0 0 = FFh 22h 22h 2Fh F0h 00h
F F F F F F F F F 0 0 0 = FFh FFh FFh FFh F0h 00h

Again, each scan line is padded to a WORD width by adding three zero (black)
pixels at the end of each scan line.

For an EGA/VGA device, this bitmap can be interpreted as a marked checkbox
in white against a dark-green background, with each four bits representing the
color of one pixel. However, if the display device is, for example, an IBM8514/A,
where 8 bits are interpreted as the color value for each pixel, not only will the col-
ors be different, but the image will also be quite different. Or, what about the case
where a true-color video is used as the display context and 24 bits of color data are
expected for each pixel? The solution is found in the newer device-independent
bitmap format described in the next section.

Device-Independent Bitmaps
The device-independent bitmap (DIB) format originally appeared as an extension
of the OS/2 Presentation Manager bitmap format (and, perhaps, the only good
element to come out of OS/2 version 1.1). This format presents an RGB color
table defining all the colors used in the bitmap. Most (if not all) bitmap editors or
paint programs automatically create DIB image files. However, because device-
independent bitmaps have become so common, the .DIB extension is rarely used;
files bearing the .BMP extension are almost always device-independent images,
not device-dependent.

The DIB File Format
The DIB image file format consists of several sections: the DIB header, the BITMAP-
INFOHEADER, the color table, and the image data. Each of these is described in the
following sections.

The DIB File Header

The DIB bitmap file begins with a file header that provides information about
the structure of the file itself. The DIB header (defined in WinGDI.H) consists of
a 14-byte record, shown in Table S13.2.

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 13

http://www.sybex.com

14

TA B L E S 1 3 . 2 : DIB Header Format

Field Size Sample Data Value Description

bfType WORD 42 4D “BM” Bitmap ID (constant, all DIBs)

bfSize DWORD 96 00 00 00 96h Total file size (example only)

reserved1 WORD 00 00 0h Set to 0

reserved2 WORD 00 00 0h Set to 0

bfOffBits DWORD 76 00 00 00 76h Offset to bitmap image from first of file
(example only)

NOTE Remember that all data is arranged in lsb...msb order. For example, the data
bytes 96 00 00 00 represent the value 00000096h, not 96000000h. While this
ordering may appear strange, it is simply a firmly entrenched artifact that origi-
nated in the early days of computing when the lsb...msb (least significant/most
significant) order made it faster to process values by storing them in the stack in
this fashion. This reverse order made it possible to extract values—one byte at a
time as required by 8-bit CPUs—from the stack in the order in which they would
be processed.

The BITMAPINFOHEADER Structure

The file header information is followed by a second data header defined by the
BITMAPINFOHEADER structure. This data is shown in Table S13.3.

TA B L E S 1 3 . 3 : BITMAPINFOHEADER Data

Field Size Sample Value Description

BiSize DWORD 28 00 00 00 28h Size of BITMAPINFOHEADER

BiWidth LONG 08 00 00 00 8h Bitmap pixel width

BiHeight LONG 08 00 00 00 8h Bitmap pixel height

BiPlanes WORD 01 00 1h Color planes (always 1)

BiBitCount WORD 04 00 4h Color bits per pixel (1, 4, 8, 24)

Continued on next page

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 14

http://www.sybex.com

15

TA B L E S 1 3 . 3 (C O N T I N U E D) : BITMAPINFOHEADER Data

Field Size Sample Value Description

BiCompression DWORD 00 00 00 00 0h Compression scheme (0=none)

BiSizeImage DWORD 20 00 00 00 20h Bitmap image size (used only if compres-
sion is set)

BiXPelsPerMeter LONG 00 00 00 00 0h Horizontal resolution (pixels/meter)

BiYPelsPerMeter LONG 00 00 00 00 0h Vertical resolution (pixels/meter)

BiDlrUsed DWORD 00 00 00 00 0h Number of colors used in image

BiClrImportant DWORD 00 00 00 00 0h Number of important colors (archaic and
rarely, if ever, used today)

The BITMAPINFOHEADER contains quite a bit of data about the DIB image. How-
ever, as you can see from the example, often several of these fields are left blank,
particularly biXPelsPerMeter and biYPelsPerMeter (the horizontal and vertical
resolution). The final two fields, biDlrUsed and biClrImportant (the number of
colors used and the number of important colors), are often used for additional
information about custom colors or multiple color palettes; zero values indicate
defaults.

Notice also that color is represented only as multiple color bits per pixel, regard-
less of how a specific device might expect to handle color. Thus, color will be spec-
ified as one bit per pixel for monochrome, four for 16-color bitmaps, eight for
256-color bitmaps, or twenty-four for true-color images (16 million colors).

Also, if data compression is used, the data-compression scheme is identified
together with the actual size of the uncompressed bitmap (in bytes), thus provid-
ing a redundancy check for use in decompressing the image. Four compression
schemes are defined, as shown in Table S13.4.

TA B L E S 1 3 . 4 : Compression Formats and Identifiers

Constant Value Comment

BI_RGB 0 No compression used

BI_RLE8 1 8-bit run-length encoding format

BI_RLE4 2 4-bit run-length encoding format

BI_TOPDOWN 4

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 15

http://www.sybex.com

16

NOTE Despite provisions for identifying compression formats, many bitmap editors (or
paint programs) do not support (or recognize) compressed image data.

The DIB BITMAP Color Table

The DIB color table follows the BITMAPINFOHEADER. This table consists of a series
of RGBQUAD structures. These are read, in order, with the first byte blue, the second
green, the third red, and the fourth byte in each quad set to zero.

The biBitCount field identifies the number of RGBQUAD structures. For a mono-
chrome image, this field is set as 1 color bit. Two RGBQUAD records are required to
identify the foreground and background colors. If biBitCount is 4, 16 RGBQUAD
color identifiers are needed. If biBitCount is 8, 256 RGBQUAD values are required.

If the biClrUsed field is nonzero, this value (instead of the biBitCount field)
identifies the number of RGBQUAD structures in the color table.

Table S13.5 shows the default color values for a VGA 16-color palette expressed
as RGBQUAD values.

TA B L E S 1 3 . 5 : A Sample Color Palette for a DIB Bitmap

Palette RGBQUAD Color Value Approximate
Entry Data R G B Color

0 00 00 00 00 00 00 00 Black

1 00 00 80 00 80 00 00 Dark Red

2 00 80 00 00 00 80 00 Dark Green

3 00 80 80 00 80 80 00 Gold Green

4 80 00 00 00 00 00 80 Dark Blue

5 80 00 80 00 80 00 80 Purple

6 80 80 00 00 00 80 80 Blue Gray

7 80 80 80 00 80 80 80 Dark Gray

8 C0 C0 C0 00 C0 C0 C0 Light Gray

Continued on next page

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 16

http://www.sybex.com

17

TA B L E S 1 3 . 5 (C O N T I N U E D) : A Sample Color Palette for a DIB Bitmap

Palette RGBQUAD Color Value Approximate
Entry Data R G B Color

9 00 00 FF 00 FF 00 00 Light Red

10 00 FF 00 00 00 FF 00 Light Green

11 00 FF FF 00 FF FF 00 Yellow

12 FF 00 00 00 FF 00 00 Light Blue

13 FF 00 FF 00 FF 00 FF Magenta

14 FF FF 00 00 00 FF FF Cyan

15 FF FF FF 00 FF FF FF White

The DIB BITMAP Image

The final section of the bitmap file is the bitmap image itself. The arrangement
of this section partly depends on the number of colors (as reported by the biBit-
Count field), but it is also affected by two other factors, which are constant for all
bitmaps:

• Each row of the bitmap image must be a multiple of four bytes (a DWORD
multiple). Each data row begins with the leftmost pixel of the scan line
and is right-padded with zeros, as necessary.

• Unlike the original bitmap format (Windows 1.0 or 2.0), the bitmap format
for DIBs begins with the bottom scan line in the image, not the top.

For a monochrome bitmap—one color bit per pixel—the bit image begins with
the most-significant bit of the first byte in each row. If the bit value is zero (0), the
first RGBQUAD color value is used (background). If the bit value is one (1), the sec-
ond RGBQUAD value is used (foreground).

For a monochrome bitmap, the BRICKS bitmap data would be coded as:

80 80 80 FF 08 08 08 FF

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 17

http://www.sybex.com

18

This data would break down, as a pixel image, as:

1 1 1 1 1 1 1 1 // FFh
0 0 0 0 1 0 0 0 // 08h
0 0 0 0 1 0 0 0 // 08h
0 0 0 0 1 0 0 0 // 08h
1 1 1 1 1 1 1 1 // FFh
1 0 0 0 0 0 0 0 // 80h
1 0 0 0 0 0 0 0 // 80h
1 0 0 0 0 0 0 0 // 80h

Again, as a reminder, notice that the image data, from left to right, appears in
the image from bottom to top, not top down.

For a 16-color bitmap, as used in the Bricks.BMP file with four bits per pixel,
each pixel is represented by a four-bit value that serves as an index to the palette
entries in the table (as shown in Table S13.5). The color bitmap image appears as:

81 11 11 11 81 11 11 11 81 11 11 11 88 88 88 88
11 11 81 11 11 11 81 11 11 11 81 11 88 88 88 88

The color image data is decoded as:

8 8 8 8 8 8 8 8 // 88h 88h 88h 88h
1 1 1 1 8 1 1 1 // 11h 11h 81h 11h
1 1 1 1 8 1 1 1 // 11h 11h 81h 11h
1 1 1 1 8 1 1 1 // 11h 11h 81h 11h
8 8 8 8 8 8 8 8 // 88h 88h 88h 88h
8 1 1 1 1 1 1 1 // 81h 11h 11h 11h
8 1 1 1 1 1 1 1 // 81h 11h 11h 11h
8 1 1 1 1 1 1 1 // 81h 11h 11h 11h

In a similar fashion, for a 256-color bitmap, each pixel is represented by a byte
value indexing the 256 entries in the color table.

For a 24-bit-per-pixel color bitmap, with the biClrUsed field specified as zero,
instead of a color table with 16 million entries (predicating a minimum file size of
64MB just for the color table), no color table is used. Each pixel is represented by a
three-byte RGBColor value. If biClrUsed is not zero, a color table is included and
pixels are indexed to the table.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 18

http://www.sybex.com

19

OS/2 Bitmaps
OS/2 version 1.1 and later uses a bitmap structure that is very similar to Windows, with
only two principal structure changes. First, instead of a BITMAPINFOHEADER structure,
OS/2 uses a BITMAPCOREHEADER structure, which is defined in WinGDI.H as:

typedef struct tagBITMAPCOREHEADER
{ DWORD bcSize; // offset to color table

WORD bcWidth;
WORD bcHeight;
WORD bcPlanes;
WORD bcBitCount;

} BITMAPCOREHEADER, FAR *LPBITMAPCOREHEADER,
*PBITMAPCOREHEADER;

Second, instead of a color table consisting of RGBQUAD records, the OS/2 bitmaps use
RGBTRIPLE records.

Perhaps the simplest method of identifying the two formats is to check the two byte val-
ues in the image file for the value BM, identifying Windows bitmap format. If these two
bytes do not identify Windows format, the OS/2 structure can be confirmed by testing
the first DWORD value in BITMAPIMAGEHEADER/BITMAPCOREHEADER structures to deter-
mine the structure size.

Bitmap Dimension Functions
Windows supplies two bitmap dimension functions: SetBitmapDimensionEx
and GetBitmapDimensionEx. However, despite what the names might initially
suggest, these two functions do not deal with the pixel dimensions of a bitmap
because, once an image is created, the pixel size of the image cannot be changed.
Instead, this function pair provides a means of setting or retrieving bitmap
dimensions in logical units (the MM_LOMETRIC mode is assumed). These dimen-
sions are not used by the GDI for screen display but may be used by other appli-
cations to scale bitmaps that have been exchanged using the clipboard, DDE, or
other channels.

The SetBitmapDimensionEx and GetBitmapDimensionEx functions are called as:

SetBitmapDimensionEx(hBitmap, xUnits, yUnits, lpSize);
GetBitmapDimensionEx(hBitmap, lpSize);

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 19

http://www.sybex.com

20

The lpSize variable returns with the previous size data (when new dimensions
are set) or the current size data (when the get function is called). The SIZE data
structure is defined in WinDef.H as:

typedef struct tagSIZE
{ LONG cx;

LONG cy; } SIZE, *PSIZE, *LPSIZE;

NOTE In general, the two bitmap size fields (biXPelsPerMeter and biYPelsPer-
Meter) are set to zero except when needed by special circumstances, such as
when you are providing additional rendering (sizing) information for hard-copy
devices. These two values are rarely employed and may be overridden (or ignored)
even when set.

Device-Independent Bitmap Creation
Ideally, it would be nice if Windows supplied a simple function to create (or load)
and display a bitmap, requiring only a device context, bitmap name, and posi-
tion. This function might look something like this:

DrawBitmap(hwnd, lpBitmapName, xPos, yPos);

However, even though bitmaps are both important and integral to Windows,
no such basic display function is provided. Instead, Windows provides a series
of bitmap primitives that can be used to construct a number of the missing high-
level bitmap handlers, beginning with a function titled, appropriately, Draw-
Bitmap.

The following sections describe the basic steps required to create and display a
device-independent bitmap.

Step One: Providing a Global Instance Handle

Up to this point, all the program examples have included one provision which,
thus far, has not been used, needed, explained, or (most likely) even noticed. The
provision in reference, which does have more than a few uses, begins with the
global handle declaration:

HANDLE hInst;

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 20

http://www.sybex.com

21

In the WinMain procedure, the hInst variable is assigned as:

hInst = hInstance;

Without this provision in the PenDraw4 demo, for example, the LoadBitmap
instructions in response to the WM_CREATE message in WndProc would need to
have been executed in the WinMain procedure using the hInstance handle.

Although there are other ways to retrieve an application’s instance handle, the
global instance handle costs a mere 16 bits of overhead memory, so why bother
with false economies?

Once the global hInst instance handle is available, the LoadBitmap function
can be implemented within our theoretical DrawBitmap function without invok-
ing special provisions to retrieve the application’s instance handle.

Step Two: Defining DrawBitmap

The basic form of DrawBitmap is called with four parameters: the window handle
(hwnd), the bitmap name (lpName), and x and y coordinates to position the bit-
map. And, as a result, DrawBitmap displays a bitmap at the coordinates specified.
Ergo, the function declaration begins as:

BOOL DrawBitmap(HWND hwnd, LPSTR lpName,
int xPos, int yPos)

{

NOTE DrawBitmap is also provided with the capability to return a Boolean result, report-
ing success or failure. But as with most C functions, the returned value may be
used or ignored, as desired.

A few local variables will be needed, and they are declared as:

HDC hdc, hdcMem;
BITMAP bm;
HBITMAP hBitmap;

Declarations finished, the function is now ready to load a bitmap from the
resource segment of the .EXE program. Notice, however, that this is also the
point where the global hInst handle becomes essential.

if(!(hBitmap = LoadBitmap(hInst, lpName)))
return(FALSE);

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 21

http://www.sybex.com

22

Of course, if the load operation fails, DrawBitmap will immediately terminate,
returning FALSE. This is the only error check provided.

If successful, once the bitmap is loaded, the next step is to establish a suitable
device context to display the bitmap.

Step Three: Creating the Device Context

Unlike in DOS, where once a graphics mode has been established anything can be
written (drawn) on the screen, under Windows, a bitmap image cannot be drawn
(or copied) directly to the display-device context. Instead, before the bitmap image
can be drawn, a separate device context is created. This is created as a memory
device context (with no immediate connection to an output device), using the hdc-
Mem variable declared local to the DisplayBitmap function.

However, the application’s actual output device context cannot simply be
ignored. Therefore, the next order of business is to retrieve a handle to the
application’s device context.

hdc = GetDC(hwnd);
hdcMem = CreateCompatibleDC(hdc);

The trick here is that a reference device context (hdc) is needed before the
CreateCompatibleDC function can be called to create the memory context
(hdcMem). The memory device context is simply a block of memory that acts
as an analog for the real display context. For a bitmap, the memory device con-
text can be used to prepare an image in memory before transferring the image
to the display context (to the screen or another output device).

When the memory device context is created, the GDI automatically assigns a
“display surface” sized for a 1×1 monochrome image; that is, a one-pixel mono-
chrome bitmap. But, while this is hardly sufficient space for any real operations,
this deficiency can be corrected immediately by calling SelectObject to use the
bitmap that was loaded a moment before as the active object for the device context:

SelectObject(hdcMem, hBitmap);

SetMapMode(hdcMem, GetMapMode(hdc));

After selecting the bitmap into the memory context, SetMapMode assigns the
mapping mode used by the active device context (hdc) to the memory device con-
text (hdcMem), thus making the memory image of the bitmap a suitable match for
the output device.

At this point, the bitmap has become the active object for the memory device
context, while the memory device has the same mapping mode as the actual

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 22

http://www.sybex.com

23

device context. But the job isn’t done yet; there is still quite a bit of information
that needs to be transferred from the source bitmap (hBitmap) to the local bitmap
record (bm).

Step Four: Transferring Bitmap Definition Data

The GetObject function can be used to transfer most of the information needed
to fill the buffer (bm) to define the logical object (the selected bitmap). For a bit-
map, GetObject returns the width, height, and color format information. This
function is called as:

GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bm);

But still, the actual image data has not been retrieved yet. This operation
comes next.

Step Five: Retrieving Image Data

The BitBlt (short for bit-block-transfer and pronounced “bit-blit”), PutBlt, and
StretchBlt functions compose Windows pixel-manipulation power operations.
However, while each of these function names implies a block-transfer operation,
there’s more involved here than simply copying bits from one memory location
to another. Instead, there is also a choice of raster operations, as will be explained
in a moment.

While not the simplest of the three operations, the BitBlt operation is, for the
present purpose, the operation of choice. It is used to complete the task of writing
the bitmap image to the client window:

BitBlt(hdc, xPos, yPos, bm.bmWidth, bm.bmHeigth,
hdcMem, 0, 0, SRCCOPY);

The BitBlt operation moves the bitmap image from the source device (hdcMem)
to the destination device (hdc), with the xSrc and ySrc parameters (0,0 in the
example) specifying the origin (in the source device context) of the bitmap to be
transferred.

The xPos, yPos, bm.bmWidth, and bm.bmHeight parameters provide the origin
and rectangle size (in the destination device context) to be filled by the bitmap
image. Unlike many previous operations, instead of RECT rectangular coordi-
nates, the origin point is specified in device-context coordinates. The width and
height are passed as logical units, not as device coordinates. As demonstrated,
these last two values are taken directly from the bitmap data. Optionally, you can
assign the width and height values on some other basis.

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 23

http://www.sybex.com

24

The final parameter is a ternary raster-operation code specifying how the GDI
will combine colors between a current brush (pattern), the source image, and
any existing destination image. For the DrawBitmap operation, the SRCCOPY ROP
copies the source bitmap image directly to the destination (hdc).

The 15 principal ternary raster operations are defined in WinGDI.H and listed
in Table S13.6.

TA B L E S 1 3 . 6 : Raster Operation Codes (Ternary Raster Ops)

Constant Operation Description

SRCCOPY Dest = Source Source copied to destination

SRCPAINT Dest = Source | Dest Destination ORed with source

SRCAND Dest = Source & Dest Source ANDed with destination

SRCINVERT Dest = Source ^ Dest Source XORed with destination

SRCERASE Dest = Source & !Dest Destination inverted before ANDing with source

NOTSRCCOPY Dest = !Source Inverted source copied to destination

NOTSRCERASE Dest = !Source & !Dest Inverted destination ANDed with inverted source

MERGECOPY Dest = Source & Patt Source ANDed with pattern

MERGEPAINT Dest = !Source | Dest Destination ORed with inverted source

PATCOPY Dest = Patt Pattern copied to destination

PATPAINT Dest = Patt | !Source | Dest Pattern ORed with inverted source, result ORed with
destination

PATINVERT Dest = Patt ^ Dest Pattern XORed with destination

DSTINVERT Dest = !Dest Destination inverted

BLACKNESS Dest = Black (0) Destination turned black

WHITENESS Dest = White (1) Destination turned white

Raster operations involving monochrome images are fairly straightforward:
Bits will be either on or off according to the logical operations selected. For color
bitmaps, however, the GDI executes separate operations for each color plane or
for each set of color bits, depending on the device-context organization. The best

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 24

http://www.sybex.com

25

way to understand these operations is to experiment, preferably with relatively
simple bitmaps and patterns.

Step 6: Cleaning Up

Calling the BitBlt API completes the task of drawing the bitmap, but before
DrawBitmap returns, some cleanup is still required. This is accomplished as:

ReleaseDC(hwnd, hdc);
DeleteDC(hdcMem);
DeleteObject(hBitmap);
return(TRUE);

Initially, three local memory allocations were made, returning three handles as
hdc, hdcMem, and hBitmap. The first of these is simply released rather than being
deleted; that is, the hdc handle is released, but the application device context is
not deleted. The local memory device context, however, is deleted entirely, deal-
locating all memory involved, not just the memory handle. The locally allocated
and loaded bitmap is treated in a similar fashion.

After this cleanup is completed, the DrawBitmap function is free to return,
reporting success.

The DrawBitmap function is demonstrated in the PenDraw5 demo, which is
discussed after we cover one more bitmap operation.

Stretching Bitmaps
Drawing a bitmap using a one-for-one transfer is probably the most common
operation. However, another bitmap operation you may find useful is provided
by StretchBlt, which permits stretching or distorting a bitmap to fit any rectan-
gular space desired. This function moves a bitmap from a source rectangle to a
destination rectangle, stretching or compressing the bitmap as appropriate to fit
the destination dimensions.

Calling the StretchBlt operation is similar to calling BitBlt, but with two
differences:

BitBlt(hdc, xPos, yPos, xWidth, yHeight,
hdcMem, xOrg, yOrg, dwRasterOp);

StretchBlt(hdc, xPos, yPos, xWidth, yHeight,
hdcMem, xOrg, yOrg, xWidthOut, yHeightOut, dwRasterOp);

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 25

http://www.sybex.com

26

The StretchBlt operation is called with two additional parameters specifying
the destination width and height; for the BitBlt operation, source and destination
width and height are the same. It is precisely this difference that instructs Stretch-
Blt to stretch or compress the bitmap during transfer. Since xWidth/xWidthOut
and yWidth/yWidthOut are independent, the bitmap could be stretched along one
axis and compressed along another.

As with the BitBlt operation, the dwRasterOp specification controls how the
source and destination (if any) bitmaps are combined during the StretchBlt
operation.

StretchBlt operations are not necessarily limited to resizing images. You can
also use StretchBlt to create a mirror image of a bitmap (laterally or vertically),
by specifying different the signs for the source and destination width or the
source and destination height. For example, if the destination width is negative
and the source width is positive, StretchBlt creates a mirror image rotated
about the vertical axis (swapping left for right). Likewise, for a difference in sign
of the height parameters, the image is mirrored along the horizontal axis. If both
pairs are opposite in sign, the image is simply rotated 180° but without mirror
inversion.

Because the StretchBlt operation resizes a bitmap image, one additional
factor controls how data is added or subtracted to create the new image: the
StretchBlt mode. You set the active mode by calling the SetStretchBltMode
function as:

SetStretchBltMode(hdc, nStretchMode);

Four StretchBlt modes are defined in WinGDI.H, as described in Table S13.7.

TA B L E S 1 3 . 7 : StretchBlt Modes

Constant Value Description

BLACKONWHITE 1 Eliminated lines are ANDed with retained lines; preserves black pixels
at expense of white

WHITEONBLACK 2 Eliminated lines are ORed with retained lines; preserves white pixels
at expense of black

COLORONCOLOR 3 Eliminated lines are deleted without preserving information

HALFTONE 4 Color information in destination approximates source pixels, averag-
ing information from source to destination

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 26

http://www.sybex.com

27

The BLACKONWHITE and WHITEONBLACK modes are typically used to preserve
the background or foreground pixels in monochrome bitmaps, respectively. The
COLORONCOLOR and HALFTONE modes are typically used to preserve color in color
bitmaps, with the principal difference between the two being that the HALFTONE
mode produces higher-image quality but does so at the expense of execution time.

The PenDraw5 Demo:
Displaying Device-Independent Bitmaps

The PenDraw5 demo demonstrates the DrawBitmap function described earlier,
as well as the BitBlt and StretchBlt API functions. PenDraw5 requires five
bitmaps, four 16×16 images, and one 40×70 image, as illustrated in Figure S13.5.

F I G U R E S 1 3 . 5 :

Five bitmap images used in
the PenDraw5 demo

TIP You can use bitmaps other than the ones shown in Figure S13.5 if you prefer. Just
be sure to make the appropriate changes in the source and resource codes to
identify the desired bitmaps.

Initially, the DrawBitmap function draws all five bitmaps, placing the four
smaller bitmaps at the corners of the client window and the larger bitmap in the

Device-Independent Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 27

http://www.sybex.com

28

center. For each of these, the bitmap is drawn with the upper-left corner of the
image at the coordinates specified. Several variations are also used in the demo:

• DrawCenBitmap centers each image (horizontally and vertically) on the
coordinate points.

• LineGraph uses a brief array of data to position a series of smaller bitmaps
in a form appropriate for a simple line graph.

• StretchBitmap uses the StretchBlt API to resize a bitmap to fit a specified
rectangle.

• StretchBitmap2Client stretches a bitmap to fill the entire client window.

• MoveBitmap tracks mouse movement by repositioning a bitmap each time
the left mouse button is pressed or, if the button is held down, by track-
ing the mouse cursor directly. (Bitmaps are not well-suited to this last opera-
tional format, MoveBitmap; this is intended more as a demonstration than
as a serious example of practical programming.)

NOTE The PenDraw5 demo is included on the CD that accompanies this book, in the
Supplement 13 folder.

This chapter described two programs that demonstrate bitmap operations: The
PenDraw4 demo shows how to use resource bitmaps to create brushes, and the
PenDraw5 demo demonstrates how to work with device-independent bitmaps.
Another demo, SVGA_Win, is also included on the CD to demonstrate several
types of color palettes.

Bitmap operations are very powerful tools with a wide variety of uses, extend-
ing well beyond the few examples employed in this chapter. For example, bitmaps
can be copied from the screen itself, generated or modified off-screen, saved as
external files, or cut and pasted from one window to another.

Supplement 13 • Brushes and Bitmaps

2642S13.qxd 11/1/99 10:07 AM Page 28

http://www.sybex.com

S U P P L E M E N T
F O U R T E E N

Typefaces and Styles

� Text-output features

� Windows’ default fonts

� Logical font selection

� Font characteristics

� Font sizing and mapping modes

S14

2642S14.qxd 11/1/99 10:08 AM Page 1

http://www.sybex.com

2

Windows 2000 provides a selection of typefaces and the capabilities to vary
these typefaces with considerable convenience and flexibility. You’ve seen exam-
ples of text operations in previous chapters. Now it’s time to examine a few of
the advanced text features, including font selection, font sizing, text justification,
character weighting, and other stylistic changes.

Before we get to fonts and typefaces, we’ll take a closer look at some of Windows’
text-output features. There are a few that we haven’t covered yet, and they deserve
some introduction or further explanation.

Text-Output Features
Thus far in the book, most text-display examples have used one of these two gen-
eral formats:

TextOut(hdc, xPos, yPos, lpStr, nCount);

TextOut(hdc, xPos, yPos, szBuff, wsprintf(szBuff, ...));

The second format employs the wsprintf function both to return the character
count required by the TextOut API function and to create a formatted string. But,
regardless of the format used, previous examples have, almost exclusively, used
the default, flush-left text alignment.

Using the MFC classes, a third format for text display has appeared as:

pDC->TextOut(xPos, yPos, csBuff);

In this format, no handle to the device context is passed because the TextOut
function is a member of the CDC class. Likewise, because the CString instance con-
tains the string-length information, this value is also not required as an argument.

All of these text formats provide only the simplest form of text display, without
alignment, font selection, or special formatting.

Text Alignment
The SetTextAlign function provides control not only over the horizontal text
alignment, relative to the specified x- and y-coordinate specifications, but also
over vertical alignment and current position updating. SetTextAlign is called as:

SetTextAlign(hdc, wFlags);

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 2

http://www.sybex.com

3

The SetTextAlign settings affect text displayed using both the TextOut
and ExtTextOut functions. The wFlags argument consists of one or more text-
alignment specifications combined using the OR operator. Eight alignment
constants are defined in WinGDI.H. These are listed in Table S14.1.

NOTE The bounding rectangle is a rectangle surrounding the text string, passed as an
argument to the TextOut or ExtTextOut functions.

TA B L E S 1 4 . 1 : Horizontal Text Alignment Flags

Flag ID Bit Flags Value Comments

Vertical Alignment at yPos

TA_TOP * 0000 0000 0 Aligns with top of bounding rectangle

TA_BASELINE 0001 1000 24 Aligns with baseline of selected font

TA_BOTTOM 0000 1000 8 Aligns with bottom of bounding rectangle

Horizontal Alignment at xPos

TA_LEFT * 0000 0000 0 Aligns with left side of bounding rectangle

TA_RIGHT 0000 0010 2 Aligns with right side of bounding rectangle

TA_CENTER 0000 0110 6 Aligns with horizontal center of bounding
rectangle (current position is not affected)

Current Position Control

TA_NOUPDATECP * 0000 0000 0 Does not update current position after TextOut
or ExtTextOut calls

TA_UPDATECP 0000 0001 1 Updates current position after TextOut or
ExtTextOut calls

Combined Flags

TA_MASK 0001 1111 31 TA_BASELINE + TA_CENTER + TA_UPDATECP

* The default flags are TA_LEFT, TA_TOP, and TA_NOUPDATECP

Text-Output Features

2642S14.qxd 11/1/99 10:08 AM Page 3

http://www.sybex.com

4

Because not all fonts are written horizontally (for example, the Japanese Kanji
font is written vertically), two additional flag values substitute for the TA_BASE-
LINE and TA_CENTER flags. These are defined as shown in Table S14.2.

TA B L E S 1 4 . 2 : Vertical Text Alignment Flags

Constant Replaces Comments

VTA_BASELINE TA_BASELINE Aligns reference point with baseline of text

VTA_CENTER TA_CENTER Aligns reference point vertically with center of bounding rectangle

The SetTextAlign function returns an unsigned integer specifying the previ-
ous text alignment, or if an error occurs, ERROR is returned.

Extended Text Output Options
The ExtTextOut function expands on the TextOut function. It adds a rectangle
specification that can be used for clipping, opaquing, or both, as well as a pointer to
an array of data to control character spacing. The ExtTextOut function is called as:

ExtTextOut(hdc, xPos, yPos, fOptions, lpRect,
szString, nCount, lpDx);

The hdc, xPos, yPos, szString, and nCount parameters perform in precisely
the same fashion as with the TextOut function. The differences are found in the
fOptions, lpRect, and lpDx parameters.

fOptions This parameter may be NULL, or it may be either or both (ORed)
of the following flag values:

• ETO_CLIPPED, which clips the text to fit the rectangle specification

• ETO_OPAQUE, which fills the rectangle using the current background
color

lpRect This parameter points to a RECT structure specifying the enclosing
rectangle, or it may be passed as NULL.

lpDx This parameter points to an array of integer values that specify the
distance between adjacent character cells in logical units. For example,
element lpDx[i] sets the spacing between the origins of the characters
szString[i] and szString[i+1]. If lpDx is NULL, the default character
spacing is used.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 4

http://www.sybex.com

5

By default, the current position is not updated by calls to ExtTextOut. However,
if the SetTextAlign function is called to set TA_UPDATECP, two changes occur.
First, the initial call to ExtTextOut uses the xPos, yPos parameters, updating the
current position after drawing the text parameter. Then, on the second and subse-
quent calls to ExtTextOut, the xPos and yPos parameters will be ignored and only
the current position data will be used. The current position will continue to be
updated with the results of each call.

Tabbed Text
Conventionally, graphics text functions have not included any tab provisions, an
oversight which is now corrected by the TabbedTextOut function. This function
permits an output string to be tabbed according to spacing arguments specified
in an lpnTabStopPositions array. The TabbedTextOut function is called as:

TabbedTextOut(hdc, xPos, yPos, szString, nCount,
nTabPositions, lpnTabStopPositions, nTabOrigin);

The first five parameters are the same as the equivalent parameters in the
TextOut function. The difference is that tab characters can be included in the
szString parameter as embedded \t (or 0x09) characters.

The other parameters are as follows:

nTabPositions This parameter is an integer argument specifying the
number of tab stops to be set (the number of entries in the lpnTabStop-
Positions array) or the number of tab stops to be used. Three variations
may be used:

• If nTabPositions is zero (0) and lpnTabStopPositions is NULL, all
tabs are expanded to eight times the average character width.

• If nTabPositions is one (1), all tabs are incremented by the first dis-
tance specified in the lpnTabStopPositions array.

• If lpnTabStopPositions contains multiple values, subsequent
tabs are set according to these values up to the number specified
by nTabPositions.

lpnTabStopPositions This parameter points to an array of tab stops (in
increasing order) defined in device units, or it may be NULL.

Text-Output Features

2642S14.qxd 11/1/99 10:08 AM Page 5

http://www.sybex.com

6

nTabOrigin This parameter is an integer specification, in device units, spec-
ifying an initial offset from which the tab specifications are expanded. The
nTabOrigin argument also allows an application to call TabbedTextOut two
or more times for a single line, specifying a new offset each time.

Gray Text
The GrayString function draws text using a gray brush. It draws gray text by
first writing the text in a memory context as a bitmap, graying the bitmap, and
then copying the bitmap to the text display. The drawn text is grayed indepen-
dently of any brush or background color active in the device context used for the
display. The font used is the font currently selected in the device context specified
by the hdc parameter.

The GrayString function is called as:

GrayString(hdc, hBrush, lpOutputFunct, lpData, xPos, yPos, nWidth, nHeight);

The parameters are as follows:

hdc This parameter specifies the device context where the grayed string
will be displayed.

hBrush This parameter identifies the brush to be used to gray the text.

lpOutputFunct This parameter is an optional procedure instance address
for an application-supplied function to be used to draw the string. If this is
specified as NULL, the TextOut function will be used.

lpData This parameter may be a pointer to data to be passed to the
lpOutputFunct function, or if lpOutputFunct is NULL, must be a
pointer to the string to be displayed.

xPos/yPos These parameters specify, in device coordinates, the starting
position of a rectangle bounding the string displayed.

nWidth/nHeight These parameters specify the width and height, in device
units, for the rectangle enclosing the text display. If either parameter is zero
(0) and lpData is a pointer to a string, GrayString calculates the width or
height.

A FALSE result is returned if the GrayString function fails, if the lpOutput-
Funct returns failure, or if memory limitations prevent the bitmap from being
created.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 6

http://www.sybex.com

7

TIP You can also draw grayed strings on any device that supports a solid-gray color, with-
out using the GrayString function, by using the system color COLOR_GRAYTEXT. To
do this, call GetSystColor to retrieve the color value for COLOR_GRAYTEXT. If the
result is not zero (0), call SetTextColor to select this color before drawing the string
directly. If the returned color value is zero, grayed text can only be drawn using the
GrayString function.

Multiple Text Lines
The DrawText function displays formatted text within a specified rectangular
area. Unlike the other functions, DrawText is specifically designed to display
multiple lines, inserting line breaks as required to format the text within the
indicated rectangle. The DrawText function is called as:

DrawText(hdc, szString, nCount, lpRect, wFormat);

The hdc, szString and nCount parameters are used to identify the device
context, the string to be printed, and the number of characters in the string. The
lpRect argument is a pointer to a RECT structure identifying a rectangle, in device
coordinates, where the text will be drawn.

The fifth argument, wFormat, is an unsigned integer and consists of an ORed
combination of the flags listed in Table S14.3.

TA B L E S 1 4 . 3 : DrawText Format Flags

Constant Comments

Horizontal Justification

DT_LEFT Aligns text flush-left

DT_CENTER Centers text

DT_RIGHT Aligns text flush-right

Vertical Justification

DT_TOP Top-justifies text (single line only)

DT_VCENTER Centers text vertically (single line only)

DT_BOTTOM Bottom-justifies text; must be combined with DT_SINGLELINE

Continued on next page

Text-Output Features

2642S14.qxd 11/1/99 10:08 AM Page 7

http://www.sybex.com

8

TA B L E S 1 4 . 3 (C O N T I N U E D) : DrawText Format Flags

Constant Comments

Format and Spacing Instructions

DT_EXTERNALLEADING* Adds font external leading to line spacing

DT_NOCLIP* Disables clipping to rectangle (operation is marginally faster)

DT_SINGLELINE Sets single line only; carriage returns and line feeds do not produce line
breaks

DT_WORDBREAK Enables automatic line breaks at word boundaries as required to fit text
to rectangle

DT_EXPANDTABS Expands tab characters (default is 8 times average character width
per tab)

DT_TABSTOP Sets tab stops using bits 15-8 of the high byte of the low word in
wFormat to specify the number of characters for each tab (if zeros,
default spacing is used)

DT_NOPREFIX* Turns off processing of prefix character

DT_INTERNAL* Not documented

Automatic Rectangle Calculation

DT_CALCRECT* Enables automatic calculation of rectangle area but does not draw
actual text

*Cannot be used with the DT_TABSTOP flag.

Here are a few additional notes about two of the flags listed in Table S14.3:

• The DT_NOPREFIX flag disables the use of the ampersand (&) character to
underline the character immediately following. When DT_NOPREFIX is not
set (characters following the ampersand will be underlined), an ampersand
can be entered as &&, producing a single & as output.

• The DT_CALCRECT flag enables automatic calculation of the rectangle area. If
there are multiple lines of text, DrawText uses the rectangle width specified
by the lpRect parameter, extending the base of the rectangle to bound the
last line of text. If there is only one line of text, DrawText modifies the width
(right size) to bound the last character in the line. In both cases, DrawText
returns the height of the formatted text but does not draw the actual text.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 8

http://www.sybex.com

9

Device-Context Elements
Along with the text-output functions and their flags, the text display is also
governed by the active device context. Elements specified by the device context
include not only the foreground and background colors, but also how the text-
display pixels are combined with the existing background image.

By default, when text is drawn, the text background (the area between and
around characters) is also filled in using the background color. This drawing
mode is the OPAQUE background mode, but it can be changed by calling the
SetBkMode function.

SetBkMode(hdc, nMode) // OPAQUE or TRANSPARENT

The foreground and background color functions have been used in previous
examples in this book. In general, they are called as:

SetTextColor(hdc, rgbColor);
SetBkColor(hdc, rgbColor);

As with pen and brush colors, the rgbColor argument is converted to the near-
est solid color supported by the active device. Dithered colors, which are permit-
ted with brushes, are not supported for text or pen displays.

Rather than wondering what colors might be supported, however, the two
preceding API calls can be rewritten to request colors that are known to be
supported:

SetTextColor(hdc, GetSysColor(COLOR_WINDOWTEXT));
SetBkColor(hdc, GetSysColor(COLOR_WINDOW));

The default colors for the foreground and background are, respectively, black
and white. If you want to change these colors, it is also useful to include a provi-
sion (in WndProc) to repaint the entire client window when the changes occur.
Since no system color changes can be made without issuing a notification mes-
sage to all applications, the simplest method is to include a WM_SYSCOLORCHANGE
response:

case WM_SYSCOLORCHANGE:
InvalidateRect(hwnd);
break;

Text-Output Features

2642S14.qxd 11/1/99 10:08 AM Page 9

http://www.sybex.com

10

Fonts and Typefaces
An obvious prerequisite for a text display is one or more fonts with which to
create the display. Under DOS (in conventional text mode), the system hardware—
generally, the video card itself—supplied the display font in the form of a ROM-
based, bitmapped character set tailored to the device’s display capabilities. Thus,
CGA video cards supplied one set of bitmaps, EGA video another, and VGA still
a third.

Of course, all of this was quite transparent to the software. Applications had no
need to ask or to know what the display characteristics consisted of, or even the
display’s capabilities. Applications simply wrote to the output, as ASCII character
codes, and let the hardware take care of the rest. Earlier displays were limited to a
single typeface and, essentially, a single type size.

Today, in a graphics environment, the old-style text displays are gone. Graphics
displays can not only mix text, graphics, and colors, but they can use many differ-
ent character fonts (typefaces), in many different sizes. Furthermore, they can vary
typeface and size in a variety of styles, such as bold and italic, and in many cases,
may also vary font widths, slants, and weights.

Programmers now have a wide range of flexibility in handling of graphics text
displays. But, to make use of these opportunities, it may help to understand both
the origins of type fonts and the characteristics which determine fonts.

Reminiscences of a Printer’s Devil
In personal terms (primarily because of a long personal history in the newspaper business
beginning long before electronic typesetting), the word typeface conjures images of large
flat trays of small compartments filled with individual metal characters in an assortment of
sizes and typeface designs.

Most of the typesetting, of course, was accomplished by a huge and intricate machine
known as a linotype, operated by a highly skilled (and very well paid) individual who knew
both the precision mechanics of the triple keyboard, as well as the massive armatures and
injection molds that for many decades produced newspapers, books, and the bulk of all
manner of printed material.

Continued on next page

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 10

http://www.sybex.com

11

Larger type sizes, such as those used for ads, headlines, and other features, were not sup-
ported by the linotype and its banks of molds. These fell to nimble fingers to choose,
arrange, and align individual characters from the appropriate trays with a speed that
might well have been envied by even expert typists.

Still, by the time I graduated from high school (and, at the same time, completed a
12-year apprenticeship in the mysteries of the newspaper business), it was clear that,
soon—at least in technologically historical terms—both the gentle monster and the type
trays would be little more than museum exhibits. It was not too many years later that both
did, indeed, disappear. They were replaced, first, by electronic/optical/photographic
processes and then, a scant decade after that, under my own supervision (as a visiting
computer consultant), by purely electronic processes.

Today, of course, these are only the memories of a one-time printer’s devil. But, even if the
old order has passed, the type tray and linotype laid the foundations for the modern world.
They are reflected not only in modern fonts and typestyles, but also in the terminology that
defines font characteristics and in the methods that manipulate their appearance.

A Brief History of Typefaces
When computers were young, typefaces were an embellishment limited to
high-end, hard-copy devices, such as daisywheel printers; even then, they were
changed only by physically changing the print wheel. For computer monitors,
type styles were quite simply firmware built into the system. In general, they con-
sisted of 8×8 or 8×9 bitmapped (also called raster) characters for CGA video sys-
tems. These ranged up to 8×18 bitmapped characters for VGA systems.

Bitmapped Fonts

Figure S14.1 shows three bitmapped characters in an 8×12 format. Bitmapped
fonts have some obvious advantages. Since each character’s pixel image is
already defined, the character can be transferred to the screen by simply copy-
ing the bit pattern directly to the video. This process is speedy and places mini-
mal demands on system resources.

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 11

http://www.sybex.com

12

F I G U R E S 1 4 . 1 :

Bitmapped fonts

However, there are disadvantages to using bitmapped fonts. They can be
resized only as simple multiples and cannot be created in any in-between sizes.
When enlarged, the resulting characters tend to be jagged in appearance.

Also, while some systems did offer more than one font, the selection was gener-
ally limited to two or three sizes, such as font provisions for a 43- or 50-line dis-
play as alternatives to the standard 25 lines, but without offering any variations
in style, pitch, or weight. Of course, on early computers, there was little or no
demand for larger typefaces or even for varying typefaces. It remained for the
advent (and popularity) of graphics display systems to demonstrate the advan-
tages of sizable fonts.

Stroked Fonts

One early approach to creating fonts for a graphics environment involved creating
libraries of bitmapped fonts in incremental sizes. As a solution, however, this was
never popular for several reasons: because of the sheer mass of data required for
the fonts, because of relatively slow response times, and because of the demands
on the system memory.

Instead, a different way to define characters was devised (or, more accurately,
borrowed from existing typesetting technologies already in use by printers in
the newspaper and publishing industries). These are known as stroked or vectored
fonts. In this system, the structure of each character is described by a series of
vectors, not by an array of pixels.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 12

http://www.sybex.com

13

There are some disadvantages to the stroked font approach. For small font
sizes, the vectored data is, in general, larger than an equivalent bitmapped font
and requires more processing to produce each display character. But the disad-
vantages are minor, placing only minimal demands on modern CPUs and con-
temporary video systems.

The advantages are tremendous. Stroked fonts can not only be resized, but they
can also be reproportioned, weighted, slanted, rotated, inverted, or otherwise
manipulated with minimal effort and maximal effect. And, most important, a sin-
gle set of font data provides a variety of sizes and styles within a single typeface.
Once a font is defined as stroked data, the resulting typeface is available in any
size desired—as italics, boldface, or with sufficiently sophisticated processing, as
outline, condensed, or extra-bold forms.

Figure S14.2 shows three characters created using a vectored font, sized for 48
points. The A shows the vectors defining the character as black lines. The B and C
characters show the outlines after processing.

F I G U R E S 1 4 . 2 :

A stroked, or vectored, font

Under Windows 95, 98, NT, and 2000, the older, bitmapped fonts have been
largely (but not entirely) discarded in favor of stroked fonts.

Windows Default Fonts
Windows supplies the 15 standard fonts shown in Figure S14.3. Each of these
fonts appears in its default height, width, and weight.

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 13

http://www.sybex.com

14

F I G U R E S 1 4 . 3 :

Fifteen standard fonts

Table S14.4 lists the fonts illustrated, in their order of appearance in Figure S14.3,
together with the default height and average width for each. The default weight
for all fonts is 400, or normal weight. (See the discussion of the lfWeight field in
the “Font Selection Using Logical Fonts” section for more information about font
weights.)

TA B L E S 1 4 . 4 : Windows Standard Fonts

Font Height Avg Width Comments

Arial 16 6 Proportional sans-serif font; similar to Gothic

Courier 16 9 Typewriter or dot-matrix standard (with serifs)

Courier New 16 8 Same as Courier but slightly narrower

Fixedsys 15 8 Fixed-width OEM (system) font (sans-serif)

Modern 18 10 Proportional sans-serif stroked font

MS Sans Serif 16 7 Another sans-serif with narrower defaults

MS Serif 16 6 Proportional serif font; similar to Times-Roman

Roman 18 11 Serif equivalent of Modern; similar spacing

Continued on next page

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 14

http://www.sybex.com

15

TA B L E S 1 4 . 4 (C O N T I N U E D) : Windows Standard Fonts

Font Height Avg Width Comments

Script 18 8 Font that resembles handwriting (appears small for
point size)

Small Fonts 11 5 Small sans-serif font; good for readable fine print

Symbol 16 8 Greek, math, and other symbols

System 16 7 Proportional-width system font (sans-serif)

Terminal 16 13 A rather broad sans-serif font

Times New Roman 17 6 Popular proportional-width, general-purpose font

Wingdings 16 13 Useful symbols; also called Dingbats

The Courier, Fixedsys, MS Sans Serif, MS Serif, Small Fonts, System, and Termi-
nal fonts are essentially bitmapped fonts.

Of the remaining eight fonts, the Modern, Roman, and Script fonts consist only
of strokes. When they are drawn as enlarged characters (for example, at a height of
400 in text mode), they quite clearly show the strokes comprising each character in
a fashion similar to the stroked A in Figure S14.1.

The other five fonts—Arial, Courier New, Symbol, Times New Roman, and
Wingdings—are stroked outline (or True-Type) fonts. Stroked outline fonts are
created as outline strokes with the interiors filled. When these are drawn in larger
sizes, they remain fully solid, even though their outlines may begin to show a
slight grain or irregularity.

NOTE The fonts distributed with the release version of Windows 2000 may be different
from those listed above, and individual fonts are being changed from stroked to
full True-Type fonts. Also, since you may have fonts installed on your system from
several different sources, the comments on specific fonts should be taken only as
a general guideline.

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 15

http://www.sybex.com

16

Font Selection Using Logical Fonts
While you might think of font selection as simply being a matter of requesting a
typeface and specifying a character size, for computers, this is a bit too simple.
This is not because computers require complexity, but because a font—even a siz-
able font—still must match the display characteristics of the device, at least to a
minimal degree.

Thus, instead of simply naming a typeface and size, an application makes a
request identifying the font name, size, and other characteristics desired. For this
purpose, the LOGFONT structure is defined in WinGDI.H as:

typedef struct tagLOGFONTA
{

LONG lfHeight;
LONG lfWidth;
LONG lfEscapement;
LONG lfOrientation;
LONG lfWeight;
BYTE lfItalic;
BYTE lfUnderline;
BYTE lfStrikeOut;
BYTE lfCharSet;
BYTE lfOutPrecision;
BYTE lfClipPrecision;
BYTE lfQuality;
BYTE lfPitchAndFamily;
char lfFaceName[LF_FACESIZE];

} LOGFONTA;

Two structure definitions are provided: LOGFONTA, for use with an ANSI envi-
ronment, and LOGFONTW, for use with a wide, or Unicode, character set. However,
since the choice of environment is controlled by a compiler directive, the only
source code reference required is LOGFONT. Depending on the compiler directive,
this will be mapped to either the ANSI or Unicode structure, as appropriate.

The following sections describe the fields in the LOGFONT structure.

Height and Width Fields

The lfHeight field specifies the desired height of the font in logical units. If the
value is positive or negative, the absolute value is transformed to device units
and matched against the cell heights of the available fonts.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 16

http://www.sybex.com

17

A 0 (zero) height simply instructs the GDI to select a reasonable (default) height.
This is normally the smallest size that will accommodate the strokes comprising
the font characters.

In all cases, the font mapper looks for the largest font—the most detailed font
(character) description—that does not exceed the requested size. If none match
this requirement, the smallest available font is used.

The lfWidth field specifies the average width (in logical units) of the characters
in the font. If lfWidth is 0, the device aspect ratio is matched against the digitiza-
tion aspect ratio; that is, the width in units which the font will require for display.
Selection is based on the closest match, or the smallest absolute difference between
the two ratios. In general, a 0 value allows the character width to be matched against
the character height.

In actual practice, bitmapped fonts, such as the Courier, Fixedsys, MS Sans
Serif, MS Serif, Small Fonts, System, and Terminal fonts (illustrated in Figure S14.3
and listed in Table S14.4) are used, as long as the bitmap size matches the display
context relatively well. If any of these are enlarged, however, Windows substi-
tutes a default stroked font, usually Arial, which can be more readily sized. (You
can see this in action in the Fonts demo, discussed later in the chapter.)

Weight Field

The lfWeight field specifies the desired weight of the font. This field accepts
values in the range 0 to 1000. If lfWeight is 0, a default weight is used (normal).
As you can see in Table S14.5, currently only two weights are actually employed:
400 for normal or 700 for bold. However, future versions (probably with higher-
resolution displays) are expected to use a wider range of weights.

TA B L E S 1 4 . 5 : Font Weights

Weight Constant Value Comments Alternatives

FW_DONTCARE 0

FW_THIN 100 Not supported

FW_EXTRALIGHT 200 Not supported FW_ULTRALIGHT

FW_LIGHT 300 Not supported

FW_NORMAL 400 Default weight FW_REGULAR

Fonts and Typefaces

Continued on next page

2642S14.qxd 11/1/99 10:08 AM Page 17

http://www.sybex.com

18

TA B L E S 1 4 . 5 C O N T I N U E D : Font Weights

Weight Constant Value Comments Alternatives

FW_MEDIUM 500 Not supported

FW_SEMIBOLD 600 Not supported FW_DEMIBOLD

FW_BOLD 700 Boldface

FW_EXTRABOLD 800 Not supported FW_EXTRABOLD

FW_HEAVY 900 Not supported FW_BLACK

Italic, Underline, and Strikeout Fields

The lfItalic field is simply a Boolean flag. If TRUE, the font is created as italics (if
possible). The lfUnderline and lfStrikeOut fields operate in the same fashion.

Character Set Field

The lfCharSet field specifies the character set desired. Identifiers are predefined
in WinGDI.H, as shown in Table S14.6.

TA B L E S 1 4 . 6 : Character Set Constants

Character set Value Comments

ANSI_CHARSET 0 Default; ANSI characters

UNICODE_CHARSET 1 Unicode (32-bit) characters

SYMBOL_CHARSET 2 Symbols

SHIFTJIS_CHARSET 128 Japanese Kanji characters

HANGEUL_CHARSET 129 Non-Roman/Arabic characters

CHINESEBIG5_CHARSET 136 Chinese characters

OEM_CHARSET 255 Device-dependent characters

The following character sets are defined only for WinVer 0x0400 (Windows 95/98/NT) & later.

JOHAB_CHARSET 130

HEBREW_CHARSET 177 Hebrew (Judaic) characters

Supplement 14 • Typefaces and Styles

Continued on next page

2642S14.qxd 11/1/99 10:08 AM Page 18

http://www.sybex.com

19

TA B L E S 1 4 . 6 (C O N T I N U E D) : Character Set Constants

Character set Value Comments

The following character sets are defined only for WinVer 0x0400 (Windows 95/98/NT) & later.

ARABIC_CHARSET 178 Arabic characters

GREEK_CHARSET 161 Greek characters

TURKISH_CHARSET 162 Turkish characters

VIETNAMESE_CHARSET 163 Vietnamese characters

THAI_CHARSET 222 Thai (Thailand) characters

EASTEUROPE_CHARSET 238 Eastern European characters

RUSSIAN_CHARSET 204 Russian characters

MAC_CHARSET 77 Macintosh characters

BALTIC_CHARSET 186 Baltic (region) characters

FS_LATIN1 0x00000001L Latin characters

FS_LATIN2 0x00000002L Latin characters

FS_CYRILLIC 0x00000004L Russian characters

FS_GREEK 0x00000008L Greek characters

FS_TURKISH 0x00000010L Turkish characters

FS_HEBREW 0x00000020L Hebrew (Judaic) characters

FS_ARABIC 0x00000040L Arabic characters

FS_BALTIC 0x00000080L Baltic (region) characters

FS_VIETNAMESE 0x00000100L Vietnamese characters

FS_THAI 0x00010000L Thai (Thailand) characters

FS_JISJAPAN 0x00020000L Japanese characters

FS_CHINESESIMP 0x00040000L Chinese characters

FS_WANSUNG 0x00080000L Chinese characters

FS_CHINESETRAD 0x00100000L Chinese characters

FS_JOHAB 0x00200000L

FS_SYMBOL 0x80000000L Symbol font

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 19

http://www.sybex.com

20

WARNING Although fonts supporting character sets other than those defined may be pre-
sent in a system, do not attempt to translate or interpret strings to be rendered
with such fonts.

Escapement and Orientation Fields

Both the lfEscapement and lfOrientation fields are expressed in 1/10° incre-
ments. The lfEscapement value sets the string orientation with an angle of 0° for
horizontal alignment, increasing in a counter-clockwise direction.

The lfOrientation value determines the angle of the character’s baseline rela-
tive to horizontal. Thus, for a value of 0, a T or L remains vertical; for a value of
900 (90°), ‘I’ will be drawn horizontally and the L will be lying on its back.

Table S14.7 summarizes both the text and character orientation at 90° intervals
for lfEscapement and lfOrientation.

TA B L E S 1 4 . 7 : Text and Character Orientation

Value Degrees lfEscapement lfOrientation
(String Orientation) (Character Orientation)

0 0° Left to right (default) Normal (vertical, default)

900 90° Vertical, rising Rotated 90° counter-clockwise

1800 180° Right to left Inverted

2700 270° Vertical, falling Rotated 90° clockwise

Out-Precision, Clip-Precision, and Quality Fields

The lfOutPrecision, lfClipPrecision, and lfQuality fields are used to request
specific matches between the fonts selected and the device-output capabilities.

lfOutPrecision defines how closely the actual output must match the requested
font’s characteristics, such as height, width, orientation, and pitch. Output preci-
sion values are defined as shown in Table S14.8.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 20

http://www.sybex.com

21

TA B L E S 1 4 . 8 : Output Precision

Constant Value Comments

OUT_DEFAULT_PRECIS 0

OUT_STRING_PRECIS 1 Maintain string precision

OUT_CHARACTER_PRECIS 2 Maintain character precision

OUT_STROKE_PRECIS 3 Maintain stroke precision

OUT_TT_PRECIS 4 New, not documented; support unknown

OUT_DEVICE_PRECIS 5 New, not documented; support unknown

OUT_RASTER_PRECIS 6 New, not documented; support unknown

OUT_TT_ONLY_PRECIS 7 New, not documented; support unknown

OUT_OUTLINE_PRECIS 8 Maintain outline precision

NOTE Several of the flag values for the lfOutPrecision, lfClipPrecision, and
lfQuality fields are new and may or may not be fully supported by present ver-
sions of Windows 98 and/or by present video and output device drivers. Before you
rely on a specific precision flag, you should experiment with it. Unimplemented pre-
cision flags may be supported later or may be supported by specific device drivers.

The lfClipPrecision field specifies how characters that are partially outside
the clipping region are clipped. Eight values are defined in WinGDI.H, as shown
in Table S14.9.

TA B L E S 1 4 . 9 : Clipping Precision

Constant Value Comments

CLIP_DEFAULT_PRECIS 00h

CLIP_CHARACTER_PRECIS 01h Clip entire character

CLIP_STROKE_PRECIS 02h Clip only strokes

CLIP_MASK 0Fh New, not documented; support unknown

Fonts and Typefaces

Continued on next page

2642S14.qxd 11/1/99 10:08 AM Page 21

http://www.sybex.com

22

TA B L E S 1 4 . 9 C O N T I N U E D : Clipping Precision

Constant Value Comments

CLIP_LH_ANGLES 10h New, not documented; support unknown

CLIP_TT_ALWAYS 20h New, not documented; support unknown

CLIP_EMBEDDED 80h New, not documented; support unknown

The lfQuality field specifies the desired output quality, which is how well the
output (physical font) is matched to the requested logical font attributes. Three
values are defined in WinGDI.H, as shown in Table S14.10.

TA B L E S 1 4 . 1 0 : Output Quality

Constant Value Comments

DEFAULT_QUALITY 00h Appearance not important

DRAFT_QUALITY 01h Appearance of minimal importance; font scaling fully enabled for
all GDI fonts; bold, italic, underline, and strikeout synthesized as
necessary

PROOF_QUALITY 02h Character quality more important than matching logical font attrib-
utes; GDI font scaling disabled; only closest font sizes chosen; bold,
italic, underline, and strikeout synthesized as necessary

Pitch and Family Field

The lfPitchAndFamily field specifies both the pitch (spacing) and the font fam-
ily. The two low-order bits specify the font spacing, using one of the three values
defined in WinGDI.H, as shown in Table S14.11.

TA B L E S 1 4 . 1 1 : Font Pitch

Pitch Constant Value Comments

DEFAULT_PITCH 00h Don’t care or don’t know

FIXED_PITCH 01h Fixed spacing (characters per inch)

VARIABLE_PITCH 02h Variable spacing (proportional)

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 22

http://www.sybex.com

23

The high-order nibble of the lfPitchAndFamily byte specifies a family of fonts
and can be any of the six values defined in WinGDI.H, as shown in Table S14.12.

TA B L E S 1 4 . 1 2 : Font Family

Family Constant Value Comments

FF_DONTCARE 00h Don’t care or don’t know

FF_ROMAN 10h Serif, variable character width, such as Times Roman and
Century Schoolbook

FF_SWISS 20h Sans-serif, variable character width, such as Helvetica and
Swiss

FF_MODERN 30h Constant character width, serif or sans-serif, such as Pica,
Elite, and Courier

FF_SCRIPT 40h Cursive, for example

FF_DECORATIVE 50h Old English, for example

Face Name Field

The lfFaceName field contains the address of a null-terminated string specifying
the typeface name of the desired font. The string must not exceed 32 characters. If
no font name is specified (the argument is NULL), the GDI uses a default typeface
such as Arial.

NOTE For typesetting purposes, WinVer 0x0400 (Windows 95/98/NT) and later also sup-
port a number of additional font specifications, including an extensive series of
Panose definitions, which are not discussed here. The Panose font-classification
values are contained in a PANOSE structure and describe the characteristics of a
True Type font. For further information, refer to the online documentation.

The Fonts Demo: Demonstrating Logical Fonts
The Fonts demo provides a platform to demonstrate the three principal features
of using logical fonts:

• Using the EnumFonts function to list available typefaces

• Setting font characteristics (height, width, and so on)

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 23

http://www.sybex.com

24

• Showing fonts under different mapping modes

Figure S14.4 shows the Fonts demo window.

F I G U R E S 1 4 . 4 :

The Fonts demo

A standard font-selection dialog box is supplied through the MFC CFont-
Dialog class as one of the Windows common dialog boxes. The advantage of
using the standard Fonts dialog box is that you do not need to provide your
own font-selection mechanisms. (For an example of the common font dialog
box, refer to the FontView demo included with the Visual C++ compiler.)

NOTE The Fonts demo is included on the CD that accompanies this book, in the Supple-
ment 14 folder. This listing should provide you with the basic structure for designing
your own font-manipulation facilities.

Font Selection

The first feature demonstrated in the Fonts demo is the use of the EnumFonts
function to query the GDI and list all available typefaces, in this case, by load-
ing the font names in a list box.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 24

http://www.sybex.com

25

As a first step, we define the record type FONTLIST:

typedef struct tagFONTLIST
{

GLOBALHANDLE hGMem;
int nCount;

} FONTLIST;

A variable of type FONTLIST is used to record a list of fonts and the number of
fonts located.

In most of the other demos discussed in this book, the WndProc procedure pro-
vides the heart of the application. In addition to message handling, this procedure
is responsible for a greater or lesser portion of the application’s task handling. In
contrast, in the Fonts demo, the majority of the work is shifted away from the Wnd-
Proc procedure to a modeless dialog box and to the DlgProc procedure-handling
messages addressed to the dialog box. The few provisions necessary in WndProc for
creatng DlgProc should, at this point, already be familiar to you from previous
examples.

The exported DlgProc procedure begins by declaring two static variables. One
of these is lpEnumProc, a pointer to the FontEnumFunc procedure, which will actu-
ally make the call to the API EnumProc function. The other is a FontList variable
to point to the returned data (the typeface names). A third variable is declared as a
long pointer to a string, lpFontName, providing a second handle to the font list.

BOOL APIENTRY DlgProc(HWND hDlg, UINT msg, UINT wParam, LONG lParam)
{

static FARPROC lpEnumProc;
static FONTLIST FontList;
LPSTR lpFontName;
HDC hdc;
int i, nSel;
char szFont[LF_FACESIZE];

In response to the WM_INITDIALOG message, another call is made to the Make-
ProcInstance macro to return a handle (lpEnumProc) to the FontEnumFunc
procedure. This handle is used to tell the EnumFonts function where to find the
FontEnumFunc callback function.

switch(msg)
{

case WM_INITDIALOG:
...
lpEnumProc = MakeProcInstance(FontEnumFunc, hInst);

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 25

http://www.sybex.com

26

FontList.hGMem = GlobalAlloc(GMEM_MOVEABLE |
GMEM_ZEROINIT, 1L);

FontList.nCount = 0;

The FontList variable also requires initialization by allocating and zeroing
one (1) byte, returning the memory pointer to the FontList.hGMem field. Addi-
tional memory will be allocated as required, but since the number of fonts is
not presently known, it would be pointless to attempt to allocate memory for an
unknown number of strings at this time. The FontList.nCount field is also ini-
tialized to 0 but will be used presently to track the number of typefaces found.

The next requirement is a device-context handle (hdc), which is obtained using
GetParent(hDlg) to return a device context for the main application window
rather than the dialog window. And, finally, the EnumFontsAPI function is called
using the retrieved device-context handle, a pointer to the FontEnumProc func-
tion, and a pointer to the FontList variable.

hdc = GetDC(GetParent(hDlg));
EnumFonts(hdc, NULL, lpEnumProc, (LPVOID) &FontList);

The second parameter, passed as NULL in this example, could have been used
as a long pointer to a string (LPSTR) to specify a particular typeface; in effect, to
query if a specific typeface was available. By passing this specification as NULL,
all available typefaces will be reported.

The FontEnumProc procedure, while not an exported procedure in the usual
sense of receiving messages directly from Windows, is used as a callback function
by the EnumFonts API function.

The FontEnumProc procedure is called from EnumFonts with four parameters: a
pointer to a LOGFONT structure reporting the logical attributes of a font, a pointer
to a TEXTMETRIC structure reporting the physical font attributes, a short integer
indicating the font type (bit flags), and the same far pointer to FontList that was
originally passed to EnumFonts.

int APIENTRY FontEnumFunc(LPLOGFONT lf,
LPTEXTMETRIC tm,
short nFontType,
FONTLIST FAR * FontList)

{
LPSTR lpFontFace;

The first task accomplished in the FontEnumFunc procedure is a GlobalRe-
Alloc to allocate enough additional memory for one more typeface name. If
this is successful, GlobalLock is called to ensure that the memory allocated is not
moved until the present task is finished.

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 26

http://www.sybex.com

27

if(! GlobalReAlloc(FontList->hGMem,
(DWORD) LF_FACESIZE * (FontList->nCount + 1),
GMEM_MOVEABLE))

return(FALSE);
lpFontFace = GlobalLock(FontList->hGMem);
lstrcpy(lpFontFace + ((FontList->nCount) * LF_FACESIZE),

(LPSTR) lf->lfFaceName);
GlobalUnlock(FontList->hGMem);
FontList->nCount++;
return(TRUE);

}

Once memory is allocated and locked, the font name (lf->lfFaceName) reported
by EnumFonts is copied to the offset of the newly allocated memory, the memory is
unlocked, and FontList->nCount is incremented.

NOTE As you may have already realized, the bulk of the information passed by Enum-
Fonts has been discarded; only the font name has been retained. But, in this case,
the font name is all that we really need. Actually, there wasn’t any choice about
what information was passed to the FontsEnumFunc procedure from the Enum-
Fonts API function. The only choice was to select which portion was actually
wanted, discarding the excess. (We’ll talk about another alternative in a bit.)

The next step is to copy the font list into the list box in the dialog box. And,
again, this process begins by globally locking the memory where the data is
stored.

lpFontName = GlobalLock(FontList.hGMem);
SendDlgItemMessage(hDlg, IDD_FONTLIST, WM_SETREDRAW,

(WPARAM) 1, (LPARAM) 0);
SendDlgItemMessage(hDlg, IDD_FONTLIST,

LB_RESETCONTENT, NULL, NULL);

Before copying the data, however, as a precaution, two initial messages are sent
to the list box to instruct it to be redrawn. These ensure that the new data will be
visible. Also, a reset message is sent to clear any contents that the list box might
happen to contain.

Once this housekeeping is out of the way, a simple loop, using FontList.nCount
as the limit, copies the string data. The names are copied one item at a time, using
the same offset addresses as before, into the list box.

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 27

http://www.sybex.com

28

for(i=0; i<FontList.nCount; i++)
SendDlgItemMessage(hDlg, IDD_FONTLIST, LB_ADDSTRING, 0,

(LPARAM)(LPSTR)(lpFontName + (i * LF_FACESIZE)));
GlobalUnlock(FontList.hGMem);
GlobalFree(FontList.hGMem);
FontList.hGMem = NULL;
FreeProcInstance(lpEnumProc);
ReleaseDC(GetParent(hDlg), hdc);

After the data has been copied over to the list box, the allocated memory (hGMem)
and the address variable for the FontEnumProc procedure are no longer required.
Therefore, the allocated memory is unlocked and freed, the lpEnumProc function
handle is freed, and to finish the housekeeping, the device context is released.

Finally, after calling the ShowMetrics function to update the dialog box display,
the WM_INITDIALOG response, rather than returning on a break; statement, is
allowed to fall through to the WM_SETFOCUS message response, setting the active
focus to the dialog box.

ShowMetrics(hDlg); // fall through to SetFocus

case WM_SETFOCUS:
SetFocus(GetDlgItem(hDlg, IDD_HEIGHT));
break;

At this point, the list box in the dialog box is primed with a list of available
fonts, ready for the user to select the typeface desired. And, when this is done,
the dialog box display will be updated to reflect the selection. The main applica-
tion window will display the sample text string using the chosen typeface.

TIP If the process of retrieving the font list seems rather roundabout, a portion could
be simplified. For instance, what about rewriting the FontEnumFunc callback
function to load the list box directly? This would simplify matters, wouldn’t it? This
is an experiment that you may want to try.

Font Characteristic Variations

In addition to allowing the user to select typefaces from the list box, the Fonts
demo also provides three edit boxes for entry of height, width, and weight speci-
fications. Values entered in these three edit boxes are used (when the Set Font but-
ton is clicked) in the tm (text metric) request that selects the new font (or new size).

Supplement 14 • Typefaces and Styles

2642S14.qxd 11/1/99 10:08 AM Page 28

http://www.sybex.com

29

The resulting text metrics information items reported at the bottom of the dia-
log box (look back at Figure S14.4) represent the best match found by the GDI and
reflect the actual font displayed in the application’s main window (immediately
below the dialog box).

TIP In the Font demo’s current form, only four of the text metrics fields can be edited
directly or indirectly; these are the height, width, weight, and typeface. The
remaining fields are assigned default values. As another experiment, you could
add control features for any or all of the other text metrics.

Font Sizing and Mapping Modes

The Fonts demo also includes a provision for selecting the different mapping
modes. This part of the program demonstrates how different fonts appear when
resized, how fonts can be changed proportionally by varying the width and
height, and how the GDI selects fonts appropriate to the mapping mode and
sizes requested. (For more information about mapping modes, see Supplement 13.)

Notice particularly that, when one of the bitmapped fonts is requested in a too-
large size, the GDI replaces it with a stroked or outline font, which is more suit-
able for the purpose.

TIP You may wish to change the defaults assigned to the lfPitchAndFamily specifi-
cation and observe how this affects the GDI’s choices. Last, for the adventurous or
the dedicated, the lfEscapement and lfOrientation fields offer ample oppor-
tunities for departure from the straight and horizontal. Please feel free to explore
the possibilities.

The real test of typeface flexibility lies in the applications using these facilities.
Any shortcomings are more likely to lie in the application design than in the
provided resources.

As you have seen, the basic tools permit virtually any degree of text elaboration
desired. For those requiring additional typefaces, a variety of fonts are available
from third-party sources. You can also find toolkits for designing custom fonts.

Now that we’ve covered the advanced text operations, we can return to graph-
ics operations. The next chapter discusses images and image file formats.

Fonts and Typefaces

2642S14.qxd 11/1/99 10:08 AM Page 29

http://www.sybex.com

S U P P L E M E N T
F I F T E E N

Graphics Utilities and
File Operations

� A screen-capture program for bitmap images

� Bitmap compression techniques

� Commands for handling graphics files

� A PCX file viewer

� Techniques for converting 24-bit color images

S15

2642S15.qxd 11/1/99 10:09 AM Page 1

http://www.sybex.com

2

A variety of formats have been developed for saving, storing, and displaying
graphics images. A number of popular formats predated Windows, including
ZSoft’s Paintbrush PCX, CompuServe’s GIF and, for more demanding circum-
stances, TrueVision Inc.’s TARGA or TGA formats. Today, Windows has its own
native BMP format.

All of these formats have one factor in common: Each is designed for a spe-
cific image type or system. TrueVision’s TGA images, for example, are designed
for video-camera images, generally incorporating 16, 24, or 32 bits of color per
pixel. In contrast, ZSoft’s PCX, CompuServe’s GIF, and Windows BMP formats
are palette-based, encoding images by first including palette-color information
in the image file and then referencing the individual pixels as palette colors.

In this chapter, we’ll take a look at how to handle graphics files. We’ll begin by
discussing a demo program that captures Windows bitmap images either to the
clipboard or to a file. Then we’ll cover commands for handling graphics files,
treatments for file formats other than the native BMP files, and techniques for
converting 24-bit color images.

A Screen-Capture Utility
Under Windows, where all displays are graphical in nature, a graphics screen-capture
utility can be a basic tool for transferring graphics information among applications or
for simply saving images for later use. Capturing a screen under Windows is greatly
expedited and simplified by procedures inherent within Windows.

Principal among these methods is the Windows clipboard, a facility which
provides both storage and information transfer among Windows applications.
(Although the clipboard handles several types of information, each with its own
format, only the graphics image or bitmap format is relevant to this discussion.)

Capturing a bitmap to the clipboard is a task well-supported by Windows API
functions, making this task almost automatic. In contrast, a similar capture to a
file format requires several steps. Procedures for both capturing to the clipboard
and to a file are included in the Capture demo.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 2

http://www.sybex.com

3

The Capture Demo:
Capturing and Displaying Screen Images

The Capture demo is a screen-capture utility that stores and retrieves only infor-
mation that is in bitmap format. Other types of information loaded to the clip-
board—such as data, metafiles, or other formats—are ignored.

As an example of the use of the clipboard to store a bitmap, take a look at Fig-
ure S15.1. This figure was created using the Capture demo.

Figure S15.1 is neither a trick nor a composite. It’s an actual screen display,
which was created as follows:

1. Begin by loading two instances of the Capture demo. Initially, one image is
reduced to an icon, and the second is used to capture the screen to the sys-
tem clipboard. During the capture process, the second instance automati-
cally reduces itself to an icon at the bottom of the screen; then it resumes
normal size after the capture is completed.

2. After the first capture, both copies of Capture are restored to windows. Both
show the clipboard image using the Fit to Window option.

F I G U R E S 1 5 . 1 :

Recursively captured views

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 3

http://www.sybex.com

4

3. One copy of Capture is used to repeat the process of capturing the screen,
including the image of the other copy of Capture and the previous clipboard
image. Each new image is automatically written to the clipboard and then
displayed by both copies of Capture.

4. Repeating this process yields the recursive image shown in Figure S15.1,
where it becomes a tunnel effect.

5. Finally, call the last capture operation to capture the recursive image, but this
time, rather than capturing the image to the clipboard for display, write the
image directly to a .BMP file. The instance making the capture reduces itself
to an icon during capture. Therefore, that instance loses the active focus,
which reverts to the open window showing the previous clipboard image.

Because the final operation saves the image to a file rather than to the clip-
board, the previously displayed image is not replaced. If a different utility were
used to capture an image to the clipboard, both of the Capture windows would
display that image.

Both capture options in the Capture demo—To Clipboard and To File—include a
five-second time delay (audible beeps are sounded at one-second intervals dur-
ing the wait time), during which the user may use the mouse or keyboard to shift
the active focus, to select a different application window, to pull down menus, or
to activate other features.

NOTE The Capture demo is included on the CD that accompanies this book, in the Sup-
plement 15 folder.

Screen-Capture Operations
Screen capture is based on rectangular coordinates that define the area to be
copied. For the example, the Capture demo simply checks the size of the Desktop
(the main screen), using the HWND_DESKTOP window handle, to capture the entire
display. Other screen-capture applications could include provisions to select only
the active application’s display, to select only a specific window, or to use the
mouse to select some other rectangular area.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 4

http://www.sybex.com

5

In operation, because the Capture menu offers the To Clipboard and To File
choices, two responses are provided for the WM_COMMAND/IDM_CLIP and WM_COM-
MAND/IDM_FILE messages:

case WM_COMMAND:
switch(LOWORD(wParam))
{

...
case IDM_CLIP:

Action = TOCLIPBD;
CloseWindow(hwnd);
Clock = SetTimer(hwnd, 1, 1000, NULL);
iSec = 0;
break;

case IDM_FILE:
if(DialogBox(hInst, “GETNAME”, hwnd,

FileNameDlgProc))
{

Action = TOFILE;
CloseWindow(hwnd);
Clock = SetTimer(hwnd, 1, 1000, NULL);
iSec = 0;

}
break;

The two responses are essentially the same. The difference is that before an
image can be saved to a file, the FileNameDlgProc is invoked, requesting a file-
name and, optionally, a drive and path specification.

In both responses, the CloseWindow API is called to minimize the Capture appli-
cation before initializing a timer for one-second intervals and setting the seconds
counter (iSec) to zero.

Subsequently, as WM_TIMER messages are received, iSec is incremented. Until
iSec reaches five seconds (or whatever interval is desired), the MessageBeep
function is called to provide an audible timer signal.

case WM_TIMER:
if(++iSec == 5)

PostMessage(hwnd, WM_COMMAND, IDM_CAPTURE, 0);
else

MessageBeep(MB_ICONEXCLAMATION);
break;

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 5

http://www.sybex.com

6

NOTE The sound (waveform) associated with each MB_ICONxxxxx constant may be
changed using the Sound Control Panel. These assignments, however, are under
the control of the user, not the application.

The MB_ICONEXCLAMATION argument used here in calling the MessageBeep
API function is probably more familiar as an argument in a MessageBox API call
requesting inclusion of the exclamation icon. However, the MB_ICONEXCLAMATION
constant, as well as the MB_ICONASTERISK, MB_ICONHAND, MB_ICONQUESTION, and
MB_OK constants, can also be used as parameters to request a system sound that is
defined as a .WAV waveform file and reproduced by a sound card, such as Sound
Blaster. If no sound card is installed, the system speaker will provide the tradi-
tional default beep using the system’s internal speaker.

Next, when the IDM_CAPTURE message is received, a final beep is issued and the
timer process is halted (killed) before either the SaveBitmap function is called to
create a bitmap file or the CaptureBitmap function is called to copy the image
to the clipboard.

case IDM_CAPTURE:
MessageBeep(MB_OK);
KillTimer(hwnd, Clock);
SetCursor(LoadCursor(NULL, IDC_WAIT));
switch(Action)
{

case TOFILE:
SaveBitmap(); break;

case TOCLIPBD:
CaptureBitmap(hwnd); break;

}
SetCursor(LoadCursor(NULL, IDC_ARROW));
OpenIcon(hwnd);
break;

Once the appropriate process is completed, the OpenIcon API function is called
to restore the application to its original window size and state. At this time, the
application also regains the active focus.

The two capture processes—CaptureBitmap and SaveBitmap—use parallel
operations but are not identical.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 6

http://www.sybex.com

7

Clipboard-Capture Operations
The CaptureBitmap process begins by calling the GetDC API function but, instead
of using the application’s window handle (hwnd), we use the Desktop handle
(HWND_DESKTOP).

int CaptureBitmap(HWND hwnd)
{

HDC hdc, hdcMem;
HBITMAP hBitmap;
static int i, j, CRes, LnWidth, LnPad = 0,

xSize, ySize;

SetCursor(LoadCursor(NULL, IDC_WAIT));
hdc = GetDC(HWND_DESKTOP);
xSize = GetDeviceCaps(hdc, HORZRES);
ySize = GetDeviceCaps(hdc, VERTRES);

Once we have retrieved a handle to the Desktop device context, we can use the
GetDeviceCaps function to query the current display resolution. To capture only
a specific application’s window, the parallel process would be to simply use the
application’s handle; for example, use the GetFocus API function to retrieve a
handle for the active application’s window.

The next step is to create a memory context that is compatible with the selected
device context, and then to create a compatible bitmap.

hdcMem = CreateCompatibleDC(hdc);
hBitmap = CreateCompatibleBitmap(hdc, xSize, ySize);

Notice that the compatible bitmap created here is not a display bitmap. Rather,
hdcMem is a memory device-context handle that contains a copy of the display
image. This way, we can manipulate the image data without affecting the actual
display.

The next step includes a provisional test before proceeding to ensure that a valid
bitmap handle was returned. If the call to CreateCompatibleBitmap is successful,
hBitmap will be non-NULL, and the capture process can proceed by calling Select-
Object to select the bitmap, hBitmap, into the logical context, hdcMem. However, it
is the subsequent StretchBlt instruction that actually transfers the image from
the screen to the memory device-context handle.

if(hBitmap)
{

SelectObject(hdcMem, hBitmap);
StretchBlt(hdcMem, 0, 0, xSize, ySize,

hdc, 0, 0, xSize, ySize, SRCCOPY);

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 7

http://www.sybex.com

8

Although both BitBlt and StretchBlt provide a means of copying informa-
tion between display contexts (hdc and hdcMem in this example), StretchBlt
optionally provides the additional capability of stretching (or shrinking) the
image to fit the available display space. The BitBlt function simply executes an
exact copy.

NOTE Notice that even though StretchBlt is being used for the transfer, the source
and destination rectangles are the same size. Thus, no distortion is imposed on the
image being copied. The StretchBlt operation is necessary to copy the image
pixels from the active device context to the memory context, where they become
the bitmap referenced by the hBitmap handle.

The memory device context, however, is not the actual destination for this bit-
map. Rather, hdcMem is used as an environment where the copy of the original
image can be stretched or shrunk to fit the application’s display context.

Copying to the Clipboard

We want to give the bitmap a more permanent storage location and make it
accessible to other applications. Calling OpenClipboard opens the clipboard for
examination. The next instruction, EmptyClipboard, gives the current applica-
tion temporary ownership of the clipboard, dumping the current contents (if
any) of the clipboard.

OpenClipboard(hwnd);
EmptyClipboard();
SetClipboardData(CF_BITMAP, hBitmap);
CloseClipboard();

Next, we call SetClipboard to transfer the new material—the bitmap image—
to the clipboard, specifying the data type with the CF_BITMAP argument. Then we
call CloseClipboard, releasing ownership of the clipboard.

NOTE The preceding sequence is a fairly standard example of clipboard use, beginning
with OpenClipboard and ending with CloseClipboard. Between the
Open... and Close... commands, a variety of different actions can be
executed. But, remember that control (ownership) of the clipboard is always tem-
porary and should be relinquished as quickly as possible. See Chapter 20 in the
book for more information about clipboard operations.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 8

http://www.sybex.com

9

Finally, as with any process, a degree of cleanup is required. It begins, still
within the conditional process, by invalidating the application’s window to
ensure that the application will be repainted after it is restored:

InvalidateRect(hwnd, NULL, TRUE);
}
DeleteDC(hdcMem);
ReleaseDC(HWND_DESKTOP, hdc);
return 0;

}

The remaining cleanup provisions are not conditional but consist simply of
deleting the memory context and releasing the device context.

Painting from the Clipboard

In response to the WM_PAINT message, the Capture demo displays any bitmap
image contained by the clipboard, regardless of the source of the image. Again,
the first step (after initializing the customary device context) is to open the clip-
board. This time, however, we do not call the EmptyClipboard function, and the
application does not assume ownership, only access.

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
OpenClipboard(hwnd);
if(hBitmap = GetClipboardData(CF_BITMAP))
{

SetCursor(LoadCursor(NULL, IDC_WAIT));
hdcMem = CreateCompatibleDC(hdc);
SelectObject(hdcMem, hBitmap);
GetObject(hBitmap, sizeof(BITMAP),

(LPSTR) &bm);

This time, we use the hBitmap handle to retrieve the bitmap from the clipboard.
If there is no bitmap image, the process is aborted.

Two methods of displaying a retrieved image are used: either actual-size or
sized-to-fit. In the first case, we use the BitBlt function to execute a direct copy
to the window. In the second instance, we call the StretchBlt function to copy
the bitmap to fit the application window.

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 9

http://www.sybex.com

10

if(fExpand
{

SetStretchBltMode(hdc, iStrMode);
StretchBlt(hdc, 0, 0, cxWnd, cyWnd,

hdcMem, 0, 0,
bm.bmWidth, bm.bmHeight,
SRCCOPY);

}
else

BitBlt(hdc, 0, 0, cxWnd, cyWnd,
hdcMem, 0, 0, SRCCOPY);

SetCursor(LoadCursor(NULL, IDC_ARROW));
DeleteDC(hdcMem);

}

Last, we must call the CloseClipboard function before the painting operation
concludes:

CloseClipboard();
EndPaint(hwnd, &ps);
break;

As you can see, the big advantage of using the clipboard is simplicity. The oper-
ations involved are brief and uncomplicated, and their execution is quite speedy.
Unfortunately, the corresponding operations directed toward building a bitmap
file are not quite so simple and execute more slowly, although only marginally so.

File-Capture Operations
Capturing a bitmap to the clipboard is a task well-supported by Windows API
functions, making this task almost automatic. In contrast, a similar capture to a
file format is less well supported, requiring several specific subtasks to create
a .BMP file image.

NOTE The MFC CBitmap class does provide some further support. Unfortunately, this
class implementation is woefully incomplete.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 10

http://www.sybex.com

11

Creating the File Information Structures

A bitmap image file consists of three parts:

• A file header (BITMAPFILEHEADER)

• An information header (BITMAPINFOHEADER), which includes color-palette
information

• The actual image information

Of these, the palette information and the image data vary in structure, depend-
ing on the type of color information and the encoding method (or lack thereof)
used to store the image information.

Before any of these information structures can be created, however, the first
step is to create a device context and to retrieve information about the device
context and parameters, which will be used to describe the bitmap image. As
with the process for capturing to the clipboard, this example begins by using the
HWND_DESKTOP handle to retrieve a device-context handle. It then continues by
querying the palette size and bits per pixel, as well as the horizontal and vertical
device resolution.

int SaveBitmap()
{

HDC hdc, hdcMem;
HANDLE hBits, hFil;
HBITMAP hBitmap;
HPALETTE hPal;
LPVOID lpBits;
RGBQUAD RGBQuad;
DWORD ImgSize, plSize, dwWritten;
int i, CRes, Height, Width, LnWidth, LnPad;
BITMAPFILEHEADER bmFH;
BITMAPINFO bmInfo;
LPLOGPALETTE lp;

SetCursor(LoadCursor(NULL, IDC_WAIT));
//=== open file for write ================================

hFil = CreateFile(szFName, GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(hFil == NULL)
return(ErrorMsg(“Can’t open file”));

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 11

http://www.sybex.com

12

hdc = GetDC(HWND_DESKTOP);
CRes = GetDeviceCaps(hdc, SIZEPALETTE);
plSize = CRes * sizeof(RGBQUAD); // palette size
bmInfo.bmiHeader.biBitCount =

GetDeviceCaps(hdc, BITSPIXEL);
Height = GetDeviceCaps(hdc, VERTRES);
Width = GetDeviceCaps(hdc, HORZRES);
if(GetDeviceCaps(hdc, BITSPIXEL) == 8)

LnWidth = Width;
else

LnWidth = Width / 2;
if(LnWidth % sizeof(DWORD))

LnPad = sizeof(DWORD) - (LnWidth % sizeof(DWORD));
ImgSize = (DWORD)((DWORD)(LnWidth + LnPad) * 480);

As the necessary raw information is retrieved, several local data variables are
also calculated, including the raw image size, palette size, and the width of the
individual scan lines.

The File Header The bitmap file begins with a file header defined by the
BITMAPFILEHEADER structure, which holds information about the type, size,
and layout of a DIB (device-independent bitmap) file.

NOTE The terms bitmap and device-independent bitmap, along with the file extensions
.BMP and .DIB, were once quite different. The .BMP extension identified only
bitmaps using a device-specific structure supported by Windows 2.x. Today,
device-dependent bitmaps are effectively obsolete. Common usage has allowed
the .DIB extension to fall into disuse. The .BMP extension is used for all bitmaps,
and it’s assumed that all bitmap images are device-independent. Despite this
assumption, however, the BITMAPFILEHEADER structure is still used.

The BITMAPFILEHEADER is defined as:

typedef struct tagBITMAPFILEHEADER
{ WORD bfType;

DWORD bfSize;
WORD bfReserved1;
WORD bfReserved2;
WORD bfOffBits;

} BITMAPFILEHEADER;

The BITMAPFILEHEADER fields are described in Table S15.1.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 12

http://www.sybex.com

13

TA B L E S 1 5 . 1 : BITMAPFILEHEADER Data Fields

Field Description

bfType Specifies the file type; must be BM

bfSize Specifies the file size in DWORD units

bfReserved1 Reserved; must be zero

bfReserved2 Reserved; must be zero

bfOffBits Offset in bytes from BITMAPFILEHEADER to the start of the actual bitmap in the file

The following code excerpt shows how these fields are set in the Capture demo:

bmFH.bfType = 0x4D42; // type is “BM”

bmFH.bfReserved1 = 0L;
bmFH.bfReserved2 = 0L;
bmFH.bfOffBits = plSize + // bitmap offset

sizeof(BITMAPINFO) +
sizeof(BITMAPFILEHEADER);

bmFH.bfSize = ImgSize + // file size
bmFH.bfOffBits;

WriteFile(hFil, &bmFH, sizeof(bmFH),
&dwWritten, NULL); // write file header

The bfOffBits field, which is the offset from the first of the image file to the
beginning of the image data, is calculated as the palette size (plSize), plus the
size of the BITMAPINFO structure, plus the size of BITMAPFILEHEADER. Once this
file header is complete, this block of data is written directly to the file, using the
WriteFile API function.

The Bitmap Information Structure Within the DIB file, the BITMAPFILE-
HEADER structure is followed immediately by either a BITMAPINFO or BITMAP-
COREINFO data structure. In the Capture demo, the BITMAPINFO structure defines
the dimensions and color information for a DIB file. BITMAPINFO is defined as
follows:

typedef struct tagBITMAPINFO
{

BITMAPINFOHEADER bmiHeader;
RGBQUAD bmiColors[1];

} BITMAPINFO;

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 13

http://www.sybex.com

14

The BITMAPINFO fields are described in Table S15.2.

TA B L E S 1 5 . 2 : BITMAPINFO Data Fields

Field Description

bmiHeader BITMAPINFOHEADER containing information about the dimensions and color
format of a DIB

bmiColors An array of RGBQUAD data structures defining the colors in the bitmap

The Bitmap Information Header Structure The BITMAPINFOHEADER
structure provides information about the size and organization of the bitmap
image data and is defined as:

typedef struct tagBITMAPINFOHEADER
{

DWORD biSize;
DWORD biWidth;
DWORD biHeight;
DWORD biPlanes;
DWORD biBitCount;
DWORD biCompression;
DWORD biSizeImage;
DWORD biXPelsPerMeter;
DWORD biYPelsPerMeter;
DWORD biClrUsed;
DWORD biClrImportant;

} BITMAPINFOHEADER;

Table S15.3 describes the BITMAPINFOHEADER data fields.

TA B L E S 1 5 . 3 : BITMAPINFOHEADER Data Fields

Field Description

biSize Number of bytes required by the BITMAPINFOHEADER structure

biWidth Width of the bitmap in pixels

biHeight Height of the bitmap in pixels

biPlanes Color planes for target device; must be 1

Supplement 15 • Graphics Utilities and File Operations

Continued on next page

2642S15.qxd 11/1/99 10:10 AM Page 14

http://www.sybex.com

15

TA B L E S 1 5 . 3 C O N T I N U E D : BITMAPINFOHEADER Data Fields

Field Description

biBitCount Bits per pixel; must be 1, 4, 8, or 24 (see Table S15.4)

biCompression Type of compression for a compressed bitmap (see Table S15.5)

biSizeImage Image size in bytes

biXPelsPerMeter Horizontal resolution in pixels per meter of the optimum target device
(applications may use this value to select from a resource group a bitmap
that best matches the characteristics of the current device)

biYPelsPerMeter Vertical resolution in pixels per meter of the optimum target device
(applications may use this value to select from a resource group a
bitmap that best matches the characteristics of the current device)

biClrUsed Number of color indexes in the color table used by the bitmap (see
Table S15.6)

biClrImportant Number of color indexes considered important for displaying the
bitmap; if 0, all are important

The biBitCount field of the BITMAPINFOHEADER structure determines the num-
ber of bits defining each pixel, as well as the maximum number of colors in the
bitmap. This biBitCount field may be set to any of the values shown in Table S15.4.

TA B L E S 1 5 . 4 : Bitmap Bit Count

Value Description

1 Monochrome bitmap; bmiColors field must contain two entries and each bit in the
bitmap array represents one pixel. If the bit is clear (0), the first color entry is used; if
set (1), the second color entry is used.

4 Maximum 16 colors; bmiColors field must contain the maximum of 16 entries with
each pixel in the bitmap represented by a 4-bit index to the color table.

8 Maximum 256 colors; bmiColors field contains a maximum of 256 entries with each
pixel in the bitmap represented by a byte index to the color table.

24 Maximum 2
24

colors; bmiColors field is NULL. Each pixel in the bitmap is represented
by 3 bytes in the data array representing the relative pixel intensities of red, green,
and blue.

32 Maximum 2
32

colors; if bmiColors is BI_RGB, bmiColors field is NULL. Each pixel in
the bitmap is represented by 3 bytes in the data array representing the relative pixel
intensities of red, green, and blue. The high byte in each DWORD is ignored.

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 15

http://www.sybex.com

16

NOTE In Windows, when biCompression is BI_BITFIELDS, only one 32 bits per
pixel color mask is supported as blue = 0x000000FF, green = 0x0000FF00, red =
0x00FF0000. (The result, of course, is WHITE). In Windows NT, when biCom-
pression is BI_BITFIELDS, bits set in each DWORD mask must be contiguous
and should not overlap the bits of another mask. You do not need to use all the
bits in the pixel.

The biCompression field of the BITMAPINFOHEADER structure identifies the
compression format used, as listed in Table S15.5. (Bitmap compression formats
are discussed later in the chapter.)

TA B L E S 1 5 . 5 : Compression Format Identifiers

Field Description

BI_RGB Bitmap is not compressed.

BI_RLE8 Run-length encoded format for bitmaps, with 8 bits per pixel; uses a 2-byte format
consisting of a count byte followed by a color-index byte.

BI_RLE4 Run-length encoded format for bitmaps with 4 bits per pixel; uses a 2-byte format
consisting of a count byte followed by a byte containing two color indexes (nibbles).

BI_BITFIELDS Bitmap is not compressed; color table consists of three DWORD color masks, which
specify the red, green, and blue components, respectively, of each pixel. Valid
when used with 16- and 32-bit-per-pixel bitmaps.

The biClrUsed field specifies the number of color indexes in the color table that
are actually used by the bitmap. If the biClrUsed field is set to 0, the bitmap uses
the maximum number of colors corresponding to the value of the biBitCount
field, as listed in Table S15.6.

TA B L E S 1 5 . 6 : Values for biClrUsed

Value Description

0 Bitmap uses the maximum number of colors specified in the biBitCount field.

1..15 biClrUsed specifies the actual number of colors accessed by the device driver or
graphics image.

16..nn biClrUsed specifies the size of the color table used to optimize performance for
Windows color palettes. If biBitCount is 16 or 32, the optimal color palette starts
immediately following the three DWORD color masks.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 16

http://www.sybex.com

17

NOTE If the bitmap is a packed bitmap—the bitmap array immediately follows the
BITMAPINFO header and is referenced by a single pointer. The biClrUsed
member must be either 0 or the actual size of the color table.

Colors in the bmiColors table should appear in order of importance, putting
the highest frequency colors first. This way, if a bitmapped image is displayed
on a device with a lower color resolution, the most important colors are mapped
to the high-frequency colors in the palette.

In the Capture demo, the BITMAPINFOHEADER assignments are implemented as:

bmInfo.bmiHeader.biSize =
(DWORD) sizeof(BITMAPINFOHEADER);

bmInfo.bmiHeader.biWidth = Width;
bmInfo.bmiHeader.biHeight = Height;
bmInfo.bmiHeader.biPlanes = 1;
bmInfo.bmiHeader.biCompression = BI_RGB;
bmInfo.bmiHeader.biSizeImage = 0L;
bmInfo.bmiHeader.biXPelsPerMeter = 0L;
bmInfo.bmiHeader.biYPelsPerMeter = 0L;
bmInfo.bmiHeader.biClrUsed = 0L;
bmInfo.bmiHeader.biClrImportant = 0L;
WriteFile(hFil, &bmInfo.bmiHeader,

sizeof(bmInfo.bmiHeader),
&dwWritten, NULL); // write info header

Writing the Bitmap Palette

Thus far, only the header information has been written to the bitmap file. Both
palette and image information remain to be written. The Capture demo is set for
two types of bitmaps: those with either 16- or 256-color palettes. (For mono-
chrome, 24- or 32-bit-per-pixel bitmaps, additional provisions are necessary, as
described earlier in this chapter.)

NOTE 32-bit-per-pixel color information is essentially the same as 24-bit-per-pixel data
except for an 8-bit NULL in each entry used to pad the entry to a DWORD size.

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 17

http://www.sybex.com

18

Retrieving Palette Colors The following excerpt shows the handling for
retrieving the palette color information and begins by allocating and locking
sufficient memory space to contain the palette information:

// note: GHND = GMEM_FIXED | GMEM_ZEROINIT
hPal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +

(CRes * sizeof(PALETTEENTRY)));
// allocate memory for palette

lp = (LPLOGPALETTE) GlobalLock(hPal);
// lock the memory allocated

lp->palNumEntries = CRes;
lp->palVersion = 0x0300;

// fill in size and version (3.0)
GetSystemPaletteEntries(hdc, 0, CRes,

lp->palPalEntry);
// and get the palette information

After allocating space for the palette information, the palette size is initialized
(CRes) and the version number is set. With this done, the last step is calling Get-
SystemPaletteEntries to retrieve the actual palette color information and fill
the lp->palPalEntry structure.

Converting Palette Colors Once we retrieve the palette information, but
before the data is stored as part of the bitmap image, we must convert the
PALETTEENTRY RGB order to the RGBQUAD format used by bitmap images.

The PALETTEENTRY structure is defined as:

typedef struct tagPALETTEENTRY
{

BYTE peRed;
BYTE peGreen;
BYTE peBlue;
BYTE peFlags;

} PALETTEENTRY;

In contrast, the RGBQUAD structure used by bitmap images is the same size—
4 bytes—but uses an entirely different ordering for the colors. The RGBQUAD
structure is defined as:

typedef struct tagRGBQUAD
{

BYTE rgbBlue;
BYTE rgbGreen;
BYTE rgbRed;

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 18

http://www.sybex.com

19

BYTE rgbReserved;
} RGBQUAD;

As you can see, the PALETTEENTRY structure uses red-green-blue color order;
the RGBQUAD structure uses blue-green-red. Therefore, provisions are necessary to
convert the RGB order of the retrieved palette information to the bitmap’s GRB
order, as shown here:

RGBQuad.rgbReserved = 0;
for(i=0; i<=CRes; i++)
{

RGBQuad.rgbRed = lp->palPalEntry[i].peRed;
RGBQuad.rgbGreen = lp->palPalEntry[i].peGreen;
RGBQuad.rgbBlue = lp->palPalEntry[i].peBlue;
WriteFile(hFil, &RGBQuad, sizeof(RGBQuad),

&dwWritten, NULL);
}

As each palette entry is converted to RGBQUAD format, the converted entry is
written to the bitmap file. Also, for each entry to the file, the rgbReserved field
remains 0.

After looping though the palette information and creating the bitmap palette,
the last step is to unlock and free the memory allocated to hold the palette.

GlobalUnlock(hPal); // don’t forget to unlock
GlobalFree(hPal); // and release the memory

Still, the task is not finished. Thus far, the bitmap file and information header
have been written, followed by the color palette data, but the image data has not
been written yet.

Writing the Image Data

Earlier, I mentioned that various color resolutions use specific formats to encode
the image data, even ignoring the data-compression formats entirely. As discussed,
a 16-color image coded each pixel as a nibble of data (4 bits); a 256-color image
requires a byte of data for each pixel; and a true-color (24-bit) image expects 3 bytes
of data per pixel.

Rather than providing separate and different encoding methods for each color
format, however, the CreateCompatibleBitmap function creates a memory
device context that is compatible with the hardware device context (HWND_DESK-
TOP in the Capture demo). Then, by copying the bitmap image to this memory
context, the bitmap bits are automatically rendered in the format appropriate to
be written to the file.

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 19

http://www.sybex.com

20

hdcMem = CreateCompatibleDC(hdc);
hBitmap = CreateCompatibleBitmap(hdc, Width, 1);
hBits = GlobalAlloc(GHND, LnWidth);
lpBits = (LPVOID) GlobalLock(hBits);
SelectObject(hdcMem, hBitmap);

Because a large bitmap requires substantial space (increasing with higher color
resolutions), we use a small trick here. Instead of allocating memory space to con-
tain the entire image at once, we allocate only enough space to contain one scan
line from the image. And, this done, we lock the allocated space and select the
bitmap into the memory context—the buffer, in effect.

The SelectObject function is only a setup for the device context. Although the
bitmap has been selected to the context, no image data has yet been assigned to
this bitmap. Therefore, in the next loop, the screen is read one scan line at a time,
beginning at the bottom and working up, into the memory context; that is, into
the bitmap that was sized for a single scan line.

for(i = Height - 1; i >= 0; i——)
{

BitBlt(hdcMem, 0, 0, Width, 1,
hdc, 0, i, SRCCOPY);

GetBitmapBits(hBitmap, Width, lpBits);
WriteFile(hFil, lpBits, LnWidth, &dwWritten, NULL);

}

The whole purpose of this exercise, however, is not to create a bitmap one
pixel high, but rather to use the GetBitmapBits function to copy this segment
of image—first from the bitmap to the lpBits array and then from the lpBits
array to the image file. In this fashion, instead of providing conversions to fit
various color resolutions, the BitBlt function provides automatic conversion
by writing the data to a memory bitmap. This memory bitmap is sized to match
the original image and, therefore, is exactly the right size to be written to the file.

NOTE It may have occurred to you that instead of using a loop, all of this could have
been done in a single step (even though more memory would be required). What
you must remember, however, is that the bitmap file also requires the image to be
written from the bottom up. Copying the entire image in a single step would pro-
duce an inverted (mirrored) result. By using a loop, in addition to saving memory,
you also avoid the necessity of inverting the image before writing the file.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 20

http://www.sybex.com

21

Now, once the image has been written, the usual cleanup is necessary to release
the various memory allocations and context and handle assignments:

GlobalUnlock(hBits); // don’t forget to unlock
GlobalFree(hBits); // and release the image,
hBits = NULL; // optional but good form
DeleteDC(hdcMem); // delete and release the
ReleaseDC(HWND_DESKTOP, hdc); // device contexts
CloseHandle(hFil); // and close the file
SetCursor(LoadCursor(NULL, IDC_ARROW));
return(TRUE);

}

Finally, the CloseHandle API function is called to close the completed bitmap
image file, and the wait cursor is replaced by the default arrow cursor.

Bitmap Compression Formats
Compression is used with most image formats to reduce both memory and disk
storage requirements. Windows supports two compression formats for bitmaps:
one for 16-color images with 4 bits per pixel and one for 256-color images with
8 bits per pixel. The bitmap compression format flags are listed back in Table S15.5,
and the BI_RLE8 and BI_RLE4 formats are described in the following sections.

The BI_RLE8 Format

For 256-color images that use 8 bits per pixel to index pixels to the color palette,
the BI_RLE8 format offers two compression modes: encoded or absolute. Both of
these modes may occur in the same bitmap (and usually do).

Encoded Mode Encoded mode uses WORD values, where the first byte in
each WORD value specifies some number of consecutive values (01h..FFh) to be
drawn using the color index indicated by the second byte. As an exception, the
first byte may be set to zero to indicate an escape sequence, with the second
byte denoting the end of a scan line, the end of the bitmap, or a delta escape,
as listed in Table S15.7.

A Screen-Capture Utility

2642S15.qxd 11/1/99 10:10 AM Page 21

http://www.sybex.com

22

TA B L E S 1 5 . 7 : Compression Escape Sequences

First byte Second byte Definition

0 0 End of scan line

0 1 End of bitmap

0 2 Delta; the WORD value following the escape sequence contains
horizontal (first byte) and vertical (second byte) offsets (rela-
tive) to the next pixel position

Absolute Mode Absolute mode is indicated by a WORD value, with the first
byte set to zero and the second byte in the range 03h..FFh. The second byte
represents the number of bytes following that contain absolute color indexes
for a single pixel.

Since absolute mode also requires that each run be aligned on a WORD boundary,
absolute runs are null-padded by byte as necessary to end each run on a WORD
boundary.

BI_RLE8 Example Following is an example of hexadecimal WORD values from
an 8-bit compressed bitmap, together with the corresponding decompression
sequences:

0304 0506 0003 4556 6700 0278 0002 0501 0278 0000 091E 0001

Compressed Bytes Decompressed Results / Pixel Values

03 04 04 04 04

05 06 06 06 06 06 06

00 03 45 56 67 00 45 56 67 (a single null byte is added for padding for this absolute mode
run but is not included in the decompressed image)

02 78 78 78

00 02 05 01 Move 5 pixels right, 1 pixel down

02 78 78 78

00 00 End of scan line

09 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E

00 01 End of RLE bitmap

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 22

http://www.sybex.com

23

The BI_RLE4 Format

For 4-bit-per-pixel images, the BI_RLE4 format is used. Like BI_RLE8, this format
incorporates two modes: encoded or absolute. Both modes may occur anywhere
within an individual bitmap (and usually do).

Encoded Mode In the encoded mode, WORD values are used, and the first byte
in each WORD value specifies some number of consecutive values (01h..FFh) to
be drawn using the two color indexes contained in the second byte. Since the
second byte contains two separate color indexes—one in the high-order nibble
and one in the low-order nibble—the pixel sequence is drawn by alternating the
two values indicated. With this sequence, the first pixel uses the first color index,
the second pixel uses the second color index, the third pixel uses the first color
index, and so on, until the indicated number of pixels have been written.

As an exception, the first byte may be set to zero to indicate an escape sequence
with the second byte denoting the end of a scan line, the end of the bitmap, or a
delta escape (see Table S15.7).

Absolute Mode In absolute mode, the first byte contains zero, while the
second byte specifies the number of absolute color indexes (as nibble values)
following. Subsequent bytes contain pairs of color indexes in the high- and
low-order nibbles, with four color indexes in each WORD value.

Since absolute mode also requires that each run be aligned on a WORD boundary,
absolute runs are null-padded by nibble as necessary to end each run on a word
boundary.

BI_RLE4 Example Following is an example of hexadecimal WORD values from
a 4-bit compressed bitmap, together with the corresponding decompressed
sequences. (Single-digit values represent color indexes for single pixels.)

0540 0506 0005 4567 8000 0477 0002 0501 0478 0000 091E 0001

Compressed Bytes Decompressed Results / Pixel Values

06 40 4 0 4 0 4 0

05 06 0 6 0 6 0

00 05 45 67 80 00 4 5 6 7 8 (three null nibbles are added for padding for this absolute
mode run but are not included in the decompressed image)

A Screen-Capture Utility

Continued on next page

2642S15.qxd 11/1/99 10:10 AM Page 23

http://www.sybex.com

24

Compressed bytes Decompressed Results / Pixel Values

04 77 7 7 7 7 7 7 7 7

00 02 05 01 Move 5 pixels right, 1 pixel down

04 78 7 8 7 8 7 8 7 8

00 00 End of scan line

09 1E 1 E 1 E 1 E 1 E 1

00 01 End of RLE bitmap

Windows 98 Graphics File Operations
Windows 3.x and earlier depended on the conventional C/C++ file operators to
read and write files using, for example, the familiar fopen/fwrite/fclose func-
tions. Windows 98 and Windows NT/2000 have replacements for these old stan-
dards in the form of API function calls, three of which are introduced here as
direct replacements.

File-Open Operations
In any file operation, the first task is to open a file for either input or output. How-
ever, instead of the fopen function call familiar to C/C++ and Windows 3.1 pro-
grammers, you use the CreateFile API:

hFil = CreateFile(szFName, GENERIC_WRITE, 0, NULL,
CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

if(hFil == NULL)
return(ErrorMsg(“Can’t open file”));

Although the CreateFile function is equivalent to the fopen function, the call-
ing format, as well as the options and capabilities supported, are different. The
CreateFile function is defined as:

HANDLE CreateFile(LPCTSTR lpszName,
DWORD fdwAccess,
DWORD fdwShareMode,

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 24

http://www.sybex.com

25

LPSECURITY_ATTRIBUTES lpsa,
DWORD fdwCreate,
DWORD fdwAttrsAndFlags,
HANDLE hTemplateFile)

The CreateFile function creates, opens, or truncates a file, returning a handle
to the file for subsequent access.

If successful, the CreateFile function returns an open handle to the specified
file. If the operation fails, the returned value is -1 (0xFFFFFFFF), and you can use
the GetLastError function to retrieve extended error information.

NOTE You can use the CreateFile, WriteFile, and ReadFile functions with
named pipes and mailslots (with Windows NT) and with communication
resources, although you may need to observe some special features or restrictions.
For further details, refer to Chapter 6 in the book and to the online API function
documentation on pipes.

The CreateFile Parameters

The calling parameters for the CreateFile API function are explained in the
following sections.

lpszName This is the filename argument passed as a pointer to a null-
terminated string. The lpszName parameter specifies the name of a file,
pipe, communications resource, or console to be created or opened.

fdwAccess The fdwAccess parameter identifies the file-access type and may
be either or both of the following flag values:

GENERIC_READ Provides file read access; permits data to be read from the
file and the file pointer to be moved.

GENERIC_WRITE Provides file read/write access; permits data to be read
from and written to the file and the file pointer to be moved.

fdwShareMode The fdwShareMode parameter specifies if and how the file
can be shared and must be some combination of the following flag values:

0 File cannot be shared.

FILE_SHARE_READ File can be opened for read-only access by other appli-
cations; used to open the client end of a mailslot.

Windows 98 Graphics File Operations

2642S15.qxd 11/1/99 10:10 AM Page 25

http://www.sybex.com

26

FILE_SHARE_WRITE File can be opened for read/write access by other
applications.

lpsa The lpsa parameter is a pointer to a SECURITY_ATTRIBUTES data struc-
ture specifying file-security attributes. The file system, such as NTFS, must sup-
port security attributes before these have any effects.

fdwCreate The fdwCreate parameter specifies the action taken when the
named file already exists or when no file with this name exists. This parameter
must have one of the following values.

CREATE_NEW Creates a new file, failing if the specified filename already
exists.

CREATE_ALWAYS Creates a new file, overwriting any existing file.

OPEN_EXISTING Opens an existing file but fails if no file exists.

OPEN_ALWAYS Opens an existing file or creates a new file if none exists.

TRUNCATE_EXISTING Opens an existing file, truncating the file to a zero
size or failing if the named file does not exist. The file must be opened
using GENERIC_WRITE access (see the fdwAccess parameter).

When CreateFile creates a new file, if the fdwAttrsAndFlags argument is not
NULL, the file attributes and flags defined are ORed with the FILE_ATTRIBUTE_
ARCHIVE bit (see Table S15.8 in the next section). In like fashion, if an hTemplate-
File parameter (discussed later) is specified, CreateFile copies the extended
attributes associated with the specified template file to the newly created file.
Otherwise, the security attributes assigned to the new file are specified by the
lpSecurityAttributes parameter. Last, the newly created file’s length is set
to zero.

When CreateFile is used to open an existing file, the dwFlagsAndAttrib-
utes and hTemplateFile arguments are simply ignored, as is the lpSecurity-
Descriptor member of the lpSecurityAttributes argument. However, the
remaining flag values in the SECURITY_ATTRIBUTES structure remain valid.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 26

http://www.sybex.com

27

fdwAttrsAndFlags The fdwAttrsAndFlags argument specifies the file
attributes and flags assigned to a file. Any combination of the flags and attri-
butes listed in Table S15.8 is acceptable, except that all other flag attributes
override the FILE_ATTRIBUTE_NORMAL flag.

TA B L E S 1 5 . 8 : File Attribute Flags

Attribute Flag Meaning

FILE_ATTRIBUTE_ARCHIVE Sets archive bit, marking the file for backup

FILE_ATTRIBUTE_HIDDEN Marks the file as hidden; will not be included in an ordinary
directory listing

FILE_ATTRIBUTE_NORMAL Marks file with no other attribute bits set; valid only if used
alone

FILE_ATTRIBUTE_READONLY Marks file as read-only; cannot be written or deleted

FILE_ATTRIBUTE_SYSTEM Marks file as part of or used exclusively by the operating
system

FILE_ATTRIBUTE_TEMPORARY Marks file as temporary; applications should write to this file
only if absolutely necessary

FILE_ATTRIBUTE_ATOMIC_WRITE Marks file as an atomic write file; applications should write to
the file using atomic write semantics

FILE_ATTRIBUTE_XACTION_WRITE Marks file as a transaction write file; applications should write
to the file using transaction write semantics

FILE_FLAG_WRITE_THROUGH Instructs system to always write through any intermediate
cache and go directly to the file

FILE_FLAG_OVERLAPPED Instructs system to initialize the file so that ReadFile,
WriteFile, ConnectNamedPipe, and TransactNamedPipe
operations, which take a significant time to process, will
return ERROR_IO_PENDING; this return may be used to imple-
ment flow control

FILE_FLAG_NO_BUFFERING Opens file without intermediate buffering or caching by the
system; all reads and writes are executed on sector bound-
aries, which is useful for rapid reads/writes of large data
images

FILE_FLAG_RANDOM_ACCESS Accesses file randomly (used by Win32 API to optimize file
caching)

FILE_FLAG_SEQUENTIAL_SCAN Accesses file sequentially from beginning to end; applications
should not reposition the file pointer (used by Win32 API to
optimize file caching)

Windows 98 Graphics File Operations

Continued on next page

2642S15.qxd 11/1/99 10:10 AM Page 27

http://www.sybex.com

28

TA B L E S 1 5 . 8 (C O N T I N U E D) : File Attribute Flags

Attribute Flag Meaning

FILE_FLAG_DELETE_ON_CLOSE Instructs system to delete the file immediately after all file
handles have been closed

FILE_FLAG_BACKUP_SEMANTICS Marks file as being opened or created for a backup or restore
operation

FILE_FLAG_POSIX_SEMANTICS Accesses file according to POSIX rules; because POSIX rules
allow multiple files with the same name, differing only in
case, files created with this flag may not be accessible from
DOS, Win16, or Win32 but may be accessed from WinNT

NOTE When you use FILE_FLAG_OVERLAPPED, the system does not maintain the file
pointer. Instead, the file position is passed as part of the OVERLAPPED structure
argument to ReadFile and WriteFile calls. The ReadFile and WriteFile
functions must also specify an OVERLAPPED structure. The FILE_FLAG_OVER-
LAPPED specification and OVERLAPPED structure permit separate processes or
threads to execute simultaneous operations on a single file. Using the OVER-
LAPPED structure, each process is responsible for maintaining and updating its
own file-position pointer.

hTemplateFile The hTemplateFile parameter specifies a handle with
GENERIC_READ access to a template file, which supplies extended attributes
for the file being created. Attributes derived from a template file override any
attributes supplied as explicit parameters (by the dwFlagsAndAttributes and
lpSecurityAttributes arguments).

File-Write Operations
The WriteFile function is defined as:

BOOL WriteFile(HANDLE hFile,
CONST VOID *lpBuffer,

DWORD nNumberOfBytesToWrite,
LPWORD lpNumberOfBytesWritten,

LPOVERLAPPED lpOverLapped)

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 28

http://www.sybex.com

29

Like the fwrite function that WriteFile replaces, the purpose of the function
is to write data to a file, beginning at the position indicated by the file pointer.
After the write is completed, the file pointer is adjusted by the number of bytes
actually written, except when the file is opened with FILE_FLAG_OVERLAPPED. If
the file handle was created for overlapped I/O, the application must explicitly
adjust the position of the file pointer after the write.

The WriteFile function has the following parameters:

hFile Identifies the file to be written. The file handle must have been
created with GENERIC_WRITE file access.

lpBuffer Points to a buffer containing the data to be written to the file.

nNumberOfBytesToWrite Specifies the number of bytes to be written to
the file. A value of 0 is interpreted as a null write.

lpNumberofBytesWritten Returns the number of bytes actually written
to the file and is automatically zeroed before any work is done or any error
checking is executed. This argument cannot be NULL and must be the
address for a valid DWORD variable.

lpOverlapped Points to an OVERLAPPED structure, which is required if the
file was opened as FILE_FLAG_OVERLAPPED. Otherwise, this argument may
simply be passed as NULL. (See the “Overlapped File Operations” section.)

The WriteFile function does support a few features not normally encountered
or not relevant during DOS file operations, two of which are applicable to conven-
tional disk file operations:

• The WriteFile function will fail if the target file is locked by another
process and the attempted write overlaps the locked portion.

• If nNumberOfBytesToWrite is zero, WriteFile does not truncate or extend
the file. Instead, the SetEndOfFile function can be used to truncate or
extend the file.

NOTE Truncating a file is usually done to reset a file size to zero before rewriting the file
with new data but is occasionally used to discard portions of a record file. Extend-
ing a file is commonly employed to add space to a file before executing a direct
write. In most cases, using conventional file-management techniques, neither of
these operations are necessary.

Windows 98 Graphics File Operations

2642S15.qxd 11/1/99 10:10 AM Page 29

http://www.sybex.com

30

File-Read Operations
The ReadFile function replaces the traditional and familiar fread function. The
ReadFile function is defined as:

BOOL ReadFile(
HANDLE hFile, // file handle
LPVOID lpBuffer, // address of input buffer
DWORD nNumberOfBytesToRead, // bytes to read

LPDWORD lpNumberOfBytesRead, // count of bytes read
LPOVERLAPPED lpOverlapped) // overlapped I/O structure

The ReadFile function reads data from a file, beginning at the position indi-
cated by the file pointer. After the read is completed, the file pointer is adjusted
by the number of bytes actually read, except when the file handle has been cre-
ated with FILE_FLAG_OVERLAPPED. If the file handle was created for overlapped
I/O, the application must adjust the position of the file handle after the read.

The following are the ReadFile function’s calling parameters:

hFile Identifies the file to be read. The file handle must have been cre-
ated using GENERIC_READ or GENERIC_WRITE file access.

lpBuffer Points to the buffer to receive data read from the file.

nNumberOfBytesToRead Specifies the number of bytes to read from the file.

lpNumberOfBytesRead Returns the number of bytes actually read and
is automatically zeroed before any work is done or any error checking is
executed. This argument cannot be NULL but must be a valid address for a
DWORD variable.

lpOverlapped Pointer to an OVERLAPPED structure, which is required if
the file was opened with FILE_FLAG_OVERLAPPED. Otherwise, this argu-
ment may be passed simply as NULL. (See the “Overlapped File Opera-
tions” section.)

If the return value is TRUE but the number of bytes read is reported as zero, the
file pointer was beyond the current end of the file at the time of the read.

The ReadFile function will fail (returning FALSE) if part of the file has been
locked by another process and the read overlaps the locked portion.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 30

http://www.sybex.com

31

Overlapped-File Operations
The OVERLAPPED structure, which remains an optional argument in ReadFile
calls when file sharing is not enabled, can be used to set a custom file pointer—
that is, a custom pointer to a location (offset) within a file.

The OVERLAPPED structure is defined as:

typedef struct _OVERLAPPED
{

DWORD Internal;
DWORD InternalHigh;
DWORD Offset;
DWORD OffsetHigh;
HANDLE hEvent;

} OVERLAPPED;

typedef OVERLAPPED *LPOVERLAPPED;

The structure’s fields are defined as follows:

Internal Reserved for system use; specifies a system-dependent status
that is valid only when GetOverlappedResult returns without setting the
extended error information to ERROR_IO_PENDING.

InternalHigh Reserved for system use; specifies the length transferred;
valid only when GetOverlappedResult returns TRUE.

Offset DWORD value specifying the low-order 32-bits of the offset address
for the transfer. The specification is a file position defined as a byte offset
from the start of the file.

OffsetHigh Optional DWORD value specifying the high-order 32 bits of
the offset address for the transfer.

hEvent Identifies an event to be set to the signaled state when the trans-
fer is complete. The hEvent argument is optional; however, if an event is
used, it must be identified here before calling the ReadFile, WriteFile,
ConnectNamedPipe, or TransactNamedPipe API functions.

NOTE Both the Offset and OffsetHigh fields are ignored when reading from and
writing to named pipes and communications devices.

Windows 98 Graphics File Operations

2642S15.qxd 11/1/99 10:10 AM Page 31

http://www.sybex.com

32

Most applications, when opening a file for read or write, will call CreateFile
without using the FILE_FLAG_OVERLAPPED flag. In this case, both ReadFile and
WriteFile calls can be made passing the lpOverlapped argument as NULL, ini-
tiating the read or write operation at the current file position. If, however, the
lpOverlapped argument is provided, the read or write operation will be initi-
ated at the file offset specified in the OVERLAPPED structure. In either case, neither
ReadFile nor WriteFile will return until the file operation is completed.

Alternatively, if CreateFile was called using the FILE_FLAG_OVERLAPPED flag,
the lpOverlapped argument is required to provide the current file position for
both read and write operations. If this argument is not provided, both ReadFile
and WriteFile will return FALSE, and GetLastError will report
ERROR_INVALID_PARAMETER.

When a valid lpOverlapped argument is supplied, the read or write operation
begins at the offset specified. However, either ReadFile or WriteFile may return
before the operation is completed, returning a result of FALSE, and GetLastError
reports ERROR_IO_PENDING. This provision allows the process calling ReadFile
or WriteFile to continue with other tasks as the read or write operation contin-
ues independently.

File-Size Reports
The GetFileSizeAPI function includes provisions to recognize and report on files
that are larger than 4GB, even though such generous file sizes are currently unlikely.

DWORD GetFileSize
(

HANDLE hFile, // handle of file to get size of
LPDWORD lpFileSizeHigh

// address of high-order DWORD for file size
);

The GetFileSize function returns a DWORD value reporting the low-order
32 bits of the file size. The second argument, LPDWORD, is an optional pointer to
a second DWORD value, which will receive the high-order 32 bits of the file size.

If an error occurs, the return value in the low-order 32 bits will be 0xFFFFFFFF.
If the actual file size causes this same value to be returned, a call to the Get-
LastError function will report NO_ERROR. However, in general, even though a
maximum file size of 1.8x1019 bytes can be reported, most present applications

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 32

http://www.sybex.com

33

can simply ignore the high-order 32-bit value (by using NULL as the calling argu-
ment) and assume that the actual file size is smaller than the 4GB still possible.
For larger files, you would supply a pointer to a DWORD value to receive the high-
order 32-bit value.

File-Close Operations
For file operations, the CloseHandle function replaces the familiar fclose func-
tion. The CloseHandle function requires only one argument: the file handle origi-
nally returned by the CreateFile function call.

CloseHandle invalidates the specified object handle, decrements the object’s
handle count, and performs object-retention checks. Once the last handle to an
object is closed, the object is removed from the system. The CloseHandle func-
tion, however, does not close module objects.

NOTE The CloseHandle function is not limited to closing files. It can also be used with
handles for console input or output, events, file mapping, mutex, named pipes,
processes, semaphores, and threads. See Chapters 5, 6, and 7 in the book for
examples.

Image File Formats
Along with the Window’s native BMP image format, many other image formats
exist. You may need to work with various formats when you are importing and
exporting images between applications.

Here, we will cover three popular image file formats: .PCX, .GIF, .TIF, and
.TGA. Other formats that you may encounter include the GEM/IMG format,
used by Ventura Publisher among others; the PIC or MacPaint format, used
by the Apple Macintosh; and PostScript (.EPS) image formats.

Paintbrush’s PCX Format
For a long time, ZSoft’s Paintbrush (.PCX) format provided the de facto standard
for non-Windows (DOS) bitmapped images. Most graphics programs contain
some provision for conversion from their native formats to .PCX formats. Also,

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 33

http://www.sybex.com

34

the original PBRUSH.EXE paintbrush program distributed with Windows was
written by ZSoft and included .PCX/.BMP conversion facilities.

As graphics devices have become increasingly sophisticated, the .PCX image
format has kept pace. Instead of being a single format, the PCX standard com-
prises a series of formats including 8-, 16-, and 24-bit color formats, as well as
true-gray and monochrome formats.

PCX File Structure

All PCX image files begin with a header defined as:

typedef struct tagPCXHEAD
{

char manufacturer; // always 0xA0
char version; // version number
char encoding; // should be 1
char bits_per_pixel; // color depth
short xmin, ymin; // image origin
short xmax, ymax; // image dimensions
short hres, yres; // image resolution
char palette[48]; // color palette
char reserved;
char color_planes; // color planes
short bytes_per_line; // line buffer size
short palette_type; // gray or color palette
short hscreensize; // horizontal screen size
short vscreensize; // vertical screen size
char filler[54]; // null filler

} PCXHEAD;

NOTE For 16-bit Windows systems, the xmin, xmax, ymin, ymax, hres, vres,
bytes_per_line, palette_type, hscreensize, and vscreensize
fields have been commonly defined as int. For 32-bit Windows, because int is
now defined as a 4-byte value, this definition has been changed to short to
preserve the necessary 2-byte field length.

The header has the following fields:

manufacturer A check identifying the file as a Paintbrush format image
and should always be 0x0A.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 34

http://www.sybex.com

35

version Identifies the version of PC Paintbrush which created the image
file. Valid values are 0 (no palette information; Paintbrush 2.5, the earliest
incarnation), 2 (valid palette information), 3 (monochrome or the display’s
default palette), 4 (Paintbrush for Windows), or 5 (Paintbrush 3.0 or later,
including 24-bit image files).

encoding Should always be 1, indicating that PCX’s run-length encoding
(RLE) has been used. Note, however, that other values may indicate newer
versions and newer encoding schemes.

bits_per_pixel Reports the number of bits to represent each pixel (per
color plane). Possible values are 1, 2, 4, 8, or 24.

xmin, ymin Specify an offset position for the upper-left corner of the
image relative to the upper-left corner of the screen (or window). In most
cases, no offset is specified, and xmin and ymin will be 0. (Even when an
offset is specified, it is still the prerogative of the application, or program-
mer, to accept or ignore this offset as desired.)

xmax,ymax Specify the image dimensions. Note that the sizes indicated
by xmax and ymax are off by 1, because the actual pixel count begins with
zero. For example, for an image with a width of 480 pixels, the xmax value
would be 479. The actual width and height of the image should always be
calculated as:

width = (pcxHead.xmax - pcxHead.xmin) + 1;
height = (pcxHead.ymax - pcxHead.ymin) + 1;

hres, vres Provide the resolution of the device (or video mode) where
the image was created; for most purposes, these values may be ignored.

palette A buffer that contains the palette color information for images
with 16 or fewer colors (3 bytes per palette entry or 48 bytes in length). For
larger palettes (such as 256-color palettes), this information is appended at
the end of the image data. The palette structure used in either case consists
of a series of RGB triplets, with the first byte in each defining the red level,
the second defining the green level, and the third byte defining the blue
level.

color_planes Defines the image’s color planes. The value is 4 for EGA
16-bit color images or 1 for all other images, including monochrome.

bytes_per_line Reports the number of bytes to allocate for a scan-line
plane. This value must be an even number and cannot be calculated by
subtracting xmin from xmax.

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 35

http://www.sybex.com

36

palette_type Originates with the advent of VGA graphics systems
with a value of 1 for gray-scale and a value of 2 for full color. This field is
ignored in later versions of Paintbrush.

hscreensize, vscreensize Report the horizontal and vertical screen
size (of the original system) in pixels. These fields were defined for Paint-
brush IV and Paintbrush IV+; for all other versions, these should be NULL.

filler Pads out the header to 128 bytes and should be filled with nulls
(zeros). (Future revisions may redefine the image header by using parts of
the filler field for new purposes.)

The ViewPCX Demo: Reading a PCX Image

The ViewPCX demo demonstrates reading a 256-color PCX image and provides
an example of a file lookup dialog box to select an image file. Note that no provi-
sions are made for changing the filename extension or for displaying any format
of PCX file except one with a 256-color palette.

Since all .PCX images use the same header structure, the first step for reading
any .PCX file is to retrieve the header data. The ViewPCX demo uses the Windows
CreateFile and ReadFile API functions. More important, ViewPCX makes use
of the OVERLAPPED structure to maintain a custom file pointer while executing an
asynchronous file read.

The first step is to open the file to read:

hFile = CreateFile(PCXFile, GENERIC_READ, 0, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

Of course, there is always the need for a provision to report possible errors.
If the CreateFile function fails, the return value (in hFile) will be INVALID_
HANDLE_VALUE, which is handled in a relatively typical fashion:

if(hFile == INVALID_HANDLE_VALUE)
{

wsprintf(szBuff, “Error: %d — unable to open %s!”,
GetLastError(), PCXFile);

ErrorMsg(szBuff);
return(FALSE);

}

Assuming the file is opened correctly, the image header is retrieved:

ReadFile(hFile, &pcxHd, sizeof(PCXHEAD), &fRes, NULL);
if((fRes != sizeof(PCXHEAD)) ||

(pcxHd.manufacturer != 0x0A))

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 36

http://www.sybex.com

37

{
CloseHandle(hFile);
ErrorMsg(“Not a valid .PCX file”);
return(FALSE);

}

The ReadFile operation is followed by two checks: The first check tests fRes
(the byte count actually returned) against the expected (and requested) byte size,
ensuring that a complete header structure was found and retrieved. The second
check tests the identification byte to ensure that it is identified as a PaintBrush
PCX format image.

At this point, the image has been identified as, presumably, a proper PCX
format. However, there are several possible PaintBrush formats; any further
progress depends on the image type and the palette information (if any).

NOTE It is easy to add decode and display provisions for black-and-white and 16-color
palettes to the demo. For 24-bit color images, you will need to make slightly more
elaborate provisions, beginning with a 24-bit video card and an appropriate driver.
But, remember, no palette is included in 24-bit-per-pixel images because each
pixel contains its own color information as a 3-byte RGB value.

Because 256-color palettes require 3 bytes per color, or a total of 728 bytes to
define the palette, the .PCX file header lacks sufficient space to contain the palette
information. Instead, the palette information is appended to the end of the PCX
image file.

The logical first step, since we are assuming that this is a 256-color image, is to
make sure that the image file is large enough to actually contain, at a minimum,
the image header, plus a 768-byte palette, plus a 1-byte palette ID. This is easily
accomplished:

fSize = GetFileSize(hFile, NULL);
if(fSize < (769 + sizeof(PCXHEAD)))
{ // wrong format — too small for palette

CloseHandle(hFile);
ErrorMsg(“Not a 256 color image format”);
return(FALSE);

}

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 37

http://www.sybex.com

The next logical check is to test the header version number where a value of 5
indicates the presence of a palette. However, the mere presence of a palette of
some size does not ensure that the image is a 256-color format. Therefore, the next
step is to retrieve the palette information by using a seek to an offset from the end
of the file.

Using conventional DOS file operations, this could have been done using the
fseek function:

fseek, fp, -769L, SEEK_END);

However, using the ReadFile API function, a different approach is necessary
to accomplish a similar task. In the ViewPCX demo, an initial offset value is
assigned:

fPos.Offset = fSize - 769; // seek palette start
fPos.OffsetHigh = 0L;
fPos.hEvent = NULL;

The assigned offset is the file size (fSize) minus 769, placing the file pointer
one byte ahead of the expected palette. Since a file size greater than 4GB is not
anticipated, the fPos.OffsetHigh field is set as zero and will be ignored. Last,
the fPos.hEvent field is set as NULL, because no special reports or controls are
needed.

After setting the offset, the ReadFile API is called to return a single byte that
will be tested for the palette identifier. Then, after incrementing the offset to
account for the byte just read, ReadFile is called a second time to retrieve the
assumed palette information.

bResult = ReadFile(hFile, &chPal, 1, &fRes, &fPos); // get palette ID
fPos.Offset++; // advance pointer
bResult = ReadFile(hFile, &pcxPal, 768, &fRes, &fPos); // get palette

Last, the version number, palette ID, and returned palette size are tested. If any
of these three tests fail, the file is closed, an error message reports that the image
was not acceptable, and the process exits:

if((pcxHd.version != 5) || // check version number
(chPal != 0x000C) || // check palette ID
(fRes != 768)) // check palette size

{

38 Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 38

http://www.sybex.com

CloseHandle(hFile);
ErrorMsg(“Not a 256 color image format”);
return(FALSE);

}

Assuming that everything else is acceptable, the retrieved palette information is
decoded to a format acceptable to the device context, a logical palette structure.

SetCursor(LoadCursor(NULL, IDC_WAIT));
//========= create palette ============================
hPCXPal = GlobalAlloc(GHND, sizeof(LOGPALETTE) +

256 * sizeof(PALETTEENTRY));
lPal = (LPLOGPALETTE) GlobalLock(hPCXPal);
lPal->palVersion = 0x0300;
lPal->palNumEntries = 256;
for(i=j=0; i<256; ++i)
{

lPal->palPalEntry[i].peRed = pcxPal[j++];
lPal->palPalEntry[i].peGreen = pcxPal[j++];
lPal->palPalEntry[i].peBlue = pcxPal[j++];
lPal->palPalEntry[i].peFlags = PC_NOCOLLAPSE;
// use PC_NOCOLLAPSE instead of PC_RESERVED —— //
// PC_RESERVED maps to nearest existing color //
// but no good matches exist for this purpose //

}
hPCXPal = CreatePalette(lPal);
hOldPal = SelectPalette(hdc, hPCXPal, FALSE);
RealizePalette(hdc); // palette is now active

After retrieving the image palette information, the application needs to return
the image data. Using the DOS file functions, this task would have been accom-
plished as:

fseek(fp, 128L, SEEK_SET);

However, using the ReadFile API, the process reverts to using the OVERLAPPED
structure to set the offset:

fPos.Offset = 128; // set file ptr to image data

Because the PCX header, regardless of the image type, is always 128 bytes in
length, finding the beginning of the image data is easy. However, decoding the
data does require a few provisions.

39Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 39

http://www.sybex.com

40

Also, to simplify the decoding process, the image data is read and decoded
one scan line at a time. However, because the image is RLE, it’s hardly practical
to determine exactly how many bytes are in a single scan line before reading the
data. Therefore, in order to continually update the fPos.Offset value, a new
variable, Index, is used during the decode process to determine how many bytes
of data have been used and, before the next scan line is read, to increment the
offset.

A 256-color PCX image always uses RLE, much the same as in other image for-
mats. Thus, while reading the data, if the two high bits are set (the byte value is
greater than 0xC0), then the byte is read as byte count specifying the repeat count
for the following byte. For example, the byte value 0xFE indicates that the next
byte read will be repeated 0x3E or 62 times (0xFE – 0xC0 = 0x3E).

Now, as you may realize, this also means that individual pixels with palette val-
ues in the range 0xC0..0xFF, which make up 75 percent of the total palette, require
two bytes, rather than appearing as a single byte. Therefore, a run of pixels with
the palette values 0xDE, 0xDF, 0xDF, 0xEA, 0xE2, 0xE7 would be encoded as 0xC1,
0xDE, 0xC2, 0xDF, 0xC1, 0xEA, 0xC1, 0xE2, 0xC1, 0xE7, which is not precisely a
savings. This does, however, illustrate the importance of building the palette with
the high-frequency color entries appearing first. Still, shortcomings aside, RLE
does generally reduce rather than increase file size.

There are still a few tricks involved in decoding an RLE image. For example,
the decoding provision used in ViewPCX begins by initializing two values, i and
j, before initiating a loop for the scan lines.

j = Index = 0; // initialize position
while(j < depth)
{

fPos.Offset += Index;
i = Index = 0;
ReadFile(hFile, &ImgArray, sizeof(ImgArray), &fRes, &fPos);

The offset field in fPos is incremented at the beginning of each cycle of the loop;
the first time around, however, Index is already zero, so the offset remains at 128
bytes, which is the beginning of the image data. On subsequent cycles, after the
offset is adjusted, Index is reset to zero in preparation for the following decode
process. At this point, the ReadFile call has read a block of image data, beginning
at the specified offset.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 40

http://www.sybex.com

41

After reading the data, a new loop is initialized to handle decoding a single
scan line from the image. Within this loop, the first step is a test to determine if
the current byte is a repeat value:

do
{

if((ImgArray[Index] & 0xC0) == 0xC0)
{

If the current byte is a repeat byte (greater than 0xC0), the count variable is
derived, and a new for loop begins to paint the required number of pixels using
the next byte in the data array as the palette index.

count = ImgArray[Index++] & 0x3F;
for(k=0; k<count; k++)
{

SetPixelV(hdc, i++, j,
PALETTEINDEX(ImgArray[Index]));

if(i >= pcxHd.bytes_per_line) k = count;
} // if line is too long just ignore any wraps

}

The SetPixelV API function is essentially the same as the customary SetPixel
API call, with one difference: Where SetPixel returns the existing color index
for the pixel written, SetPixelV is marginally faster because it does not handle a
return value. But remember that the image data is not an RGB value but rather a
palette-index entry. However, both SetPixel and SetPixelV expect a COLORREF
value, supplied here by calling the PALETTEINDEX macro with the palette index as
an argument.

Last, purely as a precaution against encoding errors (which are not entirely
unknown), if the repeat count extends beyond the scan-line length, the variable k
is reset to terminate the inner loop.

If the initial test shows that the byte value is not a repeat count, SetPixelV is
called once:

else
SetPixelV(hdc, i++, j,

PALETTEINDEX(ImgArray[Index]));

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 41

http://www.sybex.com

42

In either case, the Index value is incremented once more to point to the next
element in the data array:

Index++;
}
while(i < pcxHd.bytes_per_line);
j++;
i = 0;

}

The loop continues until i reaches the length of the scan line, after which, the
vertical position (j) is incremented and the horizontal position (i) is reset to the
first of the line.

Remember, the variable Index is used both to track the current position within
the data array and, after decoding each scan line, to reset the OVERLAPPED offset
before reading the next data block.

NOTE The ViewPCX demo is included on the CD that accompanies this book, in the Sup-
plement 15 folder.

Alternatives for Decoding PCX Images

Several alternatives are possible for decoding PCX images. The code shown in
the ViewPCX demo is not the most efficient in terms of display; it was chosen to
demonstrate using the OVERLAPPED structure.

One alternative is to use a different format to dynamically allocate an array
large enough to hold all of the image data returned by a single ReadFile opera-
tion. With this method, a DWORD variable, such as Index, would keep track of the
position within the data in the same fashion demonstrated within the loop in
ViewPCX. The advantage, however, is that you need only one read operation,
which would obviously accelerate operations.

A second alternative might be considered because the present method requires
reading and decoding the image file every time a WM_PAINT message is received.
You could change the handling, reading the image as a PCX file but creating a
memory bitmap image from the result. This operation would be done only once,
when the image file was selected rather than when the WM_PAINT message was
received.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 42

http://www.sybex.com

43

Then when a screen repaint is required, all that would be necessary would be to
repaint the screen image using the BitBlt function, which is intrinsically faster
than repeatedly reading and decoding the image file. Using the SetPixelV (or the
SetPixel) function to paint a bitmap image is also intrinsically slow compared to
using BitBlt (or StretchBlt) to simply transfer an image in bulk from a mem-
ory context to the screen context.

You can find the basics required for this second alternative in the Capture-
Bitmap function in the Capture demo discussed earlier in this chapter (see the
complete listing on the CD). Don’t forget, however, to set the palette for the
memory device as well as the active device context; otherwise, the resulting
colors may be interesting but unexpected.

Implementing either of these alternatives, which you could also combine, is left
as an exercise for the reader. However, the program listings (on the CD) include a
code fragment showing how to create a bitmap from the PCX image data. As you
will observe, the PCX image data must be decoded one line at a time before being
transferred, using BitBlt, to build up the bitmap image.

24-Bit PCX Files

When you’re working with 24-bit-per-pixel PCX images, remember that they do
not contain any palette information. Instead, these images provide full 24-bit color
information for each pixel in the image. Identified as version 5 or later, 24-bit PCX
images store their data as 8 bits per color plane, in three planes. These are decoded
in the same fashion as 16-color images, except that byte values (8 bits) are read as
lines of red, green, and blue, in that order.

Therefore, to decode 24-bit PCX images, three scan lines are read as red, green,
and blue image lines. After RLE decoding, these lines are treated by combining the
first byte of each scan line as an RGB-triplet pixel value, rather than as a palette
value. The second pixel uses the second byte from each scan line, and so forth.

Monochrome PCX Images

For monochrome PCX files, decoding is quite simple. First, if the two high bits of
a byte are clear (ANDing with 0xC0), then the six least-significant bits are written
to the image as a series of six pixels. (If a bit is set, the pixel is on; otherwise, the
pixel is off.)

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 43

http://www.sybex.com

44

If the two high bits are set, an index count is created by ANDing the byte with
0x3F and using this count (0..63) to repeat the next byte count number of times,
optionally up to a total of 504 pixels (the repeated byte defines an 8-pixel series).

Obviously, the PCX encoding scheme is heavily weighted for use with images
containing large contiguous areas. This is not, however, particularly efficient for
scanned images (but, then, scanners were quite uncommon when the PCX format
was created).

16-Color PCX Images

Paintbrush PCX images may have 2, 4, 8, or 16 colors before jumping to 256 color
images. But, for 16 or fewer colors, the handling remains essentially the same,
because the image is treated as four interleaved monochrome images, which is
consistent with the EGA video format.

Although this format may sound mysterious, the reason lies in the structure
of EGA video cards that were the intended environment for 16-color images. On
EGA cards, four 32KB memory pages were treated as layers: one each for red,
green, blue, and intensity. (Admittedly, this is an oversimplification.) The point
is that the 4 bits selecting a palette color are written 1 bit to each plane, if you’re
working in machine language and accessing these planes directly.

In this circumstance, however, the question is how to decode the image, not the
mechanics of an EGA card. To decode a 16-color PCX image, four scan lines are
read and, initially, treated as monochrome masks. To create color (palette) infor-
mation, the first bit from each scan line is combined after decoding, by shifting
the bit from the second scan line one place left, the third scan line two places left,
and the fourth scan line three places left to produce a 4-bit nibble.

This sequence of nibbles creates a single scan line for the image and can be
written to the screen (or converted to another format) as index values to the
16-color palette.

CompuServe’s Graphics Interchange Format
Perhaps one of the most popular image formats in general use—in terms of images
available on bulletin boards, disk libraries, and CD-ROMs—is the Graphics Inter-
change Format (GIF). This format was developed by CompuServe as a vehicle for
graphics images which could be transferred between different computer systems.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 44

http://www.sybex.com

45

Although GIF is copyrighted by CompuServe, a blanket, nonexclusive, limited,
royalty-free license has been granted to all developers, permitting free use of the
GIF format in computer graphics applications.

The GIF format uses a very effective compression scheme, utilizing variable-
length LZW compression (named for its developers: Lempel, Ziv, and Welsh).
Although relatively complex to encode and decode, LZW compression has an
important advantage over the simpler RLE compression schemes used by BMP
and PCX images: reduced size. Images using LZW compression are virtually
always considerably smaller than corresponding images created using RLE
compression. LZW compression builds tables of patterns from the original,
replacing repetitive patterns or pixel sequences with indexes to the table entries.
LZW compression is also available in the public domain and is used in a variety
of applications and forms, not just for image compression.

Other features supported by the GIF format include provisions for multiple
images within a single file, local color tables including 256 colors, and interleav-
ing scan lines (as used in PCX formats). The GIF format also has provisions for
user-defined extensions.

GIF images are currently identified by two signatures, GIF87A and GIF89A,
found in the first six bytes of the image and identifying, respectively, the original
1987 and 1989 revisions.

TIP Current GIF standards and specifications (GIF89A) are readily available on Compu-
Serve (GO GRAPHIC SUPPORT FORUM), as well as from a variety of other online
services and private BBSs. A wide variety of GIF display programs, format conver-
sion programs, source code examples, and GIF images are available through these
same sources.

Tagged Image File Format
The Tagged Image File Format (TIFF) is perhaps the most complex of the popular
formats. This format incorporates a variety of methods for describing images and,
depending on the implementation, may provide several different means of data
compression.

Image File Formats

2642S15.qxd 11/1/99 10:10 AM Page 45

http://www.sybex.com

46

A second strength of the TIFF image format is that .TIF images, stored in
uncompressed format, are capable of tremendous compression using standard
file-compression utilities. Compressions of 97 to 99 percent are not uncommon.

This format is popular with typesetting and production graphics applications,
partially because it was one of the earlier formats capable of supporting
high-resolution images and partially because it provides several subformats
optimized for different types of images. The following five classes of TIFF images
are supported:

• Class B TIFF files consist of black-and-white images, coded as one bit per
pixel and providing three compression formats: none, CCITT Group 3, and
PackBits.

• Class G TIFF files are used for gray-scale images consisting of 4 or 8 bits per
pixel (16 or 256 shades of gray) and are either uncompressed or use LZW
compression.

• Class P TIFF files support color palettes using 1 to 8 bits per pixel and are
either uncompressed or use LZW compression.

• Class R TIFF files are used for 24-bit-per-pixel images and, optionally, use
LZW compression.

• Class F TIFF files are used for fax images.

TIFF formats can be used as demanded by circumstances. Remember, however,
that these are provisions only of the TIFF specification. No actual implementation
of the TIFF image software includes all possible formats or compression schemes.
There are a number of other TIFF variations in use that do not follow any published
standards. In general, these tend to consist of variant compression algorithms but
may vary in other ways as well.

Typically, a TIFF encoder/decoder may run five to ten thousand lines of code.

TIP The TIFF file specification and format instructions are available by request from
either Aldus or Microsoft. Examples are available for a variety of systems.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 46

http://www.sybex.com

47

Truevision’s TARGA Format
The TARGA (TGA) file format, originally developed by Truevision, Inc., has been
the predominate 24-bit image format used with frame-grabber boards. Truevision
markets computer/camera interface boards that are used extensively on machine
imaging, as well as for a variety of other applications. Using TARGA cards, or any
of a variety of competing brands and models, images are captured directly from
video cameras with pixel depths of 16, 24, or 32 bits.

Previously, a TARGA card (or equivalent) was required, usually along with a
second, high-resolution monitor, to display TGA images. Today, you can use a
single monitor and a wider variety of video cards that are capable of supporting
24-bit-per-pixel images, although these are not yet in widespread use.

All three of the image formats supported (16, 24, or 32 bits per pixel) can be
considered true-color formats. And, speaking from personal experience in a color-
critical application, I can report that the differences between images using these
three formats are quite indistinguishable to the human eye, even tested in side-
by-side displays of highly magnified gemstones.

Pixels in the 24-bit image format consist of three 8-bit color values in RGB
order. The 32-bit format also contains three 8-bit color values, but also include
a fourth 8-bit field, which is NULL and simply ignored, having no purpose except
to pad the entry to a DWORD size for convenience in handling and alignment.

The third format, 16 bits per pixel, consists of three 5-bit color values with the
sixteenth, high bit treated as an intensity bit. If the high bit is set, the three 5-bit
image color values each correspond to the five most-significant bits in the corre-
sponding 8-bit color values. If the high bit is cleared, the three 5-bit values are
shifted right one 1 bit, decreasing color intensity.

TIP TARGA image file specifications can be requested from Truevision, Inc, 7340
Shadeland Station, Indianapolis, IN 46256-3919. The phone numbers are 317-
841-0332 (voice) and 317-576-7700 (fax).

Techniques for Converting 24-Bit Color Images

2642S15.qxd 11/1/99 10:10 AM Page 47

http://www.sybex.com

48

Techniques for Converting
24-Bit Color Images

Although 24-bit true-color cards are becoming popular, they are still not com-
mon. For the present, SVGA (256-color) cards remain the high-resolution stan-
dard and are likely to continue so for at least the next few years. At the same
time, the 24-bit video frame-capture systems are also popular but cannot be
readily displayed on SVGA systems.

There is a solution: Convert 24-bit color images captured by video cameras
to 256-color palette images, which can be displayed on most available systems.
(Some graphics programs designed to manipulate 24-bit color images offer just
such a palette-compression feature under the generic title Posterizing.)

Converting a potential palette of 16 million colors (224 = 16,777,216) to a palette
with a mere 256 colors does seem to be a considerable degradation in image qual-
ity, but it isn’t really quite as bad as it sounds. While the potential palette size of a
24-bit image is over 16 million colors, the actual image (assuming 400×512 pixels)
is a total of only 204,800 pixels. Assuming that no individual pixels share the same
color, the reduction to a 256-color palette is only an 800-to-1 color reduction rather
than 65536-to-1, an improvement of 82:1.

Commonly, however, a typical image will contain a much smaller range of
actual colors—perhaps as many as 400 or 500 distinct shades, but usually fewer.
And, even when the color variation is high, many shades that are technically dif-
ferent will still be relatively close in hue and can be represented by a single
palette entry.

Several methods exist for converting 24-bit images to 256-color palette images.
The simplest method, although not necessarily the best approach, is to begin by
constructing a 256-color palette containing a range of hues that can be used for a
variety of images. The drawback to this method is that the resulting palette does
not match any image very well and the resulting displays have a rather cartoon-
like quality about them. The following sections suggest some other methods.

A Frequency-Ordered Palette
A better method than constructing a simple 256-color palette is to begin by con-
structing a histogram of the colors represented in a specific image. This entails

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 48

http://www.sybex.com

49

processing the entire image to construct a frequency record for each individual
color in the image.

After this is completed, you can build a custom, frequency-ordered palette from
the highest frequency colors with the remaining image pixels mapped to their near-
est equivalents from the palette. (Hint: Reserve two of the 256 palette entries: one
each for pure white and pure black.)

Next, after constructing a palette of the high-frequency colors, map the ori-
ginal palette values as indexes to their corresponding palette entries or, if no
matching palette entries exist, to the closest available palette entry.

A Distributed Palette
Another conversion approach follows the same general pattern of creating a his-
togram of the actual colors; however, instead of simply taking the 256 (or 254)
highest frequency colors to create the palette, you create a distributed palette.

In this format, after creating a binary tree of color frequencies, the color tree is
scanned for the total number of entries and for the range of differences between
colors. If fewer than 256 entries are found in the tree, the palette can be con-
structed directly, based on frequency.

If more than 256 entries are found in the tree, you need to apply a color-conversion
algorithm to find the closest matches in the tree, reducing the branches of the tree by
eliminating the lowest frequency entries that have close matches. When the tree is
reduced to a suitable number of entries, the remaining entries are used to create the
palette.

If the number of branches (total colors) is, arbitrarily, less than one and a half
times the palette size, a distributed palette is probably not necessary. On the other
hand, if the number of colors exceeds this arbitrary threshold, a distributed palette
may provide a better color spread than a frequency-ordered palette.

There are two considerations in selecting entries for a distributed palette: the
uniqueness of the palette entry and the frequency of the color.

Taking the second consideration first, it should be fairly obvious that there’s lit-
tle benefit in devoting a limited resource—a palette entry—to a color that is used
by very few pixels in the image. Precisely where this cutoff should be established
is arbitrary, but in an image composed of 200,000 pixels, a frequency of 20 pixels is
0.01 percent of the total or 0.25 percent of the average. This value is low enough

Techniques for Converting 24-Bit Color Images

2642S15.qxd 11/1/99 10:10 AM Page 49

http://www.sybex.com

50

to suggest that the color in question could be safely mapped to an existing palette
entry.

The first consideration, uniqueness of a palette entry, is a different matter. This
factor must be calculated carefully, taking all three of the color components (red,
green, and blue) into account. The obvious method of comparing two color val-
ues is to sum the absolute difference of the red, green, and blue components:

dC = abs(R1 - R2) + abs(G1 - G2) + abs(B1 - B2)

The objective here, however, is to emphasize the difference between two colors
and to find which colors in the image are the closest to each other and can, therefore,
be represented by a single palette entry. The color difference (dC) can be better
emphasized using a nonlinear formula:

dC = (R1 - R2)2 + (G1 - G2)2 + (B1 - B2)2

This second formula shifts the weighting to emphasize differences in a single color
component over difference distributed throughout the three color components.

For example, assume three colors, C1, C2, and C3, with RGB values 0x1F2C3B,
0x1F2A3B, and 0x1E2D3A, respectively. Using the first, unweighted formula, C1
and C2 have a color difference of 2 (in the green component); C1 and C3 have a
color difference of 3 (1 each in the red, green, and blue values).

Using the second, weighted formula, however, the C1 and C2 entries have a
weighted difference of 4 against the weighted difference of 3 for C1 and C3.

Still, as discussed previously when speaking of gray-scaled palettes and con-
verting colors to true-grays, the human eye’s response to colors is itself nonlinear.
This weighting can be incorporated into a third formula, which calculates the dif-
ference between colors using the same weighting as the eye’s response:

dC = abs((R1 - R2) * 0.30) +

abs((G1 - G2) * 0.59) +

abs((B1 - B2) * 0.11)

Using this third formula, the difference between the C1 and C2 color entries
becomes 1.18 versus a difference between C1 and C3 of 1.00. This is a more
appropriate result than the first formula yielded, but less distinctive than the
second.

Supplement 15 • Graphics Utilities and File Operations

2642S15.qxd 11/1/99 10:10 AM Page 50

http://www.sybex.com

However, we can combine the second and third formulas:

dC = ((R1 - R2) * 0.30)2 + ((G1 - G2) * 0.59)2 + ((B1 - B2) * 0.11)2

The difference between C1 and C2 becomes 1.39 versus a difference between C1
and C3 of 0.45.

This final revision of the weighting formula offers a distinctive difference in
results both by incorporating the nonlinear response of the human eye and by
emphasizing the difference in one color component over differences spread
across all color components.

TIP A small difference in speed could be achieved in the calculations by converting the
percentage weights to integer values (for example, changing 0.30 to 30), thus
removing all floating-point operations in favor of integer calculations. In most
cases, however, this is not likely to provide a notable change in calculation times.

Experimenting with Color Differences
If you are interested, you can experiment with the Color3 demo discussed in Chapter 24
to compare color differences. Here are some points to look for:

• What is the minimum total difference in all color components that can be readily
identified by the human eye?

• What is the minimum difference in any one color component that can be readily
identified?

• How do differences in each of the three component fields (red, green, and blue)
compare?

• How do differences in intensity compare at different absolute intensities (how do
absolute differences appear in proportion to absolute intensities)?

Ignoring extreme variations (commonly referred to as color blindness), color perception
still varies widely between individuals and may also be affected by age, health, and the
use of corrective lenses.

51Techniques for Converting 24-Bit Color Images

2642S15.qxd 11/1/99 10:39 AM Page 51

http://www.sybex.com

S U P P L E M E N T
S I X T E E N

Graphics Selection Operations

� Area-selection tool features

� Adjustable target overlays

� Custom cursors

� Mouse-hit testing

� Bitmap file access and display

S16

2642S16.qxd 11/1/99 10:11 AM Page 1

http://www.sybex.com

2

One aspect of graphics operations that is not commonly mentioned is how to
select a section within an image or to select a region of interest. This requirement
comes up quite frequently when working with live-video applications but is also
applicable to static bitmaps.

In this chapter, we will look at a method of creating a nondestructive target
overlay on top of an image. The sample program described here, Target, contains
provisions for moving the target, resizing the target, and changing cursors to
indicate which operations are being performed.

The Target demo also demonstrates a different approach to accessing bitmap
files. It uses MFC classes and methods in place of some of the API functions and
conventional operations illustrated in previous chapters.

Area-Selection Tools
A common requirement in many graphics operations involves selecting an area
from either a static bitmap or an active video image. For both types of images, a
nondestructive overlay works well as an area-selection tool.

Static Bitmap Area Selection
For static bitmaps, selection usually involves creating a tool to select an area, with
the selection shown as an outline. For example, the Windows Paint program pro-
vides two selection tools: a free-form area tool and a rectangular area tool. Using
the rectangular tool, you can select any rectangular region in an image then, sub-
sequently, “pick up” or drag the selection. The free-form selection tool functions
in the same fashion, except that you are allowed to “draw” an irregular region for
selection.

The first case, rectangular selection, is the more common and is the type of
selection discussed here. Selecting an irregular region involves much the same
process, except that you must keep a list of boundary points and transfer the
selected region as a series of image row sections.

The simplest way to select an area and to provide visual feedback to the user is
to draw a rectangle enclosing the area on top of the existing image. Using a con-
ventional drawing operation, however, is destructive to the existing image. Sim-
ply drawing a rectangle on top of a bitmap would be fine if you wanted to add

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:11 AM Page 2

http://www.sybex.com

3

the rectangle to the image. But for selection, a different process is needed. You
need to draw the rectangle using a method that allows the original image to be
restored, without requiring redrawing the entire image.

The simplest method of drawing and then undrawing a figure is to use the ROP2
XOR operation, or R2_XORPEN, which is described in Supplement 12. Using the
XOR drawing mode, the first time a shape is drawn, the drawing pen (and brush, if
any) is XORed with the underlying image. This usually ensures that the drawn
shape is optimally visible, regardless of the background image. More important,
when the same shape is drawn a second time, the second drawing operation has
the effect of canceling the first and, therefore, restoring the original background
image, without needing to repaint the entire screen.

Aside from using the XOR drawing mode, the actual process of drawing the
overlay is trivial. However, there is one caution: Whatever image or form is used
for the overlay, it must be redrawn exactly to erase it before any changes occur in
the position or size.

Active Video Image Selection
In the case of active video images, depending on the type of graphics capture
card and processor, the selection process may involve capturing a static image
first and then manipulating the static bitmap in much the same fashion demon-
strated in the Target demo discussed in this chapter.

In other cases, where multiple video planes are supported, the selection process
may be accomplished by drawing the area, or other targeting information, in a sep-
arate video plane and letting the system combine the targeting information with
the active video for presentation. In the case of multiple video planes, drawing the
overlay using the XOR mode still remains the fastest method of repeatedly drawing
and removing targeting, selection, or region outline information.

WARNING No matter how fast the system and the video card, restoring the entire image is
still time-consuming and almost always unacceptable, especially when you’re
working with an active video image.

Area-Selection Tool Conventions
In many drawing applications, the current convention for area selection is to
draw an overlay consisting of a dotted outline with rectangular handles at the

Area-Selection Tools

2642S16.qxd 11/1/99 10:11 AM Page 3

http://www.sybex.com

4

corners and centers of the sides. By placing the mouse cursor anywhere within
the outline and pressing the mouse button, the selected region can be dragged to
another position. On the other hand, by clicking on one of the handles, the outline
can be dragged to a new size.

In the case of irregular areas, depending on the application, small “handles”
may appear at nodes representing the vertices of a polygon outline. These han-
dles are treated in the same fashion as a rectangular outline, permitting a vertex
to be relocated. In other cases, such as in the Windows Paint program, no meth-
ods are provided for adjusting a free-form outline.

In the Target demo, a different set of conventions is used. For selection, you use a
set of crosshairs that extend to the window margins and a circle that approximates
the target area or region of interest (ROI). Figure S16.1 shows an example of a
screen in the Target demo, with a bitmap displayed behind the target-selection
overlay.

F I G U R E S 1 6 . 1 :

Targeting an area in a bitmap

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:11 AM Page 4

http://www.sybex.com

5

This format is common in machine-vision applications, where the user is select-
ing an area for examination. Because the crosshairs extend to the margins of the
window, they can be used to indicate a position on scales along the sides. The
center of the crosshairs is left open, so that the specific target is not obscured.
The circular target-area marker is used to select an area for closer examination
or for action by other associated tools. As an alternative, an elliptical, rather than
circular, shape could be used for the target-area marker.

In most applications, after a user selects a rectangular or irregular region, the
selection is moved, copied, or otherwise processed. During this processing, the
common convention is to show an outline surrounding the selection. While it
would be possible to capture or process a circular or irregular area, the usual
practice is to process a rectangular image. This simplification is commonly used
to show the actual area being processed, as well as to facilitate drag operations.

In the Target demo, when the right mouse button is pressed to initiate a capture
(though no actual capture is done in this example), the crosshairs and circular target
are replaced by a rectangle bounding but outside the region of interest. Figure S16.2
shows an example of the selection rectangle.

F I G U R E S 1 6 . 2 :

Indicating the selected region
of interest

Area-Selection Tools

2642S16.qxd 11/1/99 10:11 AM Page 5

http://www.sybex.com

6

Whether you use these conventions or any of several others depends on the
needs of your application. There is no single set of conventions that apply to all
cases and cover all requirements.

The Target Demo:
Selecting Parts of an Image

The Target demo demonstrates using adjustable target overlays, testing for mouse
hits with overlapping targets, and setting custom mouse cursors.

NOTE The Target demo is included on the CD that accompanies this book, in the Supple-
ment 16 folder.

Bitmap File Operations
The Target demo provides an option to open a bitmap file for a background
image. It uses essentially the same bitmap file and display operations demon-
strated in Supplement 15. However, there are a few differences because the ver-
sion presented here relies heavily on MFC-defined classes rather than the
standard APIs and conventional programming methods. You can look in the
CTargetView::ReadBitmap procedure to see how these bitmap operations work.

Also worthy of your attention is the single TRY...CATCH exception handler
used when opening a bitmap file:

TRY
{

CFile cFile(csFName, CFile::modeRead | CFile::typeBinary);
SetCursor(LoadCursor(NULL, IDC_WAIT));
...
read the bitmap file here
...

}
CATCH(CFileException, e)
{

#ifdef _DEBUG

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:11 AM Page 6

http://www.sybex.com

7

afxDump << “File access failed: “ << e->m_cause << “\n”;
#endif
return FALSE;

}
END_CATCH

The CFile constructor, which is used to open the file for reading, like any class
constructor, does not return an error, regardless of what might go wrong. There-
fore, to catch an error when opening a file in this fashion, the TRY...CATCH excep-
tion handling is required.

NOTE C/C++ supports several forms of try…catch and TRY…CATCH exception han-
dling. This latter form uses macros and is demonstrated in the Target demo. Refer
to Chapter 9 in the book for more information about exception handling.

Mouse Responses
In the Target demo, the selection overlay needs to be able to respond to the mouse
in several different fashions, depending on where the mouse is clicked:

• If the mouse is clicked in the center of the target, the target can be dragged
to a new position but without changing the size.

• If the mouse is clicked on the left or right side of the target, or on the top or
the bottom of the target, the target can be resized horizontally or vertically
(but not both) without changing the center position.

• If the mouse is clicked on a corner of the target—upper left, upper right,
lower left, or lower right—the target can be resized both horizontally and
vertically, again without changing the center position.

In each case, the circular target is the focus of these operations; the crosshairs
simply follow the center position of the target. Also, the background image
remains unaffected by any of these operations.

Changing the Cursor

The Target demo also includes provisions to change the cursor to reflect the type
of operation about to occur when the left mouse button is pressed. Although the

The Target Demo: Selecting Parts of an Image

2642S16.qxd 11/1/99 10:11 AM Page 7

http://www.sybex.com

8

Windows GDI offers a variety of standard cursors, these are not always readily
visible against a complex background (see Supplement 6 for more information
about Windows cursors). The original program from which Target was derived
provides a set of custom cursors, which have been incorporated into the demo
as well.

These five custom cursors appear in Figure S16.3:

• North-south cursor (NS_CURSOR)

• Northeast-southwest cursor (NESW_CURSOR)

• Hand cursor (HAND_CURSOR)

• Northwest-southeast cursor (NWSE_CURSOR)

• East-west cursor (EW_CURSOR)

F I G U R E S 1 6 . 3 :

Five custom cursors

In each case, the cursor image consists of a white body with a reversed outline.
A small mark has been added to each image to identify the position of the cur-
sor’s hotspot.

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:11 AM Page 8

http://www.sybex.com

9

Determining the Hit Position

To manage dragging and resizing operations for the target overlay, the first step
is to determine where the mouse hit occurs; that is, the mouse’s position when the
primary mouse button was pressed.

In the CTargetView class, the OnLButtonDown method is called whenever the
left (or primary) mouse button is pressed and receives two parameters: nFlags
and point. In this case (as in most), we ignore the nFlags argument, which con-
tains status information, and rely on the point information, which tells us where
the mouse was when the event occurred relative to the application client window.

NOTE By default, the mouse handler causes an OnLButtonDown call when the left
mouse button is pressed. However, if the Mouse utility in the Control Panel has
been used to swap the mouse buttons, the OnLButtonDown call responds to the
right mouse button being pressed. For programming purposes, the primary mouse
button always identifies itself with a WM_LBUTTONxxxxx message, and the sec-
ondary button always reports as WM_RBUTTONxxxxx, regardless of which physical
mouse button is pressed.

Before any tests are made, the m_nTrack member is initialized as NO_TARGET.
Subsequently, if a hit is identified in any target region, m_nTrack is reassigned a
value to identify the correct region.

Also, before any other operations, the SetCapture method is called to ensure
that mouse messages from outside the current window will still be received. The
mouse capture will be released when the mouse button is released.

void CTargetView::OnLButtonDown(UINT nFlags, CPoint point)
{

m_nTrack = NO_TARGET;
SetCapture();

Next, the m_xRadius and m_yRadius members contain the size of the target
ellipse and the m_cPoint member contains the centerpoint. To limit the drag
operation to the center of the target area, the first target rectangle is defined
using two-thirds of the vertical and horizontal radii. After creating the rectangle,
the NormalizeRect function is called, purely as a precaution, to ensure that the
bottom coordinate of the rectangle is greater than the top and the right side is
greater than the left.

The Target Demo: Selecting Parts of an Image

2642S16.qxd 11/1/99 10:11 AM Page 9

http://www.sybex.com

10

CPoint cPoint(m_cPoint);
CRect cRect(cPoint.x - ((m_xRadius / 3) * 2),

cPoint.y - ((m_yRadius / 3) * 2),
cPoint.x + ((m_xRadius / 3) * 2),
cPoint.y + ((m_yRadius / 3) * 2));

cRect.NormalizeRect();
if(cRect.PtInRect(point))

The PtInRect method simply returns TRUE if the point argument lies within
the rectangle, or FALSE if not. While such a test is not difficult to perform, the pro-
vided member function is more convenient than writing a separate operation for
each check that is made here.

If PtInRect returns TRUE, the m_nTrack member is set to ALL, meaning that the
entire target overlay will be dragged when the next mouse-movement message is
received, and the hand cursor is loaded as the active cursor.

{
m_nTrack = ALL;
m_hCursor = SetCursor(LoadCursor(theApp.m_hInstance,

“HAND_CURSOR”));
}

If the PtInRect function returns FALSE, the OnLButtonDown method continues
through a series of else statements, testing each target area in turn. If a hit is
found, it sets the m_nTrack variable to the appropriate operation and loads the
correct cursor.

The real key here is to ensure that the target rectangles are tested in the correct
order. Figure S16.4 shows nine overlapping target rectangles, numbered in the
order tested.

What Figure S16.4 does not show is that region 1 overlaps regions 2, 3, 4, and 5.
However, if a hit is found in the first region, no other regions are tested, making
the overlapped areas irrelevant.

In like fashion, area 6 is overlapped by areas 1, 2, and 4. But because this area is
tested last, a hit will be identified for this area only if it occurs within the irregular
region shown. The same holds true for the regions identified as 7, 8, and 9; each is
overlapped by three other regions that are tested first.

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:11 AM Page 10

http://www.sybex.com

11

F I G U R E S 1 6 . 4 :

The mouse-hit target
rectangles

The point is that it’s unnecessary to define complex hit areas when the same
task can be accomplished by testing simpler regions in the proper order. On
the other hand, when it is absolutely necessary to test complex regions, you
can use other methods.

Last, the CView::OnLButtonDown method is called to provide default handling
for the mouse messages.

}
m_bDrawOverlay = TRUE;
CView::OnLButtonDown(nFlags, point);

}

Because we’ve already provided complete handling, calling the default method
is optional, but it’s still good practice.

Once we’ve decided where the mouse hit occurred, the next step is to wait
for the OnMouseMove function to be called, indicating that the mouse has
moved. The OnMouseMove method, like the OnLButtonDown method, is called
with nFlags and point arguments, and again, the nFlags argument can sim-
ply be ignored as irrelevant.

The Target Demo: Selecting Parts of an Image

2642S16.qxd 11/1/99 10:12 AM Page 11

http://www.sybex.com

12

Before doing anything based on the m_nTrack action flag, the next step is to
decide if the mouse is still in the client window. If it is not—if the mouse has
been moved outside the application window—then we will release the mouse
capture and do nothing.

void CTargetView::OnMouseMove(UINT nFlags, CPoint point)
{

CRect cRect;

if(m_bDrawOverlay)
{

GetClientRect(cRect);
if(! cRect.PtInRect(point)) // cursor outside of client area
{

m_nTrack = NO_TARGET;
SetCursor(m_hCursor);
ReleaseCapture();
return;

}

Next, assuming the mouse is still in the window, the response is to call the
DrawOverlay method to erase the existing target overlay.

DrawOverlay(); // erase the overlay target
switch(m_nTrack)
{

case NO_TARGET: /* no action */
break;

If the m_nTrack member indicates NO_TARGET, then we’ll take no action. If
m_nTrack is set to ALL, then the m_cPoint member needs to be updated as:

case ALL:
m_cPoint.x = max(m_xRadius, min(point.x,

(cRect.right - m_xRadius - 2)));
m_cPoint.y = max(m_yRadius, min(point.y,

(cRect.bottom - m_yRadius - 2)));
break;

Alternatively, if m_nTrack is set to TOP, the vertical radius should be adjusted
according to the mouse movement:

case TOP:
m_yRadius = max(30, m_cPoint.y - point.y);
break;

The remaining case statements allow adjustments according to the quadrant
selected, and the switch statement is followed by a test to ensure that the target

Supplement 16 • Graphics Selection Operations

2642S16.qxd 11/1/99 10:12 AM Page 12

http://www.sybex.com

13

is not dragged outside the client window. The bulk of these provisions, however,
are routine.

The one important provision remaining is to call DrawOverlay a second time to
redraw the target overlay at the changed position or with the changed size.

...
DrawOverlay(); // redraw the overlay target

}
CView::OnMouseMove(nFlags, point);

}

Finally, when the mouse button is released, the OnLButtonUp method is called.
Here, the same arguments are supplied, but now both nFlags and point can be
ignored. We don’t really care where the mouse was released or what the flags
were; our only interest is that the mouse button has been released. And the res-
ponse to the mouse-button release is simple: Reset the member flags, restore the
default cursor, and release the mouse-message capture.

void CTargetView::OnLButtonUp(UINT nFlags, CPoint point)
{

m_bDrawOverlay = FALSE;
m_nTrack = NO_TARGET;
SetCursor(m_hCursor);
ReleaseCapture();
CView::OnLButtonUp(nFlags, point);

}

For the right mouse button, the provisions are even simpler: When the right
mouse button is pressed, check and see if the event occurred in the target rectangle.

void CTargetView::OnRButtonDown(UINT nFlags, CPoint point)
{
/*

//=== routine to show target areas ===//
DrawOverlay();
DrawTargets();
DrawOverlay();

*/

CRect cRect(m_cPoint.x - ((m_xRadius / 3) * 2),
m_cPoint.y - ((m_yRadius / 3) * 2),
m_cPoint.x + ((m_xRadius / 3) * 2),
m_cPoint.y + ((m_yRadius / 3) * 2));

if(cRect.PtInRect(point)) // is cursor in client area?
{

The Target Demo: Selecting Parts of an Image

2642S16.qxd 11/1/99 10:12 AM Page 13

http://www.sybex.com

14

If the mouse event is in the target, set the capture flag, call DrawOverlay to
remove the target overlay, and then call DrawROITarget to create the ROI outline.

m_bCapture = TRUE;
DrawOverlay();
SetCapture();
DrawROITarget();

}
CView::OnRButtonDown(nFlags, point);

}

If you were tracking mouse movement while the right mouse button is down,
this would occur in the same OnMouseMove method used to track movement with
the primary button down. The only difference would be that you would need to
include some provisions, such as the m_bDrawOverlay and m_bCapture flags, to
determine which type of event was being tracked. Or, more directly, the nFlags
argument accompanying the mouse-movement message could be queried to find
out which mouse button was pressed or if both buttons were pressed.

In this case, we really don’t care about movement. All that we’re waiting for is
for the right mouse button to be released.

void CTargetView::OnRButtonUp(UINT nFlags, CPoint point)
{

if(m_bCapture)
{

m_bCapture = ! m_bCapture;
ReleaseCapture();
Invalidate();
DrawOverlay();

}
CView::OnRButtonUp(nFlags, point);

}

Once the right mouse button is released, we reset our flag, call the Invalidate
function to redraw everything in the window, and then call DrawOverlay to
restore the target overlay. The DrawROITarget function does not use R2_XORPEN;
therefore, there is no easier way to remove the ROI target rectangle.

A Note about Custom Cursors
Some of you may have noticed that the use of the SetCapture method in the Target demo
appears rather redundant since, as soon as the mouse moves outside the client window,

Supplement 16 • Graphics Selection Operations

Continued on next page

2642S16.qxd 11/1/99 10:12 AM Page 14

http://www.sybex.com

15

ReleaseCapture has been called. Why call SetCapture and then release it as soon as it
becomes useful?

The reason is that by calling SetCapture, you ensure that the cursor you assign to the
mouse remains the active cursor and is not replaced by the default cursor as soon as
the mouse moves.

The explanation for this behavior is found in the notes for the SetCursor function (from
the MFC online documentation):

“If your application must set the cursor while it is in a window, make sure the class
cursor for the specified window’s class is set to NULL. If the class cursor is not NULL,
the system restores the class cursor each time the mouse is moved.”

The trick is how to set the class cursor to NULL. SetCapture provides a convenient alterna-
tive in this instance. However, the proper way to set custom cursors for a window under
MFC is to intercept the PreCreateWindow function and to modify the WNDCLASS member of
the CREATSTRUCT argument, setting the hCursor member to NULL. The revised WNDCLASS
structure, however, must be registered before use through the RegisterClass function.

The long and the short of this is that setting custom cursors is not conveniently
accomplished.

Other Methods of Interest
A provision has also been included in the source code to draw the several target
areas used to test for mouse hits. This provision is found in the DrawTargets
methods and was used to create the illustration shown previously in Figure S16.4.
This provision can be enabled in the OnRButtonDown method.

Also of interest are the OnFileOpen, ReadBitmap, and OnDraw methods used
in the Target demo. These parallel earlier examples but offer new versions using
MFC classes and methods in place of some of the API functions and conventional
operations illustrated in previous chapters.

The complete target-drawing and mouse-hit recognition operations are found
in the TargetView.H and .CPP files, which are part of the Target demo included on
the CD.

The Target Demo: Selecting Parts of an Image

2642S16.qxd 11/1/99 10:12 AM Page 15

http://www.sybex.com

S U P P L E M E N T
S E V E N T E E N

Graphics Printing Operations

� Procedures for copying images from a display context
to a printer context

� Checks for a color or black-and-white printer

� Gray-scale definition

� Gray-scale printing enhancements

� Considerations for color printing

S17

2642S17.qxd 11/1/99 10:13 AM Page 1

http://www.sybex.com

2

Being able to print a graphic image is almost as important as (or perhaps
more important than) creating the image in the first place. The tools demon-
strated in this chapter provide the basis for such facilities using both black-and-
white and gray-scale color conversion.

If and how you use these features depends entirely on the needs of your appli-
cations. Most likely, you will need to adapt these features and perhaps also add
some controls specific to your application. Alternatively, if you require only an
occasional screen capture, you might prefer to combine the printer-output proce-
dures with one of the screen-capture processes described in Supplement 16.

Incidentally, if you have access to color-reproduction facilities, you might also
consider adding provisions for printing color separations; that is, printing sepa-
rate red, green, and blue images for use as color screens in conventional printing
processes.

Printer Operations
In many ways, Windows has greatly facilitated graphics image handling, with
capabilities that range from providing hardware-independent graphics display
environments to translating between different image formats. Just as Windows
provides support for a wide variety of displays, it also provides support for a
wide variety of printers, ranging from dot-matrix printers to all types of laser
printers.

Furthermore, provisions exist (using the BitBlt or StretchBlt function) for
copying images from a display context to a printer context, and from there to the
printer itself. On the whole, Windows includes almost everything you need for
hard-copy output of graphics images.

Unfortunately, almost is not everything. One fly remains in the ointment:
Although most monitors are color, color printers are still less common than
black-and-white printers. Windows does not offer any automatic solutions for
printing color images to a black-and-white printer. As a general rule, when you
direct a color image to a monochrome printer without any provisions for shad-
ing, the printer will print all colors except white as a solid black, which is gener-
ally not a very useful result.

Still, if no automatic solution has been provided, a custom solution is not
beyond the realm of the possible and practical, as will be shown momentarily.
But before tackling the solution, the first step is to understand the problem.

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 2

http://www.sybex.com

3

Win.INI versus Up-to-Date Printer Information
During installation, Windows offers an option to select one or more printers.
When you choose printers to install, Windows copies the appropriate printer
drivers to the Windows directory and lists these drivers in the registry.

NOTE As explained in Chapter 8 of the book, the registry is a 32-bit Unicode data file,
which you can access via the Registry Editor (RegEdit.EXE or RegEdit32.EXE).

Under Windows 3.1, the system stores the printer driver information in the
Win.INI file, where a series of flag strings are used to locate and identify installed
devices. The following is a fragment of a Win.INI file:

[windows]
...
device=HP LaserJet Series II,HPPCL,LPT1:
...
[devices]
HP LaserJet Series II=HPPCL,LPT1:
...
[HP LaserJet Series II,LPT1]
Paper Size=1
Number of Cartridges=1
...
[PrinterPorts]
HP LaserJet Series II=HPPCL,LPT1:,15,45

Under Windows 98, the old printer-control features continue to be imple-
mented, even though the Win.INI file itself is obsolete. However, obsolete does
not mean absent, and you probably have a Win.INI file in your Windows 98
directory. The problem is that any application that expects to find printer infor-
mation in the Win.INI file may very well find that information, but the informa-
tion may be completely out-of-date.

For example, in my own Windows 98 system, the Win.INI file identifies my
system printer as an HP LaserJet, even though I installed a different printer
after I switched to Windows 95, more than three years ago. On the other hand,
the version of the Win.INI file in my Windows NT/2000 directory, which was
not carried forward from an older Windows 3.x installation, does not contain
any printer references.

Printer Operations

2642S17.qxd 11/1/99 10:13 AM Page 3

http://www.sybex.com

4

The point is that applications written for Windows 2000 should always use the
new printer-selection mechanisms and not rely on the old handling methods.
Older methods are highly likely to access outdated or incorrect information.

The good news is that you do not need to write a printer-selection process for
your applications. Instead, you can use the default printer-selection mechanisms
supplied by Windows.

TIP All applications created using Visual C++ and the AppWizard are supplied with a
default File menu that contains Print, Print Preview, and Page Setup options, as
well as default provisions to connect to the appropriate handlers and dialog
boxes. The advantage is that this is all default code, which does not need to be
duplicated. A common dialog box is provided for printer selection, including capa-
bilities to connect to network printers. Users do not need to decipher a new selec-
tion mechanism.

Printer Queries
The Windows system and the MFC classes handle the task of getting and listing
the available printers for you. However, certain applications may need to get
other information about printer capabilities and limitations.

The DC demo, discussed in Chapter 12 of the book, demonstrates how to query
the system device drivers and obtain information about device capabilities and
limitations. In the DC demo’s demonstration, all of the information available
about a device
is shown. Displaying all of these data elements requires a relatively long list of
information requests. In other cases, instead of asking for everything available,
you can make a more moderate request, restricting queries to only the appropri-
ate or needed data.

The GrayImage Demo:
Sending a Bitmap to a Printer

The GrayImage demo demonstrates both simple printer access and the gray-
scaling of images. A number of the features in the GrayImgView.CPP section,
such as selecting and displaying a bitmap image, should be familiar from
demos discussed in earlier chapters, such as Shades and ViewPCX. The two

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 4

http://www.sybex.com

5

processes of interest in GrayImage are for drawing an image to the printer
context and for converting an image from black and white to a printed, half-
tone gray. For now, we’ll begin with the procedures for sending an image to
a printer.

NOTE The GrayImage demo is included on the CD that accompanies this book, in the
Supplement 17 folder.

The Printer Context
In previous examples, when a bitmap is presented in the client window, the bit-
map image (file) is read, using the procedures demonstrated in those chapters.
Then, when it’s time to update (redraw) the client window, the bitmap palette is
selected, a compatible memory device context is obtained, and the handle to the
bitmap is used to copy the bitmap to the memory device context. The GrayImage
demo uses essentially the same procedures to retrieve the bitmap:

void CGrayImageView::OnDraw(CDC* pDC)
{

...
if(m_hBitmap)
{

if(m_pPal) pOldPalette = pDC->SelectPalette(m_pPal, FALSE);
nBitPxl = pDC->GetDeviceCaps(BITSPIXEL);
nPlanes = pDC->GetDeviceCaps(PLANES);
pDCMem = new CDC();
pDCMem->CreateCompatibleDC(pDC);
pDCMem->SelectObject(m_hBitmap);

In previous examples, once the bitmap is in the memory context, the BitBlt
function is called to copy the image from the memory context to the display con-
text—the client window.

pDC->BitBlt(0, 0, m_bmWidth, m_bmHeight, pDCMem, 0, 0, SRCCOPY);

And, after copying the image to the display, a little bit of cleanup is performed
to take care of the palette and the memory device context.

if(m_pPal)
{

pDC->SelectPalette(pOldPalette, FALSE);
pDC->RealizePalette();

}
delete pDCMem;

}

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 5

http://www.sybex.com

6

Under previous versions of Windows, a separate procedure would have been
required to copy a bitmap to a printer device. This print function would need
provisions to query the installed printers, find out what the printer capabilities
were, select a printer, get a printer device context, and finally write the image (or
other data) to the printer queue.

Now, however, this task is greatly simplified because, when you select the
printer icon from the toolbar or select Print from the File menu (assuming the
application is being created with the AppWizard or another development tool),
the OnDraw method is called with a pointer to a device context for output. For a
printer-output operation, the only change from refreshing the screen is that the
device context is a pointer to a printer context instead of a screen context.

Beyond this provision, the OnDraw function is expected to write to the printer in
essentially the same fashion as it writes to the video display. The difference is that
some of the output methods preferred for the video display may not be compati-
ble with the printer context, even when writing to a color printer.

A Check for a Color or Monochrome Printer
Given the current popularity of color printers, not anticipating the presence of
a color printer could be a serious error. If you simply attempt to provide gray-
scaled output for hard-copy and the default color provisions for the video dis-
play, the result will be a blank sheet of paper when a color printer is encountered.

To understand why this happens, we need to take another look at the default
process to copy the image to the screen, shown in the previous code fragment as:

//=== copy the bitmap to the screen ==(NORMAL)============
pDCMem->SelectObject(m_hBitmap);
pDC->BitBlt(0, 0, m_bmWidth, m_bmHeight, pDCMem, 0, 0, SRCCOPY);

Here, pDCMem is a memory context that is compatible with the device context
supplied, pDC, when the OnDraw function is called by Windows. As long as pDC is
a video context, pDCMem will be compatible with the HBITMAP object, m_hBitmap.

If pDC is a monochrome printer context, some degree of compatibility is still
maintained. However, in most cases, if you use the SelectObject and BitBlt
functions, the result will be that all colors (except white) are treated as black—
not exactly the printout desired.

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 6

http://www.sybex.com

7

You can, however, persuade the monochrome printer to render approximate
half-tones (gray-scale) by using the SetDIBitsToDevice function instead of the
SelectObject and BitBlt functions. The only problem with this approach is that
the gray-scale image produced will probably be rather coarse, which is the real
reason for the gray-scale conversion routine discussed presently.

The next case occurs when the SelectObject and BitBlt functions attempt
to print to a color context. The pDC context supplied by Windows for the printer
drawing operation is normally a 32-bit per pixel scheme, which results in the
pDCMem–> SelectObject function failing, simply because the pDCMem context
(created to be compatible with pDC) and the bitmap are not compatible. The result
is a blank sheet of paper.

However, by using the SetDIBitsToDevice function and a pointer to the
bitmap bits instead of a handle to a bitmap, you can avoid these potential prob-
lems. SetDIBitsToDevice can produce a color image on the screen, a native
gray-scale image on a monochrome printer, and a color image on a color printer
(leaving only the question of producing a better gray-scale image for our special
routine). These rendering options and devices are summarized in Table S17.1.

TA B L E S 1 7 . 1 : Color-Image Rendering Functions

Function/Device SelectObject/BitBlt SetDIBitsToDevice

Screen Produces color image Produces color image

Monochrome Printer All colors except white treated as black Colors rendered using
native (printer) gray-scale

Color printer Blank (no image) Color image

So, why are we still using SelectObject and BitBlt? Simply because, when
compatible with the desired operation, they are faster than the SetDIBitsTo-
Device function. Of course, for most video systems (printers are simply slower
in any case) and in most cases, either route is sufficiently fast that the results will
be indistinguishable, making the choice a moot point.

The revised OnDraw response begins, as before, by checking the bits-per-pixel
and number of color planes to determine if you have a color or monochrome
device.

if((nBitPxl * nPlanes) > 1)
{

if(m_pPal)

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 7

http://www.sybex.com

8

{
pOldPalette = pDC->SelectPalette(m_pPal, FALSE);
pDC->RealizePalette();

}

If this is a color device (either the screen or a printer), you want to select the
palette for the image and realize it (make it active).

The next step is the critical decision. Since you don’t know, without awkward
tests, whether this is a printer context or a video screen, you can simply attempt
the SelectObject operation.

if(pDCMem->SelectObject(m_hBitmap))

If SelectObject succeeds, you know that you have a compatible context
and assume that this is the video device. Because the context is compatible (the
bitmap was selected correctly), calling BitBlt will copy the image to the device.

pDC->BitBlt(0, 0, m_bmWidth, m_bmHeight, pDCMem, 0, 0, SRCCOPY);

The alternative is that SelectObject failed, which probably means that this is
a printer device context but still one supporting color. In this case, you want to
call SetDIBitsToDevice, supplying the device-context handle (hDC) from the
supplied device context, specifying the image size and position information, and
providing pointers to the bitmap bits and to the bitmap information structure.

else
SetDIBitsToDevice(pDC->m_hDC, 0, 0, m_bmWidth, m_bmHeight,

0, 0, 0, m_bmHeight,
m_pBits, m_pBmInfo, DIB_RGB_COLORS);

The final specification, DIB_RGB_COLORS, simply says how the color data is to
be treated; it says that the bitmap information contains RGB colors in the color
table. The alternative is DIB_PAL_COLORS, suggesting that the device palette
should be used, which normally would not be appropriate.

NOTE In many cases, especially when printing a hard-copy of an image, you may want to
be able to resize the image. To resize the image on screen, the StretchBlt function
is the ideal choice. But for the printer context, just as SelectObject/BitBlt fails,
SelectObject/StretchBlt will also fail. Instead, for a printer device context, the
choice would be to use the StretchBlt function to copy the image between
memory contexts, resizing the image while doing so. Then, after resizing the image,
use the SetDIBitsToDevice function to copy the resized image to the printer.

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 8

http://www.sybex.com

9

Last, to clean up, SelectPalette is called again to restore the original palette.

if(m_pPal)
{

pDC->SelectPalette(pOldPalette, FALSE);
pDC->RealizePalette();

}
}
else

... use gray-scale conversion to monochrome printer

Image Gray-Scaling
So what do you do when you need to output to a black-and-white printer but
want something better than the relatively coarse default gray-scale supplied by
most printer devices? The solution is to create a custom gray-scale by translating
each color pixel in the original image to an array of black-and-white pixels. How-
ever, this also means that you must enlarge the original. If this is not convenient
or practical, there remains the option of using the native gray-scaling.

Translating Colors to Gray Intensities

The first consideration in translating colors to grays is that, for the video display,
colors are described by three digital values: red, green, and blue. Thus, using the
RGBTriplet format, each of these color components has a value in the range 0 to
255 and the corresponding display ranges from black to full intensity. The result
you see on the screen is a combination of the three primary colors. The relative
intensities of each primary color, as well as the overall intensity, determine the
“color” or hue perceived.

But the human eye is not linear. It responds differently to each of the three
primary colors, with the strongest response (59 percent) to green. Our second
strongest response is to red (30 percent), and our response to blue is the weakest
(at 11 percent). Therefore, to translate red, green, and blue intensities into a gray
scale, the absolute intensities of the three components must be weighted to match
or, more accurately, the relative darkness of each component must be weighted to
produce the appropriate portion of black ink on the page.

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 9

http://www.sybex.com

10

NOTE For more details about translating colors to grays and creating gray-scale palettes,
see Supplement 11, which covers Windows color handling and color palettes.

Defining Gray-Scale Patterns

Before matching colors to gray equivalents, it will help to have a range of
grays for the matches. Thus, before writing the matching algorithm, the first
step is to create a gray-scale for the printer. For demonstration purposes, we
use a simple 16-step (4×4) gray-scale. However, for your own applications, you
could implement a 25-step (5×5), 36-step (6×6), 64-step (8×8), or even 256-step
(16×16) gray-scale.

NOTE The choice of a square gray pattern is dictated by convenience but is not quite an
absolute. Using grays that are not squares, however, would require quite different
handling and mapping and would produce distortion in the output image.

Figure S17.1 shows 16 4×4 matrices, ranging from full black to complete white.
A sample of the resulting gray-scale appears below each 4×4 matrix.

F I G U R E S 1 7 . 1 :

A gray-scale as a matrix
series

WORD hex values providing binary descriptions of each pattern are 0x0000,
0x0400, 0x0401, 0x0501, 0x0505, 0x0525, 0xA425, 0xA5A5, 0xA7A5, 0xE5B5,
0xF5B6, 0xF5F5, 0xF5FD, 0xF7FF, 0xFFFF. As you may notice, one possible per-
mutation of blacks and whites—0xF7FD (nine black to seven white, distributed
among the 16 squares)—has been omitted.

These 16 patterns were selected to provide an even distribution and to avoid as
much as possible any undesired elements, such as lines, herringbone patterns, or
other artifacts.

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 10

http://www.sybex.com

11

Calculating a Gray Scale

As an alternative to creating a predefined gray scale, you can create a less rigor-
ous (and somewhat more versatile) gray-scale by calculation. In its simplest form,
each color pixel is mapped to a square grid in the printer context, as described in
the previous section. However, instead of mapping the color pixel as a predefined
pattern, each point in the square for the pixel is assigned a black or a white value
in proportion to the calculated gray balance and the size of the square. In place
of a predetermined pattern, you use a pseudo-random generator (such as C’s
random function) to assign the appropriate percentage of black pixels and white
pixels in an essentially random pattern.

In general, this approach works best with a relatively large matrix for each
pixel (8×8 or larger) and does not require an exact match between the range of
grays used and the size of the pattern matrix. Of course, there are also a few
disadvantages, such as a slight loss of edge definition, a need to keep the range
of grays used relatively close to the matrix size, and some increase in mapping
times because of increased complexity. But overall, the advantages can outweigh
the disadvantages when wider ranges of grays are required.

Mapping Color Images to Gray Patterns

The process of mapping color images to gray patterns begins with a requirement
for several new variables in the declaration, starting with hTargetBM, which is
declared as an HBITMAP and serves as a buffer for the gray-scaled image during
conversion. pDCMem and pDCSrc are handles for device contexts used while the
color image is converted to a gray-scale image.

CDC *pDCMem, *pDCSrc;
UINT i, j, m, n;
int nBitPxl, nPlanes, nGrayWd, nGrayHt;
BYTE rVal, gVal, bVal, Gray;
DWORD Color;
HBITMAP hTargetBM;
WORD Mask,

GrayPal[] = // gray-scale masks
{ 0x0000, 0x0400, 0x0401, 0x0501,
0x0505, 0x0525, 0xA425, 0xA5A5,
0xA7A5, 0xE5B5, 0xF5B6, 0xF5F5,
0xF5FD, 0xF7FD, 0xF7FF, 0xFFFF };

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 11

http://www.sybex.com

12

The GrayPal (gray-palette) array (shown earlier in Figure S17.1) is declared
here as an array of WORD.

Next, after we have decided that the device context supplied is a monochrome
device, the nGrayWd and nGrayHt values are calculated.

else
{ // if this is a monochrome device - i.e., a printer -

// get the max size supported by the device
nGrayWd = min((int)(4 * m_bmWidth), pDC->GetDeviceCaps(HORZRES));
nGrayHt = min((int)(4 * m_bmHeight), pDC->GetDeviceCaps(VERTRES));

// and create a gray-scaled bitmap to print
hTargetBM = CreateBitmap(nGrayWd, nGrayHt, nPlanes, nBitPxl, NULL);

Our only restriction here is that we wish to ensure that the image we print is
not larger that the output device supports. But we also need to make the output
size 16 times larger than the original, providing space for a 4×4 gray pattern for
each pixel in the original image.

Having calculated the necessary size, a temporary bitmap, hTargetBM, is
defined with the necessary width and height and with the color planes (1)
and bits per pixel (1) set for a monochrome image.

Next, if the bitmap creation fails, we simply abort the print operation with a
minimal explanation. In your own applications, you would probably want to
include a more informative explanation and some alternatives or suggestions
for accommodations.

if(! hTargetBM)
{

ErrorMsg(“Bitmap creation error”);
return;

}

If the bitmap creation is successful, we proceed by calling the SelectObject
function to select the (blank) target bitmap into the memory device context,
which is compatible with the printer device.

pDCMem->SelectObject(hTargetBM);
// create a device context compatible with the
// (color) display context, not the printer context

pDCSrc = new CDC();
pDCSrc->CreateCompatibleDC(GetDC());

// but select the gray-scaled bitmap to the context
pDCSrc->SelectObject(m_hBitmap);

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 12

http://www.sybex.com

13

We also need a second, temporary device context, pDCSrc, which is compatible
with the screen display. This context is provided by calling CreateCompatible-
DC with GetDC as an argument to supply the display context. The original bitmap
is selected here in the second device context, where we do not need to be con-
cerned about compatibility.

At this point, we have a blank bitmap—four times wider and four times taller
than the original—selected in the memory context, pDCMem, and the color bitmap
selected in the temporary context, pDCSrc, which is also a memory device con-
text. The actual conversion from color to gray-scale works between these two
memory device contexts; that is, using pDCSrc as the source and writing the out-
put to pDCMem.

for(i=0; i<m_bmHeight; i++)
for(j=0; j<m_bmWidth; j++)
{

Color = pDCSrc->GetPixel(j, i);
rVal = (unsigned char)(LOBYTE(HIWORD(Color)));
gVal = (unsigned char)(HIBYTE(LOWORD(Color)));
bVal = (unsigned char)(LOBYTE(LOWORD(Color)));

Within a double loop (height and width), the color bitmap is scanned to deter-
mine R, G, and B values for each pixel. To convert these color values to a gray
value, two algorithms are provided: a TrueGray algorithm and an unweighted
conversion.

if(theApp.m_bTrueGray)
Gray = (BYTE)((UINT)(float)((rVal * 0.30) / 16) +

(UINT)(float)((gVal * 0.59) / 16) +
(UINT)(float)((bVal * 0.11) / 16));

else
Gray = (BYTE)((rVal + gVal + bVal) / 48);

The TrueGray algorithm produces a rather dark printed image; the unweighted
algorithm results in a lighter printed image. For a screen display, the TrueGray algo-
rithm offers the better match. For printed output, the unweighted one is preferable.

TIP As an alternative, the application could use a logarithmic scale to keep blacks
black and whites white but shift most colors toward the light end of the scale. You
can try implementing this in the sample program if you’re interested.

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 13

http://www.sybex.com

14

Once a color value has been converted to a gray intensity, the DWORD Mask, from
the GrayPal array of predefined patterns, must be written to the output bitmap in
pDCMem, as a 4×4 array, not as a linear string of bits. Remember that each pixel in
the original is being written as a square of pixels in the output.

Mask = GrayPal[Gray];
//=== write gray mask to color bitmap context =========

for(m=0; m<4; m++)
for(n=0; n<4; n++)
{

if((Mask >> ((m*4)+n)) & 0x0001)
pDCMem->SetPixel((j*4)+m, (i*4)+n, 0x00FFFFFF);

else
pDCMem->SetPixel((j*4)+m, (i*4)+n, 0x00000000);

}

To write the output pixels, which are still written as full RGB values, the Mask
value is tested bit-wise. The true bits are written as white, and the false bits are
written as black.

And, finally, after the output bitmap is prepared, the BitBlt operation copies
the image from the memory context, pDCMem, to the printer device context, pDC,
where Windows assumes the rest of the task of handling the actual output.

}
//=== now copy from color context to printer context =====

pDC->BitBlt(0, 0, nGrayWd, nGrayHt, pDCMem, 0, 0, SRCCOPY);
//=== the result is printed as black and white =========

DeleteObject(hTargetBM);
delete pDCSrc;

}

Once the BitBlt operation is handled, a minimum of cleanup is required. We
only need to delete the target bitmap, hTargetBM, and the pDCSrc device context.

Overall, this may appear to be a rather roundabout fashion to map a color
image to a gray-scaled equivalent. Still, this process does have several advan-
tages, including these:

• There is no need for far long pointers to index bitmaps greater than 64KB.

• There is no need to convert palette color indexes into RGB values.

• On the whole, processing times are very fast.

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 14

http://www.sybex.com

15

Incidentally, as you may notice, the color-to-gray conversion itself tends to be con-
siderably faster than the process of copying the gray image to the Print Manager.

Figure S17.2 shows an actual printout created using the process described here
to convert the 256-color original Modern.BMP to a gray-scaled hard copy. The
original output was executed on a 300-dpi laser printer.

F I G U R E S 1 7 . 2 :

A true gray-scaled printout

Improved Gray-Scale Printing
In the GrayImage demo (in the OnDraw method), the BitBlt API is used to copy
a gray image to a monochrome printer. However, the BitBlt API does not
include any provisions for resizing the image. As an alternative, you can use
the StretchBlt API to create any size output image desired, and you might
use CRect coordinates derived from the printer context to size the bitmap to fit

The GrayImage Demo: Sending a Bitmap to a Printer

2642S17.qxd 11/1/99 10:13 AM Page 15

http://www.sybex.com

16

the entire page. However, for several reasons, this may not always be an opti-
mal choice. In actual graphics printing applications, you may want to improve
the output in the following ways:

• Allow a specific size.

• Preserve the vertical and horizontal proportions.

• Avoid plaiding in the printed image.

Fortunately, all of these conditions are relatively easy to fulfill.

The first objective, a precise size, is simplicity itself. In the StretchDIBits
operation, replace the page size with the desired image size. Just remember to
convert from inches or millimeters (or whatever unit you’re using) into logical-
device coordinates (pixels or printer dots). For this purpose, device-resolution
information is available using the GetDeviceCaps function (see Supplement 12).

The second objective, maintaining proportion, is equally easy. For the maxi-
mum image size, compare the horizontal and vertical size ratios, and then adjust
the greater ratio to maintain image proportions.

Avoiding plaiding is perhaps the most difficult objective, simply because this
provision is not completely compatible with either of the first two. Even so, in
execution, it is not exceedingly difficult. In practice, the simplest solution is to
size the image so that the dots in the output image are some multiple of the origi-
nal pixel size (or, for gray-scales, some multiple of the gray-scaled pixel size).
Thus, for a 200×200 pixel image converted into a 16-level gray-scale, the gray
image is 800×800 pixels and could be printed as 800×800, 1600×1600, or 2400×2400
dots. Assuming a 300-dpi laser printer, the largest (2400-dot) image would be
8 inches wide.

NOTE For dot-matrix printers with lower resolutions, the choices and possibilities are
more restricted. Typesetting printers and many of the newer laser printer designs
offer more versatility.

The only real problem is found with devices that lack a 1-to-1 horizontal-to-
vertical aspect ratio. For example, some dot-matrix printers might provide a hori-
zontal resolution of 96 dpi, while their vertical resolution is 180 dpi, for a ratio of
96-to-180 or 8-to-15. This is not an easy ratio to fit without distorting the image

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 16

http://www.sybex.com

17

proportions. Fortunately, most laser and ink-jet printers do have 1-to-1 aspect
ratios.

Gray Images Printed in Color
In some cases, you might need to print a color hard-copy from a gray-scale origi-
nal. For example, infrared photography images, particularly video images, are
captured as gray-scale. In similar fashion, low-light (night-scope) images, NMR,
and even CAT scan images do not have inherent color information but are gath-
ered as images scaled by intensity, density, or a synthetic scale.

With infrared images, the problem is that we do not see in this portion of the
spectrum, even if we did have printers or monitors capable of displaying these
frequencies. But, at the same time, a black-and-white image is less informative
than a color image.

In all of these cases, a common solution is to produce a false-color image in
which colors are assigned (arbitrarily or otherwise) to various intensity ranges.
How colors are assigned is subject to several considerations:

• What is the available range of information? How many gray, intensity, or
other levels of information are available in the original image or data?

• How many colors can be displayed? Those who are working with more
sophisticated forms of imaging equipment are rarely limited in their display
capabilities and can usually assume at least a 256-color display capacity.
However, printers may be more restricted in their color ranges.

• How large a range of color is actually needed? Do you need to use 256 col-
ors or will a simpler palette of 16 colors serve just as well or even better?

• What color palette will best serve to display the information? In general,
converting intensity to color is done to make certain characteristics stand
out for easy identification and recognition.

As an example, one intensity-to-color development was done as a color printer
driver for a company involved in infrared imaging The image was captured using
a special (and expensive) video camera and capture board and held a wide range of
intensity data (at least 256 levels). The limiting factor was not the video display but
the printer, which supported only a 16-color palette. Also, the printer palette needed

Gray Images Printed in Color

2642S17.qxd 11/1/99 10:13 AM Page 17

http://www.sybex.com

18

to accommodate a background color that was used for low-temperature areas in the
image. The color chosen for the background was a light-blue palette entry for a neu-
tral backgrounds. Black was used as a temperature threshold marker. Temperatures
(intensities) below a certain level were mapped to violets, blues, and greens, advanc-
ing to black, and then to reds and yellows to show the higher intensities.

Color Images Printed in Color
In recent years, a variety of color printers have appeared on the market, rang-
ing from paint-jet printers that produce medium-quality color images to dye-
diffusion printers that produce more expensive but near-photographic-quality
color images.

Unlike video displays, which use an RGB color scheme (as explained in Chap-
ter 24), all printers use the complementary CYM (cyan-yellow-magenta) color
scheme to print color. The complementary inks absorb everything except cyan,
yellow, or magenta, respectively. But, by combining yellow and cyan, everything
except green is absorbed, and the result is a green image. In like fashion, reds,
blues, and all other shades are created by varying the combination and amount of
each ink to leave only the desired color reflected. White, of course, is provided by
the paper without ink; black uses all three inks to absorb all colors.

To the general relief of programmers, Windows supplies drivers for almost all
printer types, including color printers. As for those printers that are not currently
supported, most manufacturers are busy developing Windows drivers for them.
Of course, there may be a few who are blithely attempting to ignore the new para-
digm, but this may also be taken as a benchmark of their probable future and
your own future expectations from such companies. Still, the usual cautions apply:
Check available support before investing in a specialty printer, not after.

In general, printing a color image is quite similar to printing a monochrome
image, as demonstrated in the GrayImage demo discussed in this chapter. The
one difference is that no color palette is written to the output device context for
monochrome images. For color printers, a palette must be supplied.

Before supplying a palette, you will need to ask the printer what its palette
capacity is and supply a palette of the appropriate size. For limited palette sizes,
you may need to construct an appropriate palette. Still, you can have a lot of fun

Supplement 17 • Graphics Printing Operations

2642S17.qxd 11/1/99 10:13 AM Page 18

http://www.sybex.com

19

simply experimenting, or if you’re too busy, turn a teenager (or pre-teen) loose on
the problem and see what he or she comes up with.

The GrayImage demo included on the CD provides default handling for a color
printer as well as gray-scaled output to a monochrome device.

Color Images Printed in Color

2642S17.qxd 11/1/99 10:13 AM Page 19

http://www.sybex.com

S U P P L E M E N T
E I G H T E E N

Graphics Selection Operations

� Area selection tool features

� Adjustable target overlays

� Custom cursors

� Mouse-hit testing

� BMP (bitmap) file access and display

S18

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 1

http://www.sybex.com

2

One aspect of graphics operations that is not commonly mentioned is how to
select a section within an image or to select a region of interest. This requirement
comes up quite frequently when working with live video applications but is also
applicable to static bitmaps.

In this chapter, we will look at a method of creating a nondestructive target
overlay on top of an image. The sample program described here, Target, contains
provisions for moving the target, resizing the target, and changing cursors to
indicate which operations are being performed.

Also, while we have previously used bitmap images in applications, the Target
demo provides another example of accessing a bitmap file (look in the CTarget-
View::ReadBitmap procedure).

Creating a Selection Tool
A common requirement in many graphics operations involves selecting an area
from either a static bitmap or an active video image. For static bitmaps, selection
usually involves creating a tool to select an area, with the selection shown as an
outline. For example, the Windows Paint program provides two selection tools, a
free-form area tool and a rectangular area tool. Using the rectangular tool, you
can select any rectangular region in an image, then subsequently “pick up” or
drag the selection. The free-form selection tool functions in the same fashion,
except that you are allowed to “draw” an irregular region for selection.

The first method, rectangular selection, is the more commonly used and is the
type of selection discussed here. Selecting an irregular region involves much
the same process, except for keeping a list of boundary points and transferring the
selected region as a series of image row sections.

Drawing an Overlay
The simplest way to select an area and to provide visual feedback to the user is to
draw a rectangle enclosing the area on top of the existing image. Using a conven-
tional drawing operation, however, is destructive to the existing image. Simply
drawing a rectangle on top of a bitmap would be fine if you wanted to add the
rectangle to the image. But for selection, a different process is needed. You need

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 2

http://www.sybex.com

3

to draw the rectangle using a method that allows the original image to be
restored, without requiring redrawing the entire image.

The simplest method of drawing and then undrawing a figure is to use the
ROP2 XOR operation, or R2_XORPEN, which is described in Supplement 12 (on the
CD accompanying this book). Using the XOR drawing mode, the first time a
shape is drawn, the drawing pen (and brush, if any) is XORed with the underly-
ing image. This usually ensures that the drawn shape is optimally visible, regard-
less of the background image. More important, when the same shape is drawn a
second time, the second drawing operation has the effect of canceling the first,
and therefore restoring the original background image, without needing to
repaint the entire screen.

Aside from using the XOR drawing mode, the actual process of drawing the
overlay is trivial. However, there is one caution: Whatever image or form is used
for the overlay, it must be redrawn exactly to erase it before any changes occur in
the position or size.

TIP Incidentally, XOR drawing is also one of the simpler techniques used for anima-
tion. By performing an XOR draw operation to create an image and then a second
XOR draw to erase the original (and restore the background) before relocating the
image and beginning another cycle, an image can be animated with a minimal
disturbance to the background.

Active Video Image Selection
In the case of active video images, depending on the type of graphics capture
card and processor, the selection process may involve capturing a static image
first and then manipulating the static bitmap in much the same fashion demon-
strated in the Target demo discussed in this chapter.

In other cases, where multiple video planes are supported, the selection process
may be accomplished by drawing the area, or other targeting information, in a
separate video plane and letting the system combine the targeting information
with the active video for presentation.

In the case of multiple video planes, drawing the overlay using the XOR mode
still remains the fastest method of repeatedly drawing and removing targeting,
selection, or region outline information.

Creating a Selection Tool

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 3

http://www.sybex.com

4

TIP No matter how fast the system and the video card, restoring the entire image is
still time-consuming and almost always unacceptable, especially when you’re
working with an active video image.

Area Selection Conventions
In many drawing applications, the current convention for area selection is to
draw an overlay consisting of a dotted outline with rectangular handles at the
corners and centers of the sides. By placing the mouse cursor anywhere within
the outline and pressing the mouse button, the selected region can be dragged to
another position. On the other hand, by clicking on one of the handles, the outline
can be dragged to a new size.

In the case of irregular areas, depending on the application, small “handles”
may appear at nodes representing the vertices of a polygon outline. These han-
dles are treated in the same fashion as a rectangular outline, permitting a vertex
to be relocated. In other cases, such as in the Windows Paint program, no meth-
ods are provided for adjusting a free-form outline.

In the Target demo, a different set of conventions is used. For selection, you use
a set of crosshairs that extend to the window margins and a circle that approxi-
mates the target area or region of interest (ROI). Figure S18.1 shows an example
of a screen in the Target demo, with a bitmap displayed behind the target selec-
tion overlay.

This format is common in machine-vision applications, where the user is select-
ing an area for examination. Because the crosshairs extend to the margins of the
window, they can be used to indicate a position on scales along the sides. The
center of the crosshairs is left open, so that the specific target is not obscured. The
circular target area marker is used to select an area for closer examination or for
action by other associated tools. As an alternative, an elliptical, rather than circu-
lar, shape could be used for the target area marker.

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 4

http://www.sybex.com

5

In most applications, after a user selects a rectangular or irregular region, the
selection is actually moved, copied, or otherwise processed. During this process-
ing, the common convention is to show an outline surrounding the selection.
While it would be possible to capture or process a circular or irregular area, the
usual practice is to process a rectangular image. This simplification is commonly
used to show the actual area being processed, as well as to facilitate drag
operations.

In the Target demo, when the right mouse button is pressed to initiate a capture
(though no actual capture is done in this example), the crosshairs and circular
target are replaced by a rectangle bounding but outside the region of interest.
Figure S18.2 shows an example of the selection rectangle.

F I G U R E S 1 8 . 1 :

Targeting an area in a
bitmap

Creating a Selection Tool

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 5

http://www.sybex.com

6

Whether you use these conventions, or any of several others, depends on the
needs of your application. There is no single set of conventions that apply to all
cases and cover all requirements.

The Target Demo: Selecting Parts of an
Image

The Target demo demonstrates using adjustable target overlays, testing for mouse
hits with overlapping targets, and setting custom mouse cursors.

F I G U R E S 1 8 . 2 :

Indicating the selected
region of interest

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 6

http://www.sybex.com

7

NOTE The Target demo is included on the CD that accompanies this book, in the Supple-
ment 18 “Graphics Selection Operations” folder.

Opening a Bitmap File
The Target demo provides an option to open a bitmap file for a background
image. It uses essentially the same bitmap file and display operations demon-
strated in Supplement 15 (on the CD accompanying this book). However, there
are a few differences, because the version presented here relies heavily on MFC-
defined classes rather than the standard APIs and conventional programming
methods.

Also worthy of your attention is the single TRY..CATCH exception handler used
when opening a bitmap file:

TRY
{

CFile cFile(csFName, CFile::modeRead | CFile::typeBinary);
SetCursor(LoadCursor(NULL, IDC_WAIT));
...
read the bitmap file here
...

}
CATCH(CFileException, e)
{

#ifdef _DEBUG
afxDump << “File access failed: “ << e->m_cause << “\n”;

#endif
return FALSE;

}
END_CATCH

The CFile constructor (used to open the file for reading), like any class con-
structor, does not return an error regardless of what might go wrong. Therefore,
to catch an error when opening a file in this fashion, the TRY...CATCH exception
handling is required.

The Target Demo: Selecting Parts of an Image

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 7

http://www.sybex.com

8

NOTE C/C++ supports several forms of try…catch and TRY…CATCH exception handling,
with the latter form—demonstrated in the Target demo—using macros. Refer
to Chapter 9, “Exception Handling” for more information on using exception
handling.

Responding to the Mouse
In the Target demo, the selection overlay must be able to respond to the mouse in
several different fashions, depending on where the mouse is clicked:

• If the mouse is clicked in the center of the target, the target can be dragged
to a new position without changing its size.

• If the mouse is clicked on the left or right side of the target, or on the top or
the bottom of the target, the target can be resized horizontally or vertically
(but not both) without changing its center position.

• If the mouse is clicked on a corner of the target—upper left, upper right,
lower left, or lower right—the target can be resized both horizontally and
vertically, again without changing its center position.

In each case, the circular target is the focus of these operations; the crosshairs
simply follow the center position of the target. Also, the background image
remains unaffected by any of these operations.

Changing the Cursor

The Target demo also includes provisions to change the cursor to reflect the type
of operation about to occur when the left mouse button is pressed. Although the
Windows GDI offers a variety of standard cursors, these are not always readily
visible against a complex background (see Supplement 6 on the CD for more infor-
mation about Windows cursors). The original program from which Target was
derived provides a set of custom cursors, which have been incorporated into the
demo as well.

These five custom cursors appear in Figure S18.3:

• North-south cursor (NS_CURSOR)

• Northeast-southwest cursor (NESW_CURSOR)

• Hand cursor (HAND_CURSOR)

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 8

http://www.sybex.com

9

• Northwest-southeast cursor (NWSE_CURSOR)

• East-west cursor (EW_CURSOR)

In each case, the cursor image consists of a white body with a reversed outline.
A small crosshairs mark has been added to each image to identify the position of
the cursor’s hotspot.

Determining the Hit Position

To manage dragging and resizing operations for the target overlay, the first step is
to determine where the mouse hit occurs—that is, the mouse’s position when the
primary mouse button was pressed.

In the CTargetView class, the OnLButtonDown method is called whenever the
left (or primary) mouse button is pressed and receives two parameters, the
nFlags parameter and the point argument. In this case (as in most), we ignore
the nFlags argument, which contains status information, and rely on the point
information, which tells us where the mouse was when the event occurred rela-
tive to the application client window.

F I G U R E S 1 8 . 3 :

Five custom cursors

The Target Demo: Selecting Parts of an Image

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 9

http://www.sybex.com

10

NOTE By default, the mouse handler causes an OnLButtonDown call when the left
mouse button is pressed. If, however, the Mouse utility in the Control Panel has
been used to swap the mouse buttons, the OnLButtonDown call responds to the
right mouse button being pressed. For programming purposes, the primary mouse
button always identifies itself with a WM_LBUTTONxxxxx message, and the sec-
ondary button always reports as WM_RBUTTONxxxxx, regardless of which physical
mouse button is pressed.

Before any tests are made, the m_nTrack member is initialized as NO_TARGET.
Subsequently, if a hit is identified in any target region, m_nTrack is reassigned a
value to identify the correct region.

Also, before any other operations, the SetCapture method is called to ensure
that mouse messages from outside the current window will still be received. The
mouse capture will be released when the mouse button is released.

void CTargetView::OnLButtonDown(UINT nFlags, CPoint point)
{

m_nTrack = NO_TARGET;
SetCapture();

Next, the m_xRadius and m_yRadius members contain the size of the target
ellipse and the m_cPoint member contains the center point. To limit the drag
operation to the center of the target area, the first target rectangle is defined using
two-thirds of the vertical and horizontal radii. After creating the rectangle, the
NormalizeRect function is called, purely as a precaution, to ensure that the bot-
tom coordinate of the rectangle is greater than the top and the right side greater
than the left.

CPoint cPoint(m_cPoint);
CRect cRect(cPoint.x - ((m_xRadius / 3) * 2),

cPoint.y - ((m_yRadius / 3) * 2),
cPoint.x + ((m_xRadius / 3) * 2),
cPoint.y + ((m_yRadius / 3) * 2));

cRect.NormalizeRect();
if(cRect.PtInRect(point))

The PtInRect method simply returns TRUE if the point argument lies within
the rectangle, or FALSE if not. While such a test is not difficult to perform, the pro-
vided member function is more convenient than writing a separate operation for
each check that is made here.

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 10

http://www.sybex.com

11

If PtInRect returns TRUE, the m_nTrack member is set to ALL, meaning that the
entire target overlay will be dragged when the next mouse moment message is
received, and the hand cursor is loaded as the active cursor.

{
m_nTrack = ALL;
m_hCursor = SetCursor(LoadCursor(theApp.m_hInstance,

“HAND_CURSOR”));
}

If the PtInRect function returns FALSE, the OnLButtonDown method continues
through a series of else statements, testing each target area in turn. If a hit is
found, it sets the m_nTrack variable to the appropriate operation and loads the
correct cursor.

The real key here is to ensure that the target rectangles are tested in the correct
order. Figure S18.4 shows nine overlapping target rectangles, numbered in the
order tested.

What Figure S18.4 does not show is that region 1 overlaps regions 2, 3, 4, and 5.
However, if a hit is found in the first region, no other regions are tested, making
the overlapped areas irrelevant.

F I G U R E S 1 8 . 4 :

The mouse-hit target
rectangles

The Target Demo: Selecting Parts of an Image

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 11

http://www.sybex.com

12

In like fashion, areas 1, 2, and 4 overlap area 6. But because this area is tested
last, a hit will be identified for this area only if it occurs within the irregular
region shown. The same holds true for the regions identified as 7, 8, and 9; each is
overlapped by three other regions that are tested first.

The point is that it’s unnecessary to define complex hit areas when the same
task can be accomplished by testing simpler regions in the proper order. On the
other hand, when it is absolutely necessary to test complex regions, you can
use other methods, such as those demonstrated in Supplement 20.

Last, the CView::OnLButtonDown method is called to provide default handling
for the mouse messages.

}
m_bDrawOverlay = TRUE;
CView::OnLButtonDown(nFlags, point);

}

Because we’ve already provided complete handling, calling the default method
is optional, but still good practice.

Once we’ve decided where the mouse hit occurred, the next step is to wait for
the OnMouseMove function to be called, indicating that the mouse has moved. The
OnMouseMove method, like the OnLButtonDown method, is called with nFlags
and point arguments, and again, the nFlags argument can simply be ignored
as irrelevant.

Before doing anything based on the m_nTrack action flag, the next step is to
decide if the mouse is still in the client window. If it is not—if the mouse has been
moved outside the application window—then we will release the mouse capture
and do nothing.

void CTargetView::OnMouseMove(UINT nFlags, CPoint point)
{

CRect cRect;

if(m_bDrawOverlay)
{

GetClientRect(cRect);
if(! cRect.PtInRect(point))

// cursor outside of client area
{

m_nTrack = NO_TARGET;
SetCursor(m_hCursor);

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 12

http://www.sybex.com

13

ReleaseCapture();
return;

}

Next, assuming the mouse is still in the window, the response is to call the
DrawOverlay method to erase the existing target overlay:

DrawOverlay(); // erase the overlay target
switch(m_nTrack)
{

case NO_TARGET: // no action
break;

If the m_nTrack member indicates NO_TARGET, then we’ll take no action. If
m_nTrack is set to ALL, then the m_cPoint member needs to be updated:

case ALL:
m_cPoint.x = max(m_xRadius, min(point.x,

(cRect.right - m_xRadius - 2)));
m_cPoint.y = max(m_yRadius, min(point.y,

(cRect.bottom - m_yRadius - 2)));
break;

Alternatively, if m_nTrack is set to TOP, the vertical radius should be adjusted
according to the mouse movement:

case TOP:
m_yRadius = max(30, m_cPoint.y - point.y);
break;

The remaining case statements allow adjustments according to the quadrant
selected, and the switch statement is followed by a test to ensure that the target is
not dragged outside the client window. The bulk of these provisions, however,
are routine.

The one important provision remaining is to call DrawOverlay a second time to
redraw the target overlay at the changed position or with the changed size.

...
DrawOverlay(); // redraw the overlay target

}
CView::OnMouseMove(nFlags, point);

}

Finally, when the mouse button is released, the OnLButtonUp method is called.
Here, the same arguments are supplied, but now both nFlags and point can be

The Target Demo: Selecting Parts of an Image

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 13

http://www.sybex.com

14

ignored. We don’t really care where the mouse was released or what the flags
were; our only interest is that the mouse button has been released. And the
response to the mouse button release is simple: Reset the member flags, restore
the default cursor, and release the mouse message capture.

void CTargetView::OnLButtonUp(UINT nFlags, CPoint point)
{

m_bDrawOverlay = FALSE;
m_nTrack = NO_TARGET;
SetCursor(m_hCursor);
ReleaseCapture();
CView::OnLButtonUp(nFlags, point);

}

For the right mouse button, the provisions are even simpler: When the right
mouse button is pressed, check to see if the event occurred in the target rectangle.

void CTargetView::OnRButtonDown(UINT nFlags, CPoint point)
{
/*

//=== routine to show target areas ===//
DrawOverlay();
DrawTargets();
DrawOverlay();

*/

CRect cRect(m_cPoint.x - ((m_xRadius / 3) * 2),
m_cPoint.y - ((m_yRadius / 3) * 2),
m_cPoint.x + ((m_xRadius / 3) * 2),
m_cPoint.y + ((m_yRadius / 3) * 2));

if(cRect.PtInRect(point)) // is cursor in client area?
{

If the mouse event is in the target, set the capture flag, call DrawOverlay to
remove the target overlay, and then call DrawROITarget to create the ROI outline.

m_bCapture = TRUE;
DrawOverlay();
SetCapture();
DrawROITarget();

}
CView::OnRButtonDown(nFlags, point);

}

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 14

http://www.sybex.com

15

If you were tracking mouse movement while the right mouse button is pressed,
this would occur in the same OnMouseMove method used to track movement with
the primary button pressed. The only difference would be that you would need to
include some provisions, such as the m_bDrawOverlay and m_bCapture flags, to
determine which type of event was being tracked. Or, more directly, the nFlags
argument accompanying the mouse-movement message could be queried to find
out which mouse button was pressed or whether both buttons were pressed.

In this case, we really don’t care about movement. All we’re waiting for is for
the right mouse button to be released.

void CTargetView::OnRButtonUp(UINT nFlags, CPoint point)
{

if(m_bCapture)
{

m_bCapture = ! m_bCapture;
ReleaseCapture();
Invalidate();
DrawOverlay();

}
CView::OnRButtonUp(nFlags, point);

}

Once the right mouse button is released, we reset our flag, call the Invalidate
function to redraw everything in the window, and then call DrawOverlay to
restore the target overlay. The DrawROITarget function does not use R2_XORPEN;
therefore, there is no easier way to remove the ROI target rectangle.

A Note about Custom Cursors
Some of you may have noticed that the use of the SetCapture method in the Target
demo appears rather redundant since, as soon as the mouse moves outside the client win-
dow, ReleaseCapture has been called. Why call SetCapture and then release it as soon
as it becomes useful?

The reason is that by calling SetCapture, you ensure that the cursor you assign to the
mouse remains the active cursor and is not replaced by the default cursor as soon as
the mouse moves.

Continued on next page

The Target Demo: Selecting Parts of an Image

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 15

http://www.sybex.com

16

The explanation for this behavior is found in the notes for the SetCursor function (from
the MFC online documentation):

“If your application must set the cursor while it is in a window, make sure the class cursor
for the specified window’s class is set to NULL. If the class cursor is not NULL, the system
restores the class cursor each time the mouse is moved.”

The trick is how to set the class cursor to NULL. SetCapture provides a convenient alterna-
tive in this instance. However, the proper way to set custom cursors for a window under
MFC is to intercept the PreCreateWindow function and to modify the WNDCLASS mem-
ber of the CREATSTRUCT argument, setting the hCursor member to NULL. The revised
WNDCLASS structure, however, must be registered before use through the RegisterClass
function.

The long and the short of this is that setting custom cursors is not conveniently
accomplished.

Other Methods of Interest
A provision has also been included in the source code to draw the several target
areas used to test for mouse hits. This provision is found in the DrawTargets
methods and was used to create the illustration in Figure S18.4. This provision
can be enabled in the OnRButtonDown method.

Also of interest are the OnFileOpen, ReadBitmap, and OnDraw methods used in
the Target demo. These parallel earlier examples but offer new versions using
MFC classes and methods in place of some of the API functions and conventional
operations illustrated in previous chapters.

The complete target drawing and mouse-hit recognition operations are found
in the TargetView.h and .CPP files, which are part of the Target demo included
on the CD accompanying this book.

Supplement 18 • Graphics Selection Operations

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 16

http://www.sybex.com

17

Summary
In Supplement 18, we’ve taken a quick look at selecting an area within an image
and creating a non-destructive overlay. We’ve also looked at custom-cursor and
mouse-hit testing, as well as accessing and displaying a bitmap.

Next, in Supplement 19, “Interactive Images,” we’ll examine methods of creat-
ing interactive images, principally as maps but using techniques that could be
adapted to any of a variety of images.

Summary

2642S18(wasc13).qxd 12/27/99 9:33 AM Page 17

http://www.sybex.com

S U P P L E M E N T
N I N E T E E N

Interactive Images

� Color keying events

� Drunkard’s walk algorithm

� Memory map keys

S19

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 1

http://www.sybex.com

2

In the previous supplement, we examined some methods for selecting sec-
tions, or regions of interest, within a bitmap image. The methods discussed there
work well with simple bitmaps, but they are not suitable for bitmaps that contain
more complex shapes. In this supplement, we’ll look at several methods of map-
ping mouse events to complex bitmap regions.

Complex Regions in Interactive Images
A major element, and a major problem, in many graphics applications is identify-
ing the location within an image where an event, such as a mouse click, has
occurred. If you’re interested in only the window coordinates where the event
occurred, this information is supplied in the lParam argument accompanying a
WM_xBUTTONxxxx message or, using MFC, in the point argument passed to the
OnxButtonxxxx and OnMouseMove methods. However, determining where a
mouse click has occurred in relation to a displayed bitmap or some other region
defined on the screen is a more difficult matter, particularly when the region is
not conveniently defined by a series of bounding coordinates.

For simple rectangular shapes, you can use the PtInRect method, as explained
in Supplement 18. However, for any other shapes this method fails, and a new
approach is required. For example, consider Figure S19.1, where three shapes are
depicted representing possible screen areas:

• The first shape (region) at the left could be defined using a half-dozen coor-
dinate pairs, one pair for each vertex. You could then identify a mouse event
occurring within the bounded region by testing the area as two rectangular
regions.

• The center region in Figure S19.1 is a simpler shape, with only four vertices.
But it is also more complex, because the boundary lines are diagonal rather
than rectilinear. In this case, a more complex test is required to calculate
where the edges lie in relation to the mouse-click event.

• The third region, at the right, is the most complex of all. Following conven-
tional processes, it requires a relatively large number of coordinates describ-
ing the convolutions followed by the area’s outline.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 2

http://www.sybex.com

3

Methods for Identifying Regions and
Enclosures

Although it’s possible to create custom algorithms tailored for specific individual
types of images, for a generic mapping process a different approach to identify-
ing regions and enclosures is desirable. You can use a number of processes for
this purpose, as explained in the following sections.

Identifying Regions by Color
One identification approach involves color keying. This approach is demon-
strated in the MapDemo program discussed in this supplement. The demo uses
the USMAP01 bitmap.

Identification by color matching relies on the fact that each region (each state)
in the United States map depicted by the USMAP01 bitmap possesses a unique
color value. Figure S19.2 shows the USMAP01 bitmap image displaying the con-
tiguous United States with Alaska and Hawaii inserted at the lower left.

F I G U R E S 1 9 . 2 :

The USMAP01 bitmap

F I G U R E S 1 9 . 1 :

Three bounded regions

Methods for Identifying Regions and Enclosures

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 3

http://www.sybex.com

4

The MapDemo program contains a lookup table that matches each state’s color
with the state’s name; the color choices themselves are quite arbitrary.

This approach has a few obvious restrictions, including being limited to use on
systems with capacities to display more than 16 colors and requiring that the
image consist of areas of continuous color. Also, any two areas with the same
color value will be identified as the same region. Overall, however, it is a practical
and useful method of identifying a large number of irregular regions.

Using a Hidden Color Map
Another identification process involves using a memory-map color mask to
determine where events have occurred in a bitmap that is not composed of con-
tiguous color regions. This method uses a second color map that is not displayed;
that is, it is created in a memory context rather than a display context.

This second map contains the color-identification values for the primary
bitmap that appears on the screen. Then, when the mouse is used to select a point
on the displayed bitmap, you look for the pixel value in the hidden bitmap and
match this color to the keys.

Using the Drunkard’s Walk Algorithm
An algorithm that is particularly useful for identifying irregular regions is the
drunkard’s walk algorithm, titled thus because the search pattern follows a trace
reminiscent of an inebriated and staggering pedestrian. (This type of motion is
also known as Brownian motion, as exhibited by microscopic particles subject to
thermal agitation.)

Where a drunkard—or a microscopic particle—simply continues indefinitely,
the drunkard’s walk algorithm executes a test after each staggering step (rather
like a drunkard searching for any lamppost in reach) to determine whether it has
reached an identifiable point, and halts when such an encounter occurs. These
target points are assigned locations within each enclosed region and are indexed
to uniquely identify the region.

The drunkard’s walk algorithm begins at a point indicated by the mouse click
and proceeds in any arbitrary direction until one of these events occurs:

• A boundary is reached.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 4

http://www.sybex.com

5

• A random instruction instigates a change in direction.

• The drunkard’s search reaches a target coordinate identifying the enclosed
region.

In the first case, reaching a boundary identified either by a change in color (or
in the MapDemo program, by a specific, preselected border color), the drunkard’s
path simply bounces or reverses. The drunkard then retraces its path until the
second instance (a random change) forces a new direction or until, ultimately, the
path intersects an identifiable point.

In the second case, a pseudo-random generator initiates a change in direction
every ten steps, on average. Although in one chance out of eight this chance is not
a change at all, the overall effect is to trace paths with an average length of 10
steps (or, in this case pixels) between changes in direction.

The third case is illustrated in Figure S19.3. This figure shows the same three
regions illustrated in Figure S19.1, but this time with a drunkard’s walk trace,
which ends by intersecting the desired target coordinates (shown as a small box
outline).

Using a Recursive Search
An alternative to the drunkard’s walk algorithm is a recursive search algorithm.
This algorithm begins, from the initial coordinates, by initiating a recursive
search. For example, the recursive search might begin by searching to the imme-
diate left, then down, then up, and finally to the right, with each point searched
initiating a further recursive search in the same direction until a border is reached
or the target is found.

For example, assume a recursive search beginning at point 100,100. The recur-
sive process calls itself, first with the coordinates for the point to the immediate
left (99,100). When this first search returns, assuming that the target point has not
been found, the next search will be up (100,99), then down (100,101), and then
right (101,100).

F I G U R E S 1 9 . 3 :

The drunkard’s walk search

Methods for Identifying Regions and Enclosures

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 5

http://www.sybex.com

6

However, the first search at (99,100) initiates its own searches at (98,100),
(99,99), (99,101), and (100,100), which is the same point where the search started.
And each of these searches executes its own recursive search.

But since each search is looking for either a border, which terminates further
recursion in that branch, or the target point, which also terminates recursion, this
algorithm is not infinitely recursive. But, even with finite recursion, the number
of active recursions does increase geometrically. Furthermore, each recursion
requires its own register values to be pushed onto the stack, and this can very
quickly lead to stack overflow. Even if the recursive procedure is very carefully
designed, this can still be a problem.

An advantage of this approach is that a well-designed recursive search is
absolutely certain to succeed. It will find the target location, even if it must
check absolutely every location within a region. But a well-designed recursive
search is not necessarily any faster than a drunkard’s walk search, and it does
consume considerably more of the system’s resources. At its worst, the drunk-
ard’s walk algorithm is sometimes a bit slower but only rarely and randomly so.
In general, the drunkard’s walk algorithm tends to be faster, as well as more effi-
cient in overall usage of system resources and, most important, of CPU time.

Finally, on the basis of simple aesthetics, the drunkard’s walk algorithm is far
more satisfying to the soul (the programmer’s, at least, if not the machine’s) than
the stolidly pedestrian recursive search. After all, getting there is half the fun,
isn’t it?

The MapDemo Program: Identifying
Event Locations in a Bitmap

As explained earlier in the supplement, the MapDemo program uses the USMAP01
bitmap, which is a map of the United States. This program demonstrates the use
of the color matching and drunkard’s walk algorithm techniques for event
identification.

NOTE The upper New England states (which appear relatively small in the USMAP01
bitmap) are displayed separately in the USMAP02 bitmap and are used to demon-
strate the second area-identification algorithm. The USMAP02 image can be
selected either by clicking on the upper New England states in USMAP01 or
through the Map menu.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 6

http://www.sybex.com

7

Color Matching
Within the MapDemo program, while the USMAP01 bitmap is displayed, a
WM_LBUTTONDOWN message calls the ColorCheckMap function, passing three param-
eters: the window handle (hwnd) and the two mouse-click coordinates derived
from the lParam argument accompanying the mouse-button event message.

case WM_LBUTTONDOWN:
...

CoordCheckMap(hwnd, LOWORD(lParam),
HIWORD(lParam));

break;

The mouse-click x-axis coordinate is reported in the low word of lParam, and
the high word reports the y-axis coordinate.

The ColorCheckMap function appears to be a simple process, but it requires a
bit of finesse to comply with Windows’ requirements.

void ColorCheckMap(HWND hwnd, WORD xCoord, WORD yCoord)
{

HDC hdc;
DWORD RColor;
WORD SColor;
int i;

...
hdc = GetDC(hwnd);
RColor = GetPixel(hdc, xCoord, yCoord);

// need RGB palette-relative color value
ReleaseDC(hwnd, hdc);

The GetPixel function returns a DWORD value containing the RGB color value
for the selected pixel in the form 0x00rrggbb. However, while this is the color of
the pixel itself, the data identifying the several states consists of the simpler
palette index values rather than their RGB equivalents. Ergo, the next task is to
match the color returned to the bitmap’s palette, retrieving the palette index.

To accomplish this, the first requirement is to lock the pointer to the global
palette information (pGLP) and then lock a handle to the logical palette (hGPal)
before calling the CreatePalette and RealizePalette functions to temporarily
recreate and activate the bitmap palette.

LocalLock(hGLP);
LocalLock(hGPal);

The MapDemo Program: Identifying Event Locations in a Bitmap

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 7

http://www.sybex.com

8

// lock and create palette for reference
hGPal = CreatePalette(pGLP);
if(hGPal == NULL) ErrorMsg(“Palette not found!”);

// make palette active for device context
RealizePalette(hdc);

// get palette index for comparison
SColor = GetNearestPaletteIndex(hGPal, (COLORREF) RColor);

// unlock everything but don’t delete palette
LocalUnlock(hGLP);
LocalUnlock(hGPal);

Finally, after the palette is created (or recreated), the GetNearestPaletteIndex
function returns the palette index value as SColor. Of course, before finishing,
the two memory locks on the global and recreated palettes should be released.
Neither, however, should be freed from memory since they may be needed again.

Once the palette index has been retrieved, a pair of simple loops is all that is
required to identify the corresponding state or, in the case of the upper New Eng-
land states, to display the USMAP02 bitmap14.

for(i=0; i<12; i++)
if(SColor == NewEngland[i])

// if this is any New England state, switch maps
PostMessage(hwnd, WM_COMMAND, IDM_MAP2, 0L);

for(i=0; i<=StateColors; i++)
if(SColor == CState[i].Color)

LocationMsg(CState[i].State);
MessageBeep(MB_ICONASTERISK);

}

Once the state or area is identified, a variety of other responses can be imple-
mented as elaborately or as simply as desired. In this demo, a simple pop-up dia-
log box with a “Welcome to the great state of xxxxxx” message appears,
identifying the state selected.

The data matching the states and colors is provided by a simple structure list-
ing these by name and palette index. An abbreviated sample follows:

ColorState CState[StateColors] =
{ “Arizona”, 2, “New Mexico”, 7,

“Oklahoma”, 9, “Georgia”, 11,
“Oregon”, 12, “Colorado”, 13,
“Missouri”, 15, “South Carolina”, 16,
“Texas”, 17, “Hawaii”, 18,
...

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 8

http://www.sybex.com

9

Implementing the Drunkard’s Walk Search
Implementing the drunkard’s walk search algorithm (CoordCheckMap) is a rela-
tively simple task. As in the ColorCheckMap function, this search is called with
three arguments: the window handle and the x- and y-axis coordinates reported
by the mouse-click event message.

void CoordCheckMap(HWND hwnd, WORD xCoord, WORD yCoord)
{

BOOL Done = FALSE, Reverse;
HDC hdc;
WORD i;
int j, k, x, y;

...
randomize();
hdc = GetDC(hwnd);
x = random(3)-1;
y = random(3)-1;

Initially, CoordMapCheck retrieves the device-context handle for the window
displaying the map and selects step directions (x,y) in the range –1 to 1. Since
these are used to increment the xCoord and yCoord values, the result is a search
track beginning in one of eight compass directions (N, NE, E, SE, S, SW, W, NW).

NOTE There is also one chance in nine that the initial search step will be (0,0), which is
no search at all. This will, however, correct itself automatically when the next ran-
dom search direction is selected.

Before the search is initiated, the first step is to check the present coordinates
against a loop testing all of the identified coordinate pairs. Also, rather than
requiring a perfect hit on the target coordinates, the actual test accepts any point
that is within ten pixels of the target (total offset on both axes). As in a game of
horseshoes, close does count and an exact match is not required, simplifying the
search.

do
{

for(i=0; i<AllCoords; i++)
{

if((abs(xCoord - Coord[i].xPos) +

The MapDemo Program: Identifying Event Locations in a Bitmap

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 9

http://www.sybex.com

10

abs(yCoord - Coord[i].yPos)) < 10)
{

if(i < StateCoords)
LocationMsg(Coord[i].State);

else
PostMessage(hwnd, WM_COMMAND, IDM_MAP1, 0L);

Done = TRUE;
} }

If the current coordinates are within a total of 10 units of the target coordinates,
a match is simply assumed. The hidden assumption here is that no target point is
located within 10 pixels of a border; otherwise, it could be misidentified by being
detected from the wrong side of the border.

In other cases, a closer (or looser) match might be appropriate, so you would
adjust the algorithm accordingly. For the present, a range of 10 pixels is adequate
for the purpose.

State coordinate pairs in the MapDemo program are identified, together with the
appropriate state names, as a simple structure table:

CoordState Coord[AllCoords] =
{ “Connecticut”, 267, 208, “Delaware”, 202, 311,

...
“Vermont”, 238, 132, “RETURN”, 14, 337,
“RETURN”, 331, 290, “RETURN”, 122, 81 };

In addition to the state coordinates, the program provides three area coordi-
nates that do not fall within a specific state: one below the upper New England
states, and two in the blank areas surrounding these states. Intersecting any of
these three locations sends the application back to the USMAP01 display.

Alternatively, as long as a match is not found, the next test is to determine
whether the bitmap borders have been reached:

Reverse = FALSE;
if((xCoord >= bmWidth-1) || (xCoord <= 1) ||

(yCoord >= bmHeight-1) || (yCoord <= 1))
Reverse = TRUE;

If, for any reason, the search is approaching the bitmap border, the Boolean
Reverse flag is set and, subsequently, will reverse the search direction. Without
this provision, the usual result under Windows will be a system application error,
often trashing the system memory as well.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 10

http://www.sybex.com

11

Next, as long as the search remains away from the bitmap border, a second loop
executes a check of the immediate vicinity, searching for pixels identifying a bor-
der encounter and, again, reversing direction if a border is found.

else
for(j=-1; j<2; j++)

for(k=-1; k<2; k++)
if(GetPixel(hdc, xCoord+j, yCoord+k) == BORDER)

Reverse = TRUE;

The program could have executed a simple, straight-ahead search, but this
would have one fairly dangerous flaw: Narrow borders can leak through either
single-pixel gaps or diagonal “pores,” both of which are illustrated in Figure S19.4.

Here, a gap in the left border is one potential leak where a search trace could
escape. Two other locations show pores where a diagonal search trace could escape.
The remaining potential gaps in the original have been blocked in this version.
Going through a bitmap looking for potential problems of this type, however, is a
tedious process and prone to error. Instead, the broad area-checking provisions in
the preceding code accommodate a much less rigorous border condition.

Finally, if any of the preceding tests have set the Reverse flag, both the x and y
increment variables are inverted by multiplying by –1.

if(Reverse)
{

x *= -1;
y *= -1;

}
else
if(! random(10))
{

x = random(3)-1;
y = random(3)-1;

}

F I G U R E S 1 9 . 4 :

Leaky borders using the
drunkard’s walk algorithm

The MapDemo Program: Identifying Event Locations in a Bitmap

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 11

http://www.sybex.com

12

Alternatively, if no reverse condition has been encountered, a simple random
test is used to change the search direction on a 1-in-10 chance. Like the original
one, the new search direction is selected randomly.

NOTE A provision has been included in MapDemo to render the search trace visible by
drawing a white dot at each step. This is implemented quite simply as:
//=== option to trace random walk algorithm =========

SetPixel(hdc, xCoord, yCoord, 0x00FFFFFF);
//===
To disable this trace provision, simply comment out this line of code.

Last, the current x and y incremental values are added to the xCoord and
yCoord values before the do...while loop continues.

xCoord += x;
yCoord += y;

}
while(! Done);
...
return;

}

The illustration in Figure S19.5 shows several drunkard’s walk searches exe-
cuted in various New England states. The illustration was created by having
the search paint its own trail markers. After the screen image was captured, the
fill colors for each state were replaced by white, and the target points (which
appear as small red dots in the map image) were replaced by asterisks for easier
identification.

F I G U R E S 1 9 . 5 :

Drunkard’s walk searches
in New England

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 12

http://www.sybex.com

13

As you can readily see in the traces in Figure S19.5, the drunkard’s walk algo-
rithm is not the most efficient search method. Furthermore, as previously men-
tioned, there are times when this method is indeed ineffective.

For example, Figure S19.6 shows an enlargement of the search executed in
Pennsylvania, with a circle added both to make the target region more visible and
to show the nominal target radius. The search shown begins in the northeastern
portion of the state, then passes relatively close to the target location, but not
quite close enough to trigger a match, before executing a rather massive search of
the western region and, finally, returning to the central region to find the target
coordinates. On the other hand, since even a complex search like this executed in
a matter of a less than a second, the inefficiency involved was relatively minor.

Also, there are two factors that tend to mask these potential inefficiencies in the
algorithm:

• A natural human tendency to click on some point roughly near the center of
any area (as compared to human perversity in selecting bottlenecked
regions)

• The probability that the algorithm will tend to quickly execute an escape
from such a bottlenecked region

A third guard can be provided by selecting extra coordinate points within such
regions. For example, see the provisions for New York and Long Island in the
MapDemo program. (On the map, the island of Long Island is separate from the
remainder of the state and has its own target coordinates.)

F I G U R E S 1 9 . 6 :

Searching Pennsylvania

The MapDemo Program: Identifying Event Locations in a Bitmap

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 13

http://www.sybex.com

14

NOTE The drunkard’s walk algorithm is not without an occasional shortcoming. Stuart
Ozer, who was my technical reviewer for the Windows 3.1 version of an earlier
volume, reported finding a starting point on Cape Cod from which the algorithm
required 10 minutes or more to identify Massachusetts. Such a flaw could be
blamed on the geometry of the search versus the boundary configuration, or it
could be simply bad luck in the pseudo-random number sequence directing the
search.

Using a Hidden Map
There may be occasions when you want to identify areas without having them
visible on the displayed image. For example, in the case of the United States map,
you might wish to display a topographic or meteorological map of the country
without delineating the states, which would mean no borders.

An alternative approach that will allow you to still be able to identify the states
would be to use a second map image—the same size as the first—that does not
appear on the screen. You would create this second map in a memory context
and, when the mouse is used to select a point on the displayed bitmap, the search
would be executed from the corresponding point on the hidden bitmap.

Using Direct Coordinate Searches
Although it may appear odd or even inefficient, the drunkard’s walk algorithm
is, overall, a very fast technique for determining a regional location. There is,
however, one alternative that, on first consideration, sometimes appears more
efficient: Search the coordinate list for the coordinate pair closest to the starting
point, then look for a border between the two points.

The reasons for this second step are simple but are best illustrated by an exam-
ple. Consider the states of Pennsylvania and New Jersey and assume that the
coordinate pairs for each are located at, approximately, Altoona (Pennsylvania)
and East Brunswick (New Jersey), placing each location roughly at the center of
the state.

A mouse click in the region of Philadelphia (Pennsylvania) would not, however,
select the Altoona coordinates as nearest because the East Brunswick coordinates
in New Jersey are considerably closer.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 14

http://www.sybex.com

15

Of course, searching for a border between the initial point and the closest target
would identify the problem and allow another search for the next closest coordi-
nates (and so on) to proceed. But the search for a border is almost as time-consuming
as a simple drunkard’s walk and is more difficult to program reliably.

Now suppose that the located coordinate set is correct—that it lies in the same
state or region as the mouse click—but that a straight line between the origin and
the coordinate point must cross two borders. Sound unlikely? It isn’t. For exam-
ple, look at Figure S19.5, where the state of Maryland (at the bottom of the map)
is virtually split in two by the Chesapeake Bay. At the same time, Long Island and
the mainland portion of the state of New York are technically all one region but,
physically, are two separate areas on the map. In this instance, neither of the algo-
rithms discussed—the drunkard’s walk or the closest points with border-crossing
tests—is adequate.

The solution for both the cases of discontinuous or extremely convoluted areas
is to provide more than one coordinate point. In the MapDemo program, the
USMAP02 provides two coordinate points to identify New York: one on Long
Island and one on the mainland.

For Maryland, a second point located across the Chesapeake Bay would sim-
plify searching and would also prevent an error that is present in the current ver-
sion: Selecting a point across Chesapeake Bay is very likely to locate Delaware,
not Maryland.

NOTE It would also be possible to provide a larger number of coordinate point targets in
each area and, granted, this should ensure very fast searches. The only drawback
would be the effort of building tables of points and ensuring that there were no
errors in the result. However, the trade-off in speed—which is minimal from the
user’s viewpoint—hardly seems worth the effort.

Summary
In this supplement, we’ve looked at several methods for working with interac-
tive, complex bitmaps. The MapDemo program, included on the CD accompany-
ing this book, demonstrates two methods for mapping mouse events to complex

Summary

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 15

http://www.sybex.com

16

bitmap regions. You can experiment with these and the other methods mentioned
here to see how they suit the needs of your applications.

Next, in Supplement 20, “Graphics Simulations,” we will look at how graphics
simulations work and methods for developing your own simulation applications.

Supplement 19 • Interactive Images

2642S19(wasc14).qxd 12/27/99 9:36 AM Page 16

http://www.sybex.com

S U P P L E M E N T
T W E N T Y

Graphics Simulations

� A synthetic cosmos for modeling physical interactions

� Variable timing for simulated events

� Choices for simplifying simulations

� Mechanical simulations

� Theoretical system simulations

S20

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 1

http://www.sybex.com

2

Over the past two decades, computers have revolutionized more of our
world than most people realize. Granted, the Internet is the current buzzword,
and most people are aware that computers are used for special effects in movies
and commercials on television. Some people are even familiar with using com-
puters to study fluid dynamics, weather patterns, engineering structures, and
other technical subjects. But these are only a few of the areas where computers
have radically changed the traditional arts, crafts, and sciences. A complete list of
affected areas would fill a large book, which would be out of date long before it
could be published.

But this supplement is not about the computer revolution. It’s about an area
that did not even exist, with a few modest exceptions, prior to computers: the
field of graphics simulations or, more accurately, the mathematical simulation of
dynamic systems in general, including both physical and nonphysical systems.

Using Graphics in Simulations
Simulations do not necessarily require graphics, and in some cases would be
slowed down by graphics. However, we have a very human desire to see what is
happening while it happens, rather than reading about the results afterwards. As
an example, the Forest demo discussed in this chapter displays a small universe of
10,000 acres, simulating the growth of trees.

The simulation begins with bare ground that is randomly seeded with 100
starts (seedlings). As the simulation progresses, the various wooded areas grow,
age, and propagate, spreading trees to new areas.

Of course, if this were the extent of the simulation, this mini-universe would
simply fill with trees until there was no bare ground left. The result could be
derived simply by calculating the average time necessary to fill the forest. This
simulation, however, is not so limited.

Instead, as a defined area of tree population ages, the trees eventually die, rot,
and leave a new plot of bare ground. At the same time, in emulation of the real
world, the simulated forest is subject to fires. And once a fire starts, it spreads.
The older trees are easiest to ignite, and changing wind patterns affect the spread
of the fire.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 2

http://www.sybex.com

3

Overall, if the simulation’s only output were a statistical report listing the forested
acres for each year, we might learn almost as much. But “almost as much” is not
the same as watching it happen. By watching the forest grow, burn, and reseed
itself, we gain some small measure of understanding of two new and very impor-
tant elements: the patterns of growth and death, and the way that changing the
parameters affects not only the end results but also the patterns themselves.

NOTE If you have any doubts about the relative importance of simple statistical results
versus patterns, consider the extreme examples of any fractal algorithm. In fractal
calculations, such as the Henon Attractor or the Malthusian equation (another
famous simulation), statistical results reveal almost nothing; the patterns, visible
only when plotted graphically, reveal everything.

Some Background on Computer Simulations
In the ages B.C. (Before Computers), the sheer volume of calculations required for simula-
tions ruled out modeling even the simplest systems unless some measurable physical ana-
log could be employed. In some cases, there were alternatives. Physical erosion was
relatively easy to study using a slant box of sand and a water source. Minimal route-
mapping problems could be solved using soap films. And many ballistic and navigational
problems were attacked using electronic (and some mechanical) analog systems.

As for more general simulations, however, the Life program was played out with paper
and pencil, usually by students who might have better spent their time studying. This was
roughly the practical limit for an unaided human. (For your amusement, the Life program
in electronic form is included on the CD accompanying this book.)

In the Life program, the “world” consists of a grid that, for convenience, is finite but
unbounded (see “The Toroidal Model” later in this chapter) and each grid location may
initially be “alive” or “dead.” Provisions are included in the demo to “seed” the grid ran-
domly or to create an initial configuration known as a launcher that will generate two
child flyers, which will fly across the screen on a diagonal path.

Continued on next page

Using Graphics in Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 3

http://www.sybex.com

4

At intervals of 1⁄2 second, a new generation of Life is calculated according to the current
state of the “world” and four simple rules:

1. Any “alive” location that has more than three neighbors dies of overcrowding in
the next generation.

2. Any “alive” location that has fewer than two neighbors dies of loneliness in the
next generation.

3. Any location—“alive” or “dead”—that has exactly three neighbors will be alive in
the next generation.

4. Any location—“alive” or “dead”—that has exactly two neighbors remains
unchanged in the next generation.

Advancing beyond these three simple rules governing the Life program and expanding
beyond what is, essentially, a very small universe, the complexity and volume of the calcu-
lations required for most simulations have simply overwhelmed both human patience and
practical capacities. Some few individuals have accomplished prodigious feats of cogita-
tion and calculation, such as the compilation of the Rudolphine Tables (Kepler) or calculation
of the trigonometric functions (Napier), but these are exceptions as well as monumental
endeavors. (The Aztec calendar might also qualify but was almost certainly a prolonged
group effort.)

Thus, for the most part, simulations of any complexity have waited for the advent of our
newest and most powerful tool: the computer. Using this tool, we are now able to
study—through simulation—systems that we could only theorize about previously.

All of this says nothing about the accuracy of our simulations, but it does permit testing
our theories against actual performance. Therefore, if your theory holds that playing to fill
an inside straight is better than folding on the sixth card, you can create a simulation to
test this theory faster and more accurately (as well as more cheaply) than testing the the-
ory at Saturday night poker games. (Of course, this question can also be settled by proba-
bility theory without requiring simulations, but we won’t go into that here.)

Creating a Dynamic (Memory) Cosmos
The Forest demo demonstrates the creation of a synthetic cosmos. By intention,
the forest exists only as a shadow, mimicking reality without requiring the com-
plexity of rules (natural laws) that govern what we familiarly consider reality.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 4

http://www.sybex.com

5

Instead, the simulation uses simpler rules that can be manipulated, compressed,
and studied. Thus, by analogy and experimentation, we are able to better under-
stand the complexities of reality.

Rather than modeling the growth and complexity of individual trees (along
with the weather patterns, soil composition, and a myriad of other factors) and
repeating this for the thousands of acres of trees composing the forest, the forest
is calculated as areas following a simple statistical growth pattern with a uniform
composition within the area. In this fashion, we can see the forest for the trees; we
are able to look at the forest as an entity while ignoring the trees themselves.

The Forest Cosmos Size
Our simulated forest exists in a cosmos consisting of a scant 10,000 units (100 by
100) that—for convenience only—are referred to as acres. Because this is a simple
simulation, the essential status for each unit is stored in an array of BYTE.

For convenience, two arrays are used, permitting the second array to be
updated by reference to the first and to then replace the first array. In this fashion,
the first array, which holds the prior status, is not affected by changes that would
produce recursive effects.

As you know by now, although DOS and Windows 3.x impose limits on array
sizes of a mere 64KB, Windows 2000 (using 32-bit addressing) has revoked this
limitation in favor of a theoretical array size of 4GB. Of course, we still face physi-
cal limitations imposed by the amount of memory available; even on small sys-
tems, however, this is a considerable increase in freedom.

NOTE If you need to use extremely large arrays, in sizes beyond available memory limits,
you can use disk files as an extension of RAM. Unfortunately, this approach has
the disadvantages of being relatively slow and somewhat cumbersome.

Rules of the Forest Cosmos
“Had I been present at the creation, I might have offered the creator much valuable
advice.” — Remark attributed to Alphonso the YYs

Creating a Dynamic (Memory) Cosmos

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 5

http://www.sybex.com

6

The Forest cosmos is governed by a series of relatively simple rules, which
appear as numerical algorithms within the program:

• The Forest cosmos begins as bare ground and is randomly seeded, initially,
with 100 plantings.

• In subsequent cycles (years), the planting age is shown by changing colors.

• After a minimum of five cycles, the forest plots are developed well enough
to propagate and, if adjacent plots are bare, may seed these areas, initiating
new growth.

• Old-growth acres (arbitrarily those over 11 years old) are susceptible to nat-
ural death. A simple simulation provides for old age and other causes. As
with natural forests, however, this is a minor element and affects approxi-
mately one percent of the forest.

• Fire is a major effect in the Forest cosmos, just as it is in real-world forests.
For simplicity, only one fire can start during any cycle. Minor fires are not
simulated, but a fire may spread to adjacent acreage.

• Fires die out when their fuel is exhausted, but they are also affected by wind
direction and speed.

• Fires can spread only to mature acreage; young plots are not affected (under
the assumption that young trees are scattered and little deadwood is avail-
able to fuel a major burn).

Given these relatively simple rules, the Forest cosmos simulates the same pat-
terns of growth and death exhibited by real forests. And a correspondence in
patterns is the hallmark by which a simulation is tested.

Handling Boundary Problems: Creating a Closed,
Unbounded Cosmos

Any simulation that re-creates or models a subset of a larger reality is subject to a
boundary problem in one form or another. When any area is subject to effects
from surrounding areas—and, naturally, vice versa—boundary problems are
found in simulations whenever there are no adjacent areas (in the simulation).
One option, of course, is to have boundary areas that are relatively static, that are
not affected by the simulation area, or that do not have an effect on the simulation

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 6

http://www.sybex.com

7

area. For the Forest simulation, for example, we might use a boundary consisting
of a rocky desert or ocean (simulated) such that these boundary areas were irrele-
vant to the simulation.

Alternately, our boundary areas might consist of rules simulating a surround-
ing cosmos or simulating a barrier of some theoretical sort. Exactly how complex
you wish to make the boundary is, of course, subject to the needs of your simula-
tion. Or, as a further alternative, we can simply create a cosmology where the
boundary does not exist.

In the Forest cosmos, the boundary problem is avoided by the simple expedient
of making the cosmos a closed, unbounded universe. What appears to be the left
edge of the map actually adjoins the right edge; the top edge of the map joins and
continues at the bottom. Topologically, this type of closure is the equivalent of a
toroidal surface (a doughnut or an inner tube are physical examples of a toroidal
surface). Although toroidal surfaces are not commonly encountered in our uni-
verse (at least, not on any macrocosmic scale), this is a popular method of avoid-
ing boundary problems in simulations.

There are other, more complex methods for dealing with boundary problems.
For example, a method popular in the study of the physical universe involves
using a spherical surface. Another even more complicated and computation-
intensive approach involves using algorithms to simulate the effects of areas out-
side the actual simulation boundaries.

For most planar simulations, the toroidal universe provides the simplest approach
and the fastest computational results. Furthermore, if your simulated cosmos is
not planar but a volume, such as a fluid or gaseous volume, this same practice
can be extended to create a hypertoroid in cybernetically four-dimensional space.

The Toroidal Model

The practice of creating or simulating a closed but unbounded cosmos in cyber-
space is both simple and complex. On the simple side, because the data describ-
ing a simulation is stored in one or more arrays or matrixes, the primary
consideration in using the toroidal surface model is to test all coordinate refer-
ences (that is, references to array data) and to provide adjustments for references
that fall outside the array limits, thus “wrapping” the index back into the array
from “the other side.”

Creating a Dynamic (Memory) Cosmos

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 7

http://www.sybex.com

8

On the complex side, although simple rectilinear offsets are easily converted,
operations involving vectors, angles, or curves are not always easily handled.
When operations of this or a similar type are necessary, the simplest approach is
to use a separate matrix where the operation can be carried out without crossing
a boundary. The results can be mapped, using whatever offsets and adjustments
are necessary, into the simulation space.

In spatial terms, the most important element is to make sure that all operations
that wrap across an array boundary are correctly adjusted for the wrap. Failure to
do so can have strange and interesting results that are not always easy to identify
or recognize.

Using Colors in Simulations
One principal characteristic of graphic simulations is the use of color to make
information clear. In many cases, commonly referred to as false-color mapping or
false-color imaging, color assignments are arbitrary and have no real-world relation
to the source or the data.

For example, false-color imaging is often used in astronomy to “translate”
radio-frequency images for visual presentation. The translation involved can take
several different forms, including using color to represent intensities, radio fre-
quencies, densities, or even gravitational gradations—none of which have any
direct correspondence to the visual spectrum.

Another mapping format uses colors that are chosen to represent approximate
analogs of the data. An example of this latter approach is used in the Forest simu-
lation. Bare ground is represented by browns, various stages of forest growth by
shades of green, fires and embers by reds, and ashy ground by grays.

You can also use a combination of both representational color and false-color
coding. This approach generally involves switching between display formats,
showing first one information set and then another. For example, you could cre-
ate a switched display for the Forest program by adding provisions to show sim-
ulated rainfall patterns, temperature profiles, or soil-composition characteristics
(extensions you can experiment with yourself).

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 8

http://www.sybex.com

9

The Forest Demo: Operating the
Simulation

Deciding how to set up a simulation is the first step; coding the simulation is the
second. Both steps require provisions for a variety of circumstances.

As an example, Figure S20.1 shows the Forest cosmos some 6,703 years after
seeding and 22 days into a major burn-off. The illustrated burn began somewhere
in the northwest of the display but has not spread too widely, despite a current
wind from the west at a strength of 4 (the maximum is 5). Allowing the simula-
tion to continue, the fire revives as the winds change direction and finally burns
itself out after 73 days.

All of these events, of course, exist only in the computer’s memory and result
from pseudo-random number sequences. Nonetheless, they provide a faithful
emulation of patterns of growth and burn-off that have been observed in natural
forests.

F I G U R E S 2 0 . 1 :

Here the forest is 6,703
years old, 22 days into a
burn condition, with the
wind from the west at a
strength of 4.

The Forest Demo: Operating the Simulation

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 9

http://www.sybex.com

10

Defining the Color Palette
In the Forest demo, a palette of 16 colors has been defined. Two of these represent
bare ground (light brown and dark brown). Ten shades of green represent trees at
various ages. Light and dark red represent fires and embers, respectively. A dark
gray is used to represent freshly burnt, ashy ground. A third brown is used for
ground left bare by a fire.

The palette colors are defined in Forest.h as RGB values, each with a corre-
sponding integer constant as a convenient identifier. (These latter elements are for
the programmer’s convenience only—but, then, what is more important?)

However, although these RGB values are defined for each color, this palette is
never activated for the device context. Instead, while the RGB colors are refer-
enced as drawing colors, Windows is allowed to dither the existing default
palette colors in drawing the simulation map.

NOTE The decision to permit dithering instead of activating the color palette is arbitrary,
but this method does show, even on SVGA systems, how a similar display might
appear on standard VGA systems. The alternative of activating the defined palette
colors is left as an exercise for the reader (and is demonstrated numerous times in
other sample programs accompanying this book).

Initiating the Cosmos
Lacking the resources to initiate a primal fireball and to then wait for nature to
evolve a life-form from the first primordial globule, the first provision in the For-
est simulation is to set the initial conditions for the simulation. This is accom-
plished in two steps, beginning in response to the WM_CREATE message.

case WM_CREATE:
srand((unsigned)time(NULL));
ActiveTimer = 0;
wsprintf(szBuff, szCaption, nYears);
SetWindowText(hwnd, szBuff);
for(i=0; i<GRID; i++) // init world as

for(j=0; j<GRID; j++) // bare ground
Acres[i][j] = random(2);

break;

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 10

http://www.sybex.com

11

The randomize function ensures that new initial conditions (that is, a new
pseudo-random number sequence) are used each time the program is executed.

NOTE Depending on the compiler you are using, the pseudo-random number algorithm
can be initialized in different fashions. Some compilers provide a randomize func-
tion which automatically calls the system clock to seed the generator. Using Visual
C++, calling the srand function with the system time serves the same purpose.

The second provision, the double loops, sets the world to a random mixture of
damp and dry soils shown by the two browns. Within the program, both are
treated simply as fertile ground, without regard to their moisture content. In a
more elaborate version, the two browns might be used as different conditions,
representing wet and dry ground or high and low terrain. For the current version,
two shades of brown are simply not as dull as a single uniform color.

The second stage of initialization occurs only when the New Forest option is
selected from the menu. When this option is selected, the program resets the
nYears variable to zero and seeds 100 random locations, setting the correspond-
ing array elements as iNewGrowth.

case IDM_RESEED:
srand((unsigned)time(NULL));
nYears = 0;
for(i=0; i<100; i++)
{

xPos = random(GRID);
yPos = random(GRID);
Acres[xPos][yPos] = iNewGrowth;

}
EnableMenuItem(GetMenu(hwnd), IDM_STOPTIMER,

MF_ENABLED);
PostMessage(hwnd, WM_COMMAND, IDM_STARTGROWTH,

0L);
InvalidateRect(hwnd, NULL, FALSE);
break;

The pull-down Run menu has two options, Start and Stop, both of which are
initially disabled. After the forest is seeded, the Stop option is enabled, and a mes-
sage is posted to start the ID_GROWTH timer. Last, the InvalidateRect function is
called to repaint the window.

The Forest Demo: Operating the Simulation

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 11

http://www.sybex.com

12

Setting Variable Time for Events
After the initial conditions for a simulation are set (your cosmos is created), nor-
mally the next step is to initiate a sequence of events. In some simulations, such
as for plotting fractal algorithms, it is the end result that is important. This type of
process is normally carried out as quickly as possible.

More commonly, however, simulations are executed at some regular process
rate. Ideally, this rate is fast enough to prevent boredom but slow enough to per-
mit us to observe how the simulation is developing. Generally, for macro simula-
tions such as those in our example, this is compressed time for the simple reason
that no one is interested in waiting a year to watch a simulation complete a for-
est’s growth cycle. Alternatively, if we were trying to simulate the first three min-
utes of the creation of the cosmos, we would probably want to expand time to
permit the observation of events that happened too quickly for conventional
observation.

In the Forest demo, two different compressed time rates are used, each con-
trolled by a system timer: one for normal growth and another for forest fires.

Forest Growth Simulation
Initially, forest growth is simulated at one year = one second, with a one-second
timer stepping through the growth cycle. Thus, at one-second intervals, the
ID_GROWTH timer sends a WM_TIMER message to the WndProc procedure. In
response, a number of events are initialized.

case WM_TIMER:
switch(LOWORD(wParam))
{

case ID_GROWTH:
wsprintf(szBuff, szCaption, nYears++);
SetWindowText(hwnd, szBuff);
AgeWorld();
PropogateTrees();

The first response is to update the window caption, displaying the current year
(the number of cycles since the initial seeding) before calling AgeWorld to cycle
the forest through a year’s growth.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 12

http://www.sybex.com

13

The next step, PropogateTrees, calls a subprocedure to seed new areas from
existing growth. In this simulation, three factors control the rate of the spread of
the forest:

• The age of the existing growth (within each plot)

• The selection of a single plot within a range of three plots in any direction
(quite arbitrarily)

• Whether the target plot is fertile ground (in this case, any bare soil)

All of these factors could be variables or could be changed arbitrarily to experi-
ment with new environmental conditions. Still, the present settings serve as a
good foundation for a forest simulation.

Growth and seeding operations are carried out by writing new values to a copy
of the original data array, ensuring that the new conditions do not overwrite the
existing conditions used to generate the new ones. However, because of this sepa-
ration of present and future, the StepForest procedure is called to copy this
future status back to the present array.

In the current simulation, the potential conflicts between the present and future
states of the forest are minimal. The second array could be disposed of, and all
operations could be carried out in a single array. In other simulations, however,
duplicate arrays may be essential. Moreover, circumstances may require several
arrays to store not only present and future, but also various data types, which
may include constants (such as terrain) or contain factors affecting larger areas
(such as rainfall).

Forest Fire Simulation
After the current state of the forest is updated, the InitBurns procedure is called
to simulate potential forest fires:

StepForest();
InitBurns(hwnd);
InvalidateRect(hwnd, NULL, FALSE);
break;

When the forest fires (if any) conclude, the display is updated to show the new
conditions. The InitBurns procedure begins by selecting an arbitrary location for
a fire to start:

void InitBurns(HWND hwnd)
{

int x, y, NoChance = 20;

The Forest Demo: Operating the Simulation

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 13

http://www.sybex.com

14

x = random(GRID);
y = random(GRID);

Here, a couple of quite arbitrary conditions have been established:

• Only one fire can be started in any year.

• Any fire that does start completely burns out the affected plot (no plots are
partially burned).

• The constant, NoChance, is included to adjust the chances for a burn to start.

As with the growth-simulation conditions, all of these factors, including the
algorithm, can be changed or may include variables to adjust for various ignition
potentials.

To actually decide if a fire starts in the targeted area, a simple algorithm is
applied:

if(random(iOldGrowth + NoChance) <= (int) Acres[x][y])

Here, a random value is generated and must be less than the growth state of the
plot selected before a fire is initiated. In effect, the older the growth is on the tar-
get plot—and therefore the more fuel that is available—the greater the chances
are of a fire starting.

Assuming that a fire is initiated, another simulation sequence is started, begin-
ning by setting nDays to zero and selecting an initial wind direction:

{
nDays = 0;
nWind = random(4);
Acres[x][y] = iBurning;
PostMessage(hwnd, WM_COMMAND, IDM_STOPGROWTH, 0L);
PostMessage(hwnd, WM_COMMAND, IDM_STARTBURNS, 0L);

}
}

Last, to initiate the actual burn simulation sequence, the first timer (ID_GROWTH)
is turned off and a second timer (ID_FIRES) is started.

NOTE Because two separate timers are involved in the simulation, and because the Start
and Stop menu options are intended to operate either of these independently, a
set of purely internal message procedures is used to trigger these options indi-
rectly rather than directly.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 14

http://www.sybex.com

15

After the ID_FIRES timer has been initiated, all subsequent WM_TIMER messages
carry the ID_FIRES identifier and are used to control the new simulation
sequence.

Because the burn events are an important departure from the normal growth
pattern, the MessageBeep function is used to call attention to these changes. Also,
the global nWind wind direction is allowed to change at random intervals before
calling the TrackFire subprocedure:

case ID_FIRES:
MessageBeep(0);
if(! random(4)) nWind = random(4);
if(! TrackFire())
{

PostMessage(hwnd, WM_COMMAND,
IDM_STOPBURNS, 0L);

PostMessage(hwnd, WM_COMMAND,
IDM_STARTGROWTH, 0L);

}
InvalidateRect(hwnd, NULL, FALSE);
break;

default:
return(DefWindowProc(hwnd, msg,

wParam, lParam));
}
break;

As long as fires continue to burn, the TrackFire subprocedure returns TRUE,
and the ID_FIRES timer continues uninterrupted. When there are no remaining
fires and a FALSE value is returned, the ID_FIRES timer is killed and the
ID_GROWTH timer restarted.

The TrackFire subprocedure accomplishes two tasks:

• It ensures that fires do burn out to embers and then to ashy ground. This is
governed by a fairly simple algorithm that allows fires to sustain a long
burn initially but, after the fires have been burning, causes later burns to
develop swiftly but last only briefly. In effect, after a forest fire is well devel-
oped, the fires burn hotter and ignite new areas more easily, but burn out
faster.

• It provides a means for fires to spread to new areas. This is affected by three
factors. The first two, wind direction and wind speed, are relatively obvi-
ous. The third is simply a provision to ensure that young acreage does not
catch fire and burn off.

The Forest Demo: Operating the Simulation

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 15

http://www.sybex.com

16

Simulation Design
In the Forest demo, the processes involving the growth of a forest have been
greatly simplified. For example, no provisions have been made to account for
rainfall or, during burn phases, for rains that limit or even extinguish the fire’s
spread. No provisions have been made for seasonal variations, such as wet
springs and dry summers or for longer-term climatic variations. Similarly, it
includes only a single generic species of tree, with no other plant life present and
with no insect damage or disease damage simulated. Likewise, there are no pre-
vailing winds, rainfall patterns, erosion, or soil fertility variations.

Even so, if all of these factors were included in the simulation, this would still
be a very simplified cosmos. The point is that any simulation must be restricted to
some degree, if only to allow the computer to handle it in a reasonable time and
with reasonable memory requirements.

On the other hand, simplifying the simulation does not mean that the results
must be simple. Since the object is to model reality, there is certainly every reason
for the results of the simulation to mimic the complexities of reality.

Simplification Choices
The task of simplification is threefold:

• To decide which elements of reality are essential to the simulation

• To develop algorithms that mathematically mimic reality

• To present the results of the computations in a format that will show what is
happening

Because the Forest demo was designed solely to demonstrate a graphic simula-
tion and to serve as an example, many elements reflecting reality that would also
have increased the complexity of the program were omitted. Instead, two princi-
pal factors were selected for representation:

• Propagation rates and patterns for the development of the forest

• Fires to destroy older growth and make room for new additional growth

Given these two principal factors, the resulting simulation (in terms of burn-off
and regrowth patterns) still mimics the patterns observed in natural forests quite
accurately, which is exactly what is desired as an initial objective.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 16

http://www.sybex.com

17

In addition to the propagation and burn patterns, one minor evolutionary pro-
vision was added: having older growth die off without burning. In the present
simulation, the relatively minor decline of old growth by simple attrition is
masked by the larger effect of fires, producing the natural pattern observed in
dry-climate forests.

If, however, the burn frequency is decreased or stopped, the old growth decline
will become a major rather than a minor effect, producing a pattern typical of
wetland forests, where large-scale fires are virtually unknown. And, as you may
observe by varying the pattern, such a forest will tend toward a steady-state cli-
mate forest, which is quite typical of existing older wetland forests where older
growth dominates and younger growth is sparse.

Extending a Simulation
Once a basic simulation is operating with a satisfactory degree of validity—when
the operations correspond somewhat faithfully to reality—you can add further
extensions to simulate additional factors. The advantage of a simulation is that
any of these additional factors (or any combination of additional factors) can be
tested, varied, and tested again to observe how changes in various parameters
affect the progress of the overall simulation.

Even our simple Forest demo could be expanded to include more factors and
used to study the effects of various cutting patterns and the effect on the recovery
and long-term management of sustained yield for a real forest. You might include
factors such as elevation and erosion effects, rainfall, and leftover debris from cut-
ting operations and its effects on the spread of fires. Other factors that might
affect the overall health of a forest, such as insect infestation and disease, might
simply be ignored as irrelevant during the tests. But then, if some validity is
found for considering further factors—perhaps the cutting of debris provides a
breeding ground for the insect population—then these factors should also be
included in the model. Otherwise, the model may show effects that were not
anticipated or it may fail to show effects that were.

How you extend a simulation depends on what you are trying to learn. The real
value of a simulation is to reveal how processes occur, how elements interact, or
where and how patterns appear within a system.

Simulation Design

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 17

http://www.sybex.com

18

Simulating Mechanical Systems
Modeling of interactions among living systems is just one of the areas in which
simulation is useful. Another fruitful area for simulation design lies in analyzing
mechanical systems.

Although CAD systems are commonly thought of as design utilities, simulating
how mechanical elements interact is an integral part of any mechanical design
process. After all, if a set of gears is going to jam when two mechanically driven
arms unexpectedly attempt to pass through the same volume of space, it’s con-
siderably cheaper to find the flaw in an electronic simulation than to discover
this same surprise after tooling up to begin production—or worse, after building
a physical model.

You may be thinking that mechanical modeling could certainly be carried out
without any accompanying visual elements. After all, it should be faster to calcu-
late (for example) how two gears mesh than to draw the two gears on screen and
to repeatedly redraw them as they turn, right? If the only consideration were the
two gears, perhaps this would be true. But what about that movement arm dri-
ven by the gearing that, in another few seconds of arc, will attempt to pass
through one of several mechanical support members? These supports are static
and weren’t included in the calculated motions—a small oversight, but a mistake
that the real universe is not likely to duplicate.

Instead of attempting to calculate the place where every point belonging to
every element (both static and dynamic) may potentially interact with some other
point, it is simpler to draw the various elements, redrawing each one as often as
necessary. This allows the best processors of all, the human eye and brain, to spot
the potential conflicts.

Mechanical simulations should not be limited to the interactions of cams, gears,
and cogs. Instead, as currently implemented in some virtual reality simulations,
the humans (or other creatures) that are using the machines being designed also
become part of the simulation process.

WARNING If you are interested or active in mechanical simulations involving human users,
please remember that human beings, unlike machine parts, do not come in stan-
dard sizes. Not all men are 5 foot 11 inches tall, 175 pounds, and not all women
are 5 foot 2 inches tall, 125 pounds. Design for the taller, smaller, thinner, and
heavier people, too.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 18

http://www.sybex.com

19

Speeding Up Floating-Point Calculations
One problem often encountered in simulations has been slow processing caused by repet-
itive floating-point calculations. In some cases, floating-point calculations simply cannot
be avoided. In these cases, the only solution is a fast CPU. In other cases, however, even
when fractional interim values are desired or needed, these can be derived using integer
rather than floating-point operations, by the simple expedient of limiting accuracy to what
is actually required.

For example, suppose that an algorithm that is called repeatedly (several thousand times
per simulation cycle) needs to calculate a radial distance using p. Since the result of the
calculation will be cast as an integer and used as an index to a data array, the calculation
does not need to be carried out to 10 or 12 decimal places, or even to three or four
places. Therefore, instead of using a floating-point value for p, such as 3.14159, the cal-
culation can be carried out using integer operations (which are faster) using the value 402
(equals p * 128), and then dividing the result by simply shifting the value seven places to
the right.

The bit-shift operation is considerably faster than any decimal division, and the entire
process is markedly faster than floating-point operations, while achieving (within limits)
the same result.

Simulating Theoretical Systems
Physical realities, whether they are living systems or mechanical constructs, offer
their own physical appearances as a basis for graphic simulation. Other systems,
however, which may be theoretical or nonphysical, do not offer quite the same
convenience; instead, these require imagination and artistry in deciding how to
display the information generated by a simulation.

As an example, the operations of a computer chip are often simulated by a com-
puter program, particularly during the design process for a new chip. During
design, two quite different elements are taken into consideration: the physical
and the electronic layouts for the chip.

Of these, the fabricated layout of the chip is relatively simple: How many cir-
cuits can be fabricated within a given area of silicon? The electronic layout, on the
other hand, is not only more complex but is also directly affected by the physical
layout. In this respect, considerations include the signal path between various

Simulation Design

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 19

http://www.sybex.com

20

elements and, therefore, the signal time between two components; how the com-
ponents interact electronically; what leakage currents and capacitive effects must
be accounted for; and, far from least, how the various components function
cybernetically.

So, how is a system this complex simulated? And how is the simulation shown
graphically?

First, no single simulation—graphic or otherwise—will suffice (except possibly
for a very simple chip), because of the level of physical complexity in contempo-
rary monolithic integrated circuits. Instead (referring strictly to the physical lay-
out), small portions of the chip might be simulated on the screen. Or, for an
overview, color-coded areas might represent repetitive circuit areas or areas dedi-
cated to some specific function.

The electronic functions, however, are not this easily coded. They would proba-
bly require several different simulations and displays to handle the various ele-
ments. For example, a histogram might be used to show signal-path times for
different elements. Remember that with today’s high-speed chips, even the paths
required for clock pulses can be critical, and more than one engineer has vainly
expressed a wish for faster electricity. Still, other elements are even less easily dis-
played. Thus, in many cases, instead of attempting to show the simulations
directly, only the results of simulations are shown.

Computer chip and other electronic circuitry designs are only one area involv-
ing nonphysical simulations. There are other valid areas that have even less con-
nection to traditional physical reality. Some are simply constructs of our own
observations. For example, consider a simulation of the population growth pat-
terns using the Malthusian equation:

Pn+1 = R * Pn * (1 - Pn)

where R represents the growth rate for successive populations (P). Okay, popula-
tion grows linearly, doesn’t it? So, wouldn’t a simple line graph be appropriate
for this equation?

If the whole suggestion sounds like a loaded question, you’re right; it is.

First, after a half-dozen initial steps, the equation given is anything but linear.
And, second, this particular simulation will yield results unlike anything you
might normally expect. In fact, the Malthusian equation is a member of a loose
group of formulas referred to as strange attractors because of the curves generated
over successive reiterations from what initially appear to be only scattered points.

Supplement 20 • Graphics Simulations

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 20

http://www.sybex.com

21

The equation produces an interesting simulation, and simulations can show inter-
esting results that would not be visible simply by examining long columns of
numbers.

TIP To experiment with the Malthusian equation, one convenient method is to plot
successive points (Pn and Pn+1) as x- and y-coordinate pairs. After a few thousand
generations, the resulting plots will begin to show an interesting curve. Next, by
varying the growth rate R (try the range from 2.3 to 3.8 in steps of 0.1 or smaller),
a single curve becomes an interesting group of curves, complete with inflections
and bifurcation points.

In other cases, such as plotting radiation-intensity patterns from a broadcast
antenna or reception sensitivity for a receiver, the results are lobes. In other
instances, the results are landscapes ranging from smoothly undulating hills and
valleys to fields of jagged peaks and crevasses.

Summary
Regardless of the source of the data plotted or the algorithms used for a simula-
tion, the visual presentation is not simply a gimmick to impress board members
and visiting bigwigs, but a very valuable tool to allow the use of our own most
sensitive tools: color eyesight, superior image processing, and unequaled pattern
recognition. Graphics can aid in the simulation of all types of dynamic systems,
including both physical and nonphysical systems. The Forest demo discussed in
this chapter and included on the CD that accompanies this book is a simple
example. To learn more, expand the demo to experiment with various effects.

Summary

2642S20(wasc15).qxd 12/27/99 9:37 AM Page 21

http://www.sybex.com

S U P P L E M E N T
T W E N T Y - O N E

Metafile Operations

� Advantages of metafiles

� Metafiles written to a memory context

� Metafile playback

� Metafiles written to disk files

� Temporary metafiles

� The structure of metafiles

S21

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 1

http://www.sybex.com

2

A metafile is a method of storing the operations used to create an image such
that they can be replayed to recreate the original image in another window or
device context.

Metafiles per se are not a means of storing or exchanging images; they provide a
means of storing or exchanging a record of GDI function operations in a binary
format, which create a specific image. You can replay the operations recorded in a
metafile to re-create the original image in much the same fashion as you can
replay a CD or tape to re-create a voice talking or a piece of music. Although this
may sound interesting, as stated, it does not sound particularly useful. Ergo,
what good are metafiles?

As with all simple explanations, the preceding description was both accurate
and misleading. We’ll begin this supplement by talking about some possible
applications of metafiles, and you’ll see that they can be useful. Then we’ll go into
the details of recording and playing back metafiles.

Metafile Uses
One of the principal purposes of metafile operations is to exchange images
between applications. You can do this directly, using the clipboard operations
described in Supplement 22, “Clipboard Data Transfers,” or via file operations, as
demonstrated in this supplement.

For example, an accounting program could construct a business graph while
recording a metafile of the operations involved, then pass the resulting metafile
to a text editor, where the image could be re-created for inclusion in a report. This
same metafile can also be “played” directly to the printer, without first creating
and copying a bitmap image for the purpose.

Another use for metafiles is to record a calculated graphic (image), permitting it
to be re-created or duplicated without the need of repeating the calculations. As
an intrinsically calculation-intensive example, consider applying this process to a
fractal image. The metafile of the fractal could be replayed in a fraction of the
time required for the original calculations.

Another advantage of metafiles lies in the storage space required for them ver-
sus image files. For example, a scant 150-byte metafile can easily replace a 3,970-
byte image file. Disk storage may not be not a consideration, but even with 56kps

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 2

http://www.sybex.com

3

modems as the current standard, image-transmission times are still an important
factor in more than a few circumstances.

In some cases, metafiles may be preferred over device-independent bitmap (DIB)
files. Although DIBs have advantages over conventional image files, metafiles are
even less device-dependent and adapt automatically to the device context where
they are replayed.

Metafiles are not miracle solutions and will not immediately solve all of your
programming problems. But metafiles do offer possibilities. Perhaps this list of
uses has already suggested a possibility or two relevant to your own applications.
If you don’t have any ideas yet, you may by the time you finish reading this
supplement.

Recording Metafiles
Because metafile operations are easier to demonstrate than to explain, we’ll go
through the steps used to record a process for a metafile, using an image and a
process that should be familiar to you by now. First, in the PenDraw6 demo pro-
gram, we will create a seven-pointed star, then complete the image by enclosing
the star with a circle provided by the Ellipse function.

Creating the Metafile Device Context
The initial requirement prior to recording this metafile is to calculate a series of
points describing the seven-pointed star.

for(i=j=0; i<7; i++, j=(j+3)%7)
{

pt[i].x = (int)(sin(j*PI2/7) * 100);
pt[i].y = (int)(cos(j*PI2/7) * 100);

}
hdc = BeginPaint(hwnd, &ps);
hPen = CreatePen(PS_NULL, 1, 0L);
SelectObject(hdc, hPen);
SelectObject(hdc, GetStockObject(LTGRAY_BRUSH));
Ellipse(hdcMeta, -100, -100, 100, 100);

Recording Metafiles

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 3

http://www.sybex.com

4

After calculating the points, creating and selecting a null pen and a standard
brush should be familiar operations. With the enclosing circle drawn first, using
the null pen and filled by the light-gray brush, the background portion of the
image is complete.

Next, still using the null pen, we swap the brush for a dark gray, select the fill
mode, and call the Polygon function to draw the star inside the light-gray disk.

SelectObject(hdc, GetStockObject(DKGRAY_BRUSH));
SetPolyFillMode(hdc, ALTERNATE);
Polygon(hdc, pt, 7);
DeleteObject(hPen);
EndPaint(hdc, &ps);

Finally, we delete the null pen.

Executing this same operation to record the process for a metafile is not much
different but requires two new variables:

static HANDLE hMetaFile;
HDC hdc, hdcMeta;

The two new variables are a static handle, hMetaFile, and a device context
handle, hdcMeta. The declaration of this latter variable, hdcMeta, may have
already suggested a major element of the changes necessary: the substitution of
the hdcMeta device context for the more usual hdc context. But simply changing
the device context ID isn’t enough. A more important change appears immedi-
ately following:

for(i=j=0; i<7; i++, j=(j+3)%7)
{

pt[i].x = (int)(sin(j*PI2/7) * 100);
pt[i].y = (int)(cos(j*PI2/7) * 100);

}
hdcMeta = CreateMetaFile(NULL);

Replacing the familiar BeginPaint (or GetDC) instruction, the CreateMetaFile
API function provides the metafile equivalent and, in similar fashion, returns a
device-context handle. The big difference is that this handle is directed to a device
context that is not associated with any physical device. At the same time, since
the single parameter has been specified as null, the metafile created will exist in
memory only; that is, as a temporary memory file.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 4

http://www.sybex.com

5

Later in this supplement, you’ll see another form in which the metafile data is
written to a physical (disk) file. But even limited to a memory context, the
metafile can still be written to and replayed.

Once the metafile device context has been created, the hdcMeta handle can be
substituted for the earlier hdc handle in the drawing instructions, which now
appear thus:

hPen = CreatePen(PS_NULL, 1, 0L);
SelectObject(hdcMeta, hPen);
SelectObject(hdcMeta, GetStockObject(LTGRAY_BRUSH));
Ellipse(hdcMeta, -100, -100, 100, 100);
SelectObject(hdcMeta, GetStockObject(DKGRAY_BRUSH));
SetPolyFillMode(hdcMeta, ALTERNATE);
Polygon(hdcMeta, pt, 7);

Except for the change in the device context, the drawing operations are pre-
cisely the same as those previously directed to the screen context. The image
itself, however, has not been drawn to the screen; instead, only the GDI opera-
tions necessary to draw the image have been recorded.

Closing and Disposing of the Metafile
Rather than using the EndPaint (or ReleaseDC) instruction when you are fin-
ished using the device context, you use the CloseMetaFile instruction:

hMetaFile = CloseMetaFile(hdcMeta);
DeleteObject(hPen);

The call to the CloseMetaFile instruction, unlike an EndPaint or ReleaseDC
instruction, returns a handle not to a device context, but to the metafile itself
(which is currently in memory). At this point, this metafile handle can be used to
replay the same GDI instructions just calculated.

But unlike the original image, which would have been drawn to match the dis-
play context, the GDI instructions can be played back to any device context and
will create an image appropriate to the device context.

Last, even though the metafile has been created only in memory, it is still a logi-
cal object, and as such, must be disposed of when no longer required (or at the

Recording Metafiles

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 5

http://www.sybex.com

6

very least, before the application closes). In this case, the appropriate point is in
response to the WM_DESTROY message:

case WM_DESTROY:
DeleteMetaFile(hMetaFile);
...

Replaying Metafiles
Initially, the drawing instructions for our sample image were presented in the
form that would have been used to draw to the screen, nominally in response to a
WM_PAINT instruction. But because these were intended for a metafile rather than
a display, the instructions were executed in response to the WM_INITIALIZE
instruction (see the discussion of the PenDraw6 demo, later in this supplement).
But now that it’s time to replay the metafile instructions, this operation will be
carried out in response to a WM_PAINT operation, in the same fashion as any other
screen refresh. However, before actually replaying the metafile, we need to add a
few instructions.

Providing a Mapping Mode and Extents
Because the metafile image was drawn to a memory context as GDI instructions,
it lacks any physical device-context information, including mapping modes and
viewport and window extents. Therefore, before replaying the metafile instruc-
tions, we need to provide a physical device-context handle, as well as mapping
mode and extent settings:

case WM_PAINT:
hdc = BeginPaint(hwnd, &ps);
SetMapMode(hdc, MM_ANISOTROPIC);
SetWindowExt(hdc, 1000, 1000);
SetViewportExt(hdc, cxWnd, cyWnd);

The fact that the metafile does not include mapping mode and extent settings is
an advantage, not a disadvantage. Because these are not predefined within the
metafile, before you play back a metafile, you can establish any mapping mode or
window and viewport extents desired, and the metafile’s GDI operations will be
executed accordingly.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 6

http://www.sybex.com

7

Controlling the Image Position
Of necessity, one element is predetermined: the origin point. When the graphics
drawing operations were originally executed, the drawing was centered around a
(hypothetical) 0,0 origin point, simply because it was convenient. Alternatively,
the origin could have been located anywhere in the metaspace, and the resulting
operations would be recorded at points relative to this new theoretical origin.

But, while the metafile’s origin is known, the viewport and window extents
and origins are still undetermined. Because of these two factors, you can control
the position of the resulting image by changing the window origin when the
metafile image is replayed.

For the present demonstration, we’ll replay the metafile image a total of six
times, changing the window origin point each time, to produce an image similar
to the screen shown in Figure S21.1. (Because two of the resulting images use the
same screen coordinates, only five images appear on the screen.)

for(i=0; i<3; i++)
{

SetWindowOrg(hdc, -200 -(i * 300), -500);
PlayMetaFile(hdc, hMetaFile);
SetWindowOrg(hdc, -500, -200 -(i * 300));
PlayMetaFile(hdc, hMetaFile);

}
EndPaint(hwnd, &ps);
break;

In addition to the metafile drawing operations, other drawing operations could
also be carried out, either before or after the metafile is replayed. Also, remember
that this is not simply an image being copied to the screen; these images are
drawn in the same fashion as any other object created by drawing instructions.
You should also realize that the metafile may include ROP instructions governing
how the recorded drawing operations will interact with existing screen images.
(See Supplement 12 on the CD accompanying this book for more information
about ROP instructions.)

Replaying Metafiles

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 7

http://www.sybex.com

8

Metafiles as Disk Files
The preceding fragmentary examples for both recording and playing back a
metafile assume that the metafile exists only as a memory file. A memory metafile
provides an acceptable format for transfer using clipboard functions. For other
purposes, you may want to create a disk metafile, by writing the GDI operation
instructions to an external disk file in a condensed binary format.

F I G U R E S 2 1 . 1 :

Five images produced by a
metafile

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 8

http://www.sybex.com

9

Writing Metafiles to Disk Files
Writing metafiles to disk requires only a minor change in format and could be
accomplished, using the preceding examples, by changing one line in the
source code:

hdcMeta = CreateMetaFile(“D:\\METAFILE.WMF”);

Neither the filename nor the file extension used here has any particular signifi-
cance, although the .WMF extension (Windows MetaFile) does provide a conve-
nient convention.

The CreateMetaFile instruction could also be written using an indirect reference:

hdcMeta = CreateMetaFile((LPSTR) szMetaFileName);

In this form, szMetaFileName is a null-terminated string specifying the file-
name and, if desired, the drive and path specifications.

In either case, when the metafile is written to disk, the DeleteMetaFile
instruction in response to the WM_DESTROY message (shown earlier in the supple-
ment) does not affect the metafile disk file. The DeleteMetaFile instruction
deletes only the local handle to the file. The file itself remains until explicitly
erased by other instructions.

As another alternative, you can create a temporary file. This form of storage is
more ephemeral than a conventional disk file, but less transitory than a memory
file. This is the format used in the PenDraw6 demo discussed in this supplement.

Generating Temporary Files
To create a temporary file, the demo uses the GetTempFileName function to create
a temporary filename and calls it in response to the WM_CREATE function, instead
of supplying a string constant when calling the CreateMetaFile function. The
GetTempFileName function is called as:

GetTempFileName(lpszDrivePath, lpszPrefixStr,
wUnique, lpszTempFileName);

The function’s parameters are as follows:

lpszDrivePath This parameter points to a null-terminated string speci-
fying the drive and directory where the temporary file will be located. If
no drive or path is specified, the current drive and directory will be used.
(If desired, a call to GetTempPath will return the path name of the system’s
predefined temporary file directory.)

Metafiles as Disk Files

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 9

http://www.sybex.com

10

lpszPrefixStr This parameter points to a null-terminated string to be
used as the prefix for a temporary filename. It is limited to three characters
in length.

wUnique This is an unsigned short integer (WORD) used to generate the
temporary filename. If this argument is zero, a unique number (based on
the system time) will be generated and will also be returned by GetTemp-
FileName. If a file already exists with that generated name, the number
will be incremented and the new name tested for conflicts, continuing
until a unique filename is found.

lpszTempFileName This parameter points to a buffer that receives the
temporary filename. The return string consists of characters in the OEM-
defined character set and should be at least MAX_PATH (260) characters in
length to allow sufficient room for a complete drive/path/filename
specification.

In actual practice (and in the PenDraw6 demo), GetTempFileName can also be
called as:

GetTempFileName(NULL, “MFT”, 0, (LPSTR) szMetaFileName);

The PenDraw6 demo includes a message box provision that reports the tempo-
rary filename generated. As you will observe, the temporary filename created
begins with a tilde character (~), followed by the optional prefix (“MFT”) and
completed with a unique four-character hexadecimal value generated from the
wUnique parameter. For example, the returned drive/path/filename might be
C:\\Win2000\\TEMP\\~MFT12F3.TMP.

TIP Notice that the path specification uses double backslash characters, as required by
C-language conventions.

Deleting Temporary Files
Because large numbers of temporary files tend to clog a hard drive (a fault that,
unfortunately, is characteristic of too many existing Windows applications), any
applications using temporary files should also include provisions to erase these
files when they are no longer needed.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 10

http://www.sybex.com

11

This task can be accomplished quite easily by minor provisions in response to
the WM_DESTROY message.

case WM_DESTROY:
DeleteMetaFile(hMetaFile);
unlink(szMetaFileName);
PostQuitMessage(0);
break;

The unlink function erases the temporary file without requiring a file handle
or other handling provisions. (Remember that read-only files cannot be
unlinked.)

There is one flaw in this system: If an application is interrupted—because of a
hang-up requiring a reset, a power interruption, or any other reason—any tempo-
rary files created will not be erased, and you will need to manually delete them
from the hard drive. Of course, this can also be done to clean up after other, less
well-behaved applications, and this is also a good reason for using the GetTemp-
Path function. With this last provision, all garbage files will remain in one conve-
nient location where they’re easily found and deleted—a small courtesy, but an
appreciated one.

Accessing Temporary Metafiles
The principal reason for creating temporary metafiles is to allow other applica-
tions to access the information that they contain (an application also might need
to access metafiles that it created earlier, but a temporary file format would prob-
ably not be used in this case). Thus, we need a provision to retrieve or create a
metafile handle for a file that was not created by the application or that was pre-
viously discarded via the DeleteMetaFile function. This facility is provided by
the GetMetaFile function, which is called as:

hMetaFile = GetMetaFile((LPSTR) szMetaFileName);

Once the handle has been retrieved, we can access the metafile as before. When
finished, we should discard the metafile handle using DeleteMetaFile.

If the metafile is being created by one application for use by another, the origi-
nating application should not call unlink to delete the disk file, but the recipient
application definitely should.

Metafiles as Disk Files

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 11

http://www.sybex.com

12

Metafile Structures
Metafiles, whether in memory or on disk, are simply structured records using the
METARECORD and METAHEADER structures, or using the METAFILEPICT structure for
clipboard operations, which is discussed in Supplement 22.

You do not need to know how to read or decipher metafile instructions in order
to use metafile operations. However, being able to do so may prove worthwhile,
and they really aren’t as difficult to understand as you might assume.

A metafile begins with an 18-byte record header described by the METAHEADER
structure. This structure is followed by a series of METARECORD records, each con-
sisting of a minimum of four WORD values, which describe the actual GDI operations.

The Metafile Header Structure
The METAHEADER structure is defined in WinGDI.H as:

typedef struct tagMETAHEADER
{

WORD mtType; // metafile type
WORD mtHeaderSize; // header size (bytes)
WORD mtVersion; // version number
DWORD mtSize; // metafile size (bytes)
WORD mtNoObjects;
DWORD mtMaxRecord;
WORD mtNoParameters;

} METAHEADER;

The Metafile Record Structure
The METARECORD structure is defined in WinGDI.H as:

typedef struct tagMETARECORD
{

DWORD rdSize; // record size
WORD rdFunction; // function ID
WORD rdParm[1];

} METARECORD;

Each METARECORD records a specific GDI function call and varies in length with
the first DWORD value (rdSize) identifying the total size of the individual record.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 12

http://www.sybex.com

13

This value is expressed in lsw,msw order, with each word expressed in lsb,msb
order.

The second record element, rdFunction, identifies the function to be executed.
The low byte identifies the GDI function, and the high byte reports the number of
parameters passed to the function. Thus, a hex value 0418 identifies the Ellipse
function (18h or META_ELLIPSE), which receives four (04h) parameters, excluding
the hdcMeta argument (which is understood).

Metafile operation constants are defined in WinGDI.H. Table S21.1 lists some
representative metafile operations.

TA B L E S 2 1 . 1 : Representative Metafile Operations

Metafile Operation Value Op ID Arguments

META_SETBKCOLOR 0x0201 01h 2

META_SETBKMODE 0x0102 02h 1

META_SETMAPMODE 0x0103 03h 1

META_SETROP2 0x0104 04h 1

META_SETRELABS 0x0105 05h 1

META_SETPOLYFILLMODE 0x0106 06h 1

META_SETSTRETCHBLTMODE 0x0107 07h 1

META_SETTEXTCHAREXTRA 0x0108 08h 1

META_SETTEXTCOLOR 0x0209 09h 2

META_SETTEXTJUSTIFICATION 0x020A 0Ah 2

META_SETWINDOWORG 0x020B 0Bh 2

META_SETWINDOWEXT 0x020C 0Ch 2

META_SETVIEWPORTORG 0x020D 0Dh 2

META_SETVIEWPORTEXT 0x020E 0Eh 2

META_OFFSETWINDOWORG 0x020F 0Fh 2

META_SCALEWINDOWEXT 0x0410 10h 4

Continued on next page

Metafile Structures

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 13

http://www.sybex.com

14

TA B L E S 2 1 . 1 C O N T I N U E D : Representative Metafile Operations

Metafile Operation Value Op ID Arguments

META_OFFSETVIEWPORTORG 0x0211 11h 2

META_SCALEVIEWPORTEXT 0x0412 12h 4

META_LINETO 0x0213 13h 2

META_MOVETO 0x0214 14h 2

META_EXCLUDECLIPRECT 0x0415 15h 4

META_INTERSECTCLIPRECT 0x0416 16h 4

META_ARC 0x0817 17h 8

META_ELLIPSE 0x0418 18h 4

META_FLOODFILL 0x0419 19h 4

META_PIE 0x081A 1Ah 8

META_RECTANGLE 0x041B 1Bh 4

META_ROUNDRECT 0x061C 1Ch 6

The final element in the METARECORD structure will be one or more bytes con-
taining the arguments required by the GDI operation.

Sample Metafile Instructions
Using the metafile operations recorded by the PenDraw6 demo, as written to a
temporary (disk) metafile, a sample of metafile instructions is shown below. The
sample code has been interlineated with the program instructions generating
each metafile record, and the META_xxxxxxx operation is named at the right.
Notice also that, in some cases, a single source code line may generate more than
one metafile instruction record.

0001 0009 0300 00000004B 0003 00000012 0000 METAHEADER Record

hPen = CreatePen(PS_NULL, 1, 0L)
00000008 02FA 0005 0001 0000 0000 0000 META_CREATEPENINDIRECT

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 14

http://www.sybex.com

15

SelectObject(hdcMeta, hPen);
00000004 012D 0000 META_SELECTOBJECT

SelectObject(hdcMeta, GetStockObject(LTGRAY_BRUSH));
00000007 02FC 0000 C0C0 00C0 0000 META_CREATEBRUSHINDIRECT

(notice that LTGRAY_BRUSH is expressed as an RGB quad)
00000004 012D 0002 META_SELECTOBJECT

Ellipse(hdcMeta, -100, -100, 100, 100);
00000007 0418 0064 0064 FF9C FF9C META_ELLIPSE

SelectObject(hdcMeta, GetStockObject(DKGRAY_BRUSH));
00000007 02FC 0000 4040 0040 0000 META_CREATEBRUSHINDIRECT

(again, DKGRAY_BRUSH is specified as an RGB quad)
00000004 012D 0002 META_SELECTOBJECT

SetPolyFillMode(hdcMeta, ALTERNATE);
00000004 0106 0001 META_SETPOLYFILLMODE

Polygon(hdcMeta, pt, 7);
00000012 0324 0007 0000 0064 002B FFA6 META_POLYGON

FFB2 003E 0061 FFEA FF9F FFEA
004E 003E FFD5 FFA6

(includes 14 coordinates–7 points–from pt reference)

(A 3-byte null record terminates the metafile)
00000003 0000

NOTE If you compare the instructions in the metafile with the complete source code
generating these instructions, you may notice a few discrepancies. Where the
original instruction was CreatePen, the metafile equivalent has become Create-
PenIndirect. Also, the DeletePen instruction in the original source code is not
reflected in the metafile instructions. Neither of these are errors, but instead are
simplifications of the original code. Because the CreatePenIndirect instruction
was used instead of CreatePen, the need for a DeletePen instruction has been
eliminated, as has any requirement to restore the original pen. Thus, for the sake
of brevity, the metafile translation has improved on the original code.

Again, you do not need to know the structure of a metafile in order to use
metafile operations, but the information may prove helpful. Besides, given the
preceding breakdown, it really shouldn’t be much of a challenge to write a utility

Metafile Structures

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 15

http://www.sybex.com

16

to decipher/decode metafile instructions, should it? If you’re interested, you can
experiment on your own.

Metafile Cautions
Before leaving the subject of metafile operations, there are a few comments and
cautions that are worth keeping in mind. Even a cursory awareness of these may
assist in preventing future errors, or at least alleviate confusion.

The metafile device context is not a true device context in the sense that it does
not correspond to any physical or logical device. As such, the metafile device con-
text does not include a mapping mode, window sizes and origins, or viewport
sizes and origins.

All parameters passed to metafiles are actual values, not formulas or references
to variable values. Thus, variable references used in generating an application’s
source code are evaluated at the time the metafile is compiled and may or may
not contain appropriate values when the metafile is replayed. An argument such
as cxWnd/2 is recorded as the constant resulting from the calculation, and will not
reflect subsequent changes in window size. (This specific conflict, despite the use
of a similar reference, was avoided in the PenDraw6 demo by using the isotropic
mapping mode.)

Metafile instructions are always interpreted in terms of the existing mapping
mode. Metafiles may, however, include instructions to select specific mapping
modes. Also, there are several classes of instructions that are not compatible with
metafile operations. The following five categories of GDI instructions are invalid
and will not be recorded as metafile operations:

• Any function treating the metafile device context as if it were a physical
device context, including operations such as CreateCompatibleBitmap,
CreateCompatibleDC, CreateDiscardableBitmap, DeleteDC,
PlayMetaFile (self-referential), and ReleaseDC.

• Any function beginning with the form Get, such as GetDeviceCaps and
GetTextMetrics. All data contained in a metafile is preset, and the record
structure cannot accommodate information returned by such functions.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 16

http://www.sybex.com

17

• Any function designed to return information to the program, such as
DPtoLP and LPtoDP. (However, macros—which are evaluated during com-
pilation—are permitted.)

• Functions requiring handles to brushes, such as FillRect and FrameRect.

• A few of the more complex functions, such as DrawIcon, GrayString, and
SetBrushOrg.

If you have any questions about which GDI function calls are permitted in a
metafile operation, refer to the list of metafile constants defined in WinGDI.h. All
constants begin with the prefix META_xxxxxxx. But remember, some GDI func-
tions do not appear, simply because when the compiler encounters these, it will
automatically choose a more compatible variation. For example, a call for the
CreatePen function appears in the metafile as META_CREATEPENINDIRECT.

One final caution involves saving the present device context before replaying
a metafile and, when finished, restoring the original device context. Because a
metafile can change device-context settings but cannot record or restore existing
device-context settings, your applications should include their own provisions
for this operation.

Remember, the metafile is free to change drawing and mapping modes, change
colors, and make other changes. When the metafile is finished replaying, these
changes will remain in effect. Therefore, to save the original device context,
before the PlayMetaFile instruction is executed, save the existing device context:

SaveDC(hdc);

After the metafile has been replayed, restore the original device context:

RestoreDC(hdc, -1);

Since neither of these instructions involves any operations forbidden to
metafiles and both are supported by metafile instructions, a well-behaved
metafile could simply include these provisions within itself. Do remember, how-
ever, that every call to SaveDC must have a corresponding RestoreDC call using
the –1 argument, and vice versa.

Metafile Cautions

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 17

http://www.sybex.com

18

Summary
As you’ve seen in this supplement, metafile operations provide a powerful
means to record and replay powerful drawing operations. They can also be used
to transfer graphics operations between applications or even between devices
(such as from the screen to a printer). In the next supplement, you’ll see how
metafiles can be used with the clipboard as an alternative to physical (disk) file
transfers. The DDE functions detailed in Supplement 22 provide a means useful
for requesting and confirming metafile transfers.

The PenDraw6 demo on the accompanying CD provides a platform for experi-
mentation with metafile operations. To further your expertise and understanding,
you might also consider creating two new programs: the first to create a metafile
as a disk file and the second to retrieve the metafile from disk, using the Get-
MetaFile instruction. Then you can replay the graphics under the same or differ-
ent mapping modes.

Supplement 21 • Metafile Operations

2642S21(wasc19).qxd 12/27/99 9:39 AM Page 18

http://www.sybex.com

S U P P L E M E N T
T W E N T Y - T W O

Clipboard Data Transfers

� Advantages of using the clipboard

� Clipboard data formats

� Clipboard access

� Private clipboard formats

S22

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 1

http://www.sybex.com

2

The Windows Clipboard consists of two quite different entities: the clipboard
viewer, Clipbrd.EXE, and the real clipboard. The real clipboard is a feature of the
Windows User module. It provides a series of functions that facilitate the tempo-
rary storage of information in a form that permits applications other than the
originating application to retrieve that information. Of course, the originating
application is not prohibited from retrieving its own clipboard information, but
the important item to remember is that data passed to the clipboard is public,
which means that it is accessible to any application.

The clipboard provides a useful and convenient method for exchanging data of
many different types between applications, as explained and demonstrated in
this supplement.

Clipboard Uses
The clipboard consists of a series of facilities that provide a platform for the tem-
porary (non-disk) storage of data. Data stored on the clipboard can be transferred
between applications or simply retrieved by the application that put it there in
the first place.

A source application can copy data to the clipboard using one of the predefined
formats or using a custom format (clipboard file formats are discussed later in
this supplement). As the data is transferred, the clipboard facilities allocate and
manage memory to contain the data. After the data has been transferred, any
application can access the clipboard, inquire what type of data is present, and, if
desired, retrieve a copy of the data from the clipboard.

When the clipboard viewer (Clipbrd.EXE) is active, the clipboard is queried
regularly to determine if any data has been written to the clipboard and, if so,
what data type is contained. If possible, the clipboard viewer then retrieves a
copy of the data, displaying the data in its own client window. Note, however,
that the clipboard viewer itself does not alter or erase the clipboard contents.

Although the clipboard does work very well, it also has a few disadvantages:

There is only one clipboard. Because there is only one clipboard, all appli-
cations that want to use the clipboard must share use of this single facility.
And sharing can mean conflicts. For example, suppose that Application A
writes a bitmap to the clipboard and then Application B writes a block of

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 2

http://www.sybex.com

3

text data. However, because Application B, quite reasonably begins by
clearing the clipboard, the bitmap written by Application A is erased. Now,
if the bitmap destination, Application C, has already retrieved the image,
everything is fine. But, if Application C has not gotten the bitmap before
Application B replaces it with text data, the bitmap is lost.

All material written to the clipboard is public. The public nature of the
clipboard also offers opportunities for error. Because the data element
written to the clipboard cannot be addressed to a specific recipient, this
data can be accessed, by mistake, by another application seeking data of
the same type.

Any material written to the clipboard is volatile. The clipboard can con-
tain data of several different types, written by a single application or by
different applications. If this is the case, the problem is how to distinguish
between the blocks—for example, multiple blocks of text supplied by dif-
ferent sources. For this reason, applications normally begin by clearing the
clipboard before writing new material to the clipboard.

These are factors to consider, but they are not serious problems demanding
extensive worry and circumvention measures. And, in circumstances where these
could become more serious considerations, other processes such as named or
anonymous pipes (see Chapter 7, “Processes and Pipes”) or memory-mapped
files (see Chapter 10, “Memory Management”) provide more secure channels for
the exchange of data. Alternately, you can also consider using OLE client/server
transactions (see Supplement 23, “OLE Client/OLE Server”) or COM services
(see Chapter 23, “New COM Features in Windows 2000”).

The Clipboard Viewer
The Clipbrd.EXE program, which is distributed with all versions of Windows, is a clip-
board viewer that provides a means of checking (viewing) data that has been copied to
the User clipboard facilities. As such, the Clipbrd program can be used while testing your
own clipboard routines.

The clipboard viewer can also be used to capture (or copy) material transferred to the clip-
board facilities by other applications, saving the captured data to a disk file or simply view-
ing the data.

But, remember, the Clipbrd application is only a viewer, not the real clipboard. It cannot
affect the contents of the clipboard.

Clipboard Uses

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 3

http://www.sybex.com

4

Clipboard Operations
Basically, the clipboard operates by assuming control over globally allocated
memory blocks that contain data supplied by applications, by altering memory
allocation flags. To copy or write material to the clipboard, an application begins
by using the GlobalAlloc function and the GHND flag (defined as GMEM_MOVABLE
and GMEM_ZEROINIT) to initialize a memory block that initially belongs to the
originating application instance.

Under normal circumstances, when the originating application exits or closes,
the global memory allocated would be deleted (freed) by Windows. However,
when the originating instance calls the SetClipboardData function, using the
global handle to the memory block, Windows transfers ownership of the memory
block from the application to itself to the clipboard by modifying the memory
allocation flags for the global memory block.

Ownership of a global memory block is accomplished by the GlobalRealloc
function, called as:

GlobalRealloc(hMem, NULL, GMEM_MODIFY | GMEM_DDESHARE);

Once this is done, the allocated memory no longer belongs to the original
application and can now be accessed only through the clipboard using the Get-
ClipboardData function. The GetClipboardData function grants the calling
application temporary access to the clipboard data by providing a handle to the
global memory block. However, ownership remains with the clipboard, not with
the application accessing the data.

For this reason, clipboard data can be erased only by calling the Empty-
Clipboard function. (One exception to this rule will be discussed later, but is
not recommended.)

Clipboard Data Formats
Windows supports two dozen standard clipboard data formats, each identified
by enumerated values defined in WinUser.H. Of these two dozen formats, these
fourteen are probably the most important:

CF_TEXT CF_PALETTE

CF_BITMAP CF_PENDATA

CF_METAFILEPICT CF_RIFF

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 4

http://www.sybex.com

5

CF_SYLK CF_WAVE

CF_DIF CF_DIB

CF_TIFF CF_UNICODETEXT

CF_OEMTEXT CF_ENHMETAFILE

In addition to the predefined formats (listed in Table S22.1) any application is
free to define its own custom clipboard data format.

TA B L E S 2 2 . 1 : Predefined Clipboard Formats

Value Meaning

CF_BITMAP A handle to a bitmap (HBITMAP).

CF_DIB A memory object containing a BITMAPINFO structure followed by the
bitmap bits.

CF_DIBV5 Windows 2000 (NT 5.0): A memory object containing a BITMAPV5HEADER
structure followed by the bitmap color space information and the
bitmap bits.

CF_DIF Software Arts’ Data Interchange Format.

CF_DSPBITMAP Bitmap display format associated with a private format. The hMem parameter
must be a handle to data that can be displayed in bitmap format in lieu of the
privately formatted data.

CF_DSPENHMETAFILE Enhanced metafile display format associated with a private format. The
hMem parameter must be a handle to data that can be displayed in
enhanced metafile format in lieu of the privately formatted data.

CF_DSPMETAFILEPICT Metafile picture display format associated with a private format. The hMem
parameter must be a handle of data that can be displayed in metafile picture
format in lieu of the privately formatted data.

CF_DSPTEXT Text display format associated with a private format. The hMem parameter
must be a handle of data that can be displayed in text format in lieu of the
privately formatted data.

CF_ENHMETAFILE A handle (HENHMETAFILE) of an enhanced metafile.

Range of integer values for application-defined GDI object clipboard formats.
Handles associated with clipboard formats in this range are not automatically
deleted using the GlobalFree function when the clipboard is emptied.
Also, when using values in this range, the hMem parameter is not a handle to
a GDI object, but is a handle allocated by the GlobalAlloc function with the
GMEM_DDESHARE and GMEM_MOVEABLE flags.

Continued on next page

CF_GDIOBJFIRST …
CF_GDIOBJLAST

Clipboard Operations

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 5

http://www.sybex.com

6

TA B L E S 2 2 . 1 C O N T I N U E D : Predefined Clipboard Formats

Value Meaning

CF_HDROP A handle of type HDROP that identifies a list of files. An application can
retrieve information about the files by passing the handle to the DragQuery-
File functions.

CF_LOCALE The data is a handle to the locale identifier associated with text in the clip-
board. When closing a clipboard containing CF_TEXT data but no CF_LOCALE
data, the system automatically sets the CF_LOCALE format to the current
input locale. Alternately, a CF_LOCALE format for a different locale can be
associated with the clipboard text.
An application pasting text from the clipboard can retrieve this locality format
to determine which character set was used to generate the text. (Note that
the clipboard does not support plain text for multiple character sets; instead,
a formatted text data type such as RTF can be used.)
Windows NT/2000: The system uses the code page associated with
CF_LOCALE to implicitly convert from CF_TEXT to CF_UNICODETEXT, ensuring
that the correct code page table is used for the conversion.

CF_METAFILEPICT Handle of a metafile picture format as defined by the METAFILEPICT struc-
ture. When passing a CF_METAFILEPICT handle by means of dynamic data
exchange (DDE), the application responsible for deleting hMem should also
free the metafile referred to by the CF_METAFILEPICT handle.

CF_OEMTEXT Text format containing characters in the OEM character set. Each line ends
with a carriage return/linefeed (CR/LF) combination. A null character signals
the end of the data.

CF_OWNERDISPLAY Owner-display format. The clipboard owner must display and update the
clipboard viewer window, and receive the WM_ASKCBFORMATNAME, WM_
HSCROLLCLIPBOARD, WM_PAINTCLIPBOARD, WM_SIZECLIPBOARD, and
WM_VSCROLLCLIPBOARD messages. The hMem parameter must be NULL.

CF_PALETTE Handle of a color palette. Whenever an application places data in the clip-
board that depends on or assumes a color palette, it should place the palette
on the clipboard as well.
If the clipboard contains data in the CF_PALETTE (logical color palette) for-
mat, the application should use the SelectPalette and RealizePalette
functions to realize (compare) any other data in the clipboard against that
logical palette.
When displaying clipboard data, the clipboard always uses as its current
palette any object on the clipboard that is in the CF_PALETTE format.

CF_PENDATA Data for the pen extensions to Microsoft Windows for Pen Computing.

Continued on next page

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 6

http://www.sybex.com

7

TA B L E S 2 2 . 1 C O N T I N U E D : Predefined Clipboard Formats

Value Meaning

Range of integer values for private clipboard formats. Handles associated
with private clipboard formats are not freed automatically; the clipboard
owner must free such handles, typically in response to the WM_DESTROYCLIP-
BOARD message.

CF_RIFF Represents audio data more complex than can be represented in a CF_WAVE
standard wave format.

CF_SYLK Microsoft Symbolic Link (SYLK) format.

CF_TEXT Text format. Each line ends with a carriage return/linefeed (CR/LF) combina-
tion. A null character signals the end of the data. Use this format for
ANSI text.

CF_TIFF Tagged-image file format.

CF_UNICODETEXT Windows NT/2000: Unicode text format. Each line ends with a carriage
return/linefeed (CR/LF) combination. A null character signals the end of
the data.

CF_WAVE Represents audio data in one of the standard wave formats, such as 11kHz or
22kHz pulse code modulation (PCM).

Text Formats

The simplest clipboard data format is the CF_TEXT format, which consists of null-
terminated ANSI character strings, each line ending with a carriage return
(0x0D)/line feed (0x0A) character. The CF_OEMTEXT format is an OEM character
set. The CF_UNICODETEXT format uses 32-bit Unicode characters.

Once the text has been transferred to the clipboard, the originating application
cannot access the text further except by requesting access from the clipboard.

Bitmap Format

The CF_BITMAP format is used to transfer Windows bitmap images by transfer-
ring the bitmap handle to the clipboard. Once the bitmap handle has been trans-
ferred to the clipboard, the originating application cannot use the bitmap except
by calling the clipboard for access.

CF_PRIVATEFIRST …
CF_PRIVATELAST

Clipboard Operations

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 7

http://www.sybex.com

8

Metafile Formats

The CF_METAFILEPICT format is used to transfer memory (not disk) metafiles
between applications. This format uses the METAFILEPICT structure, defined in
WinGDI.H as:

typedef struct tagMETAFILEPICT
{

LONG mm;
LONG xExt;
LONG yExt;
HMETAFILE hMF;

} METAFILEPICT, FAR *LPMETAFILEPICT;

The first three fields show the differences between a clipboard metafile transfer
and a disk metafile transfer. The first field, mm, identifies the preferred mapping
mode (discussed later). The second and third fields, xExt and yExt, identify the
height and width of the metafile image. The HMETAFILE field is simply a handle to
the METAFILE structure introduced in Supplement 21, “Metafile Operations.” The
use of this data is demonstrated later in this chapter.

The CF_ENHMETAFILE format is the same as the CF_METAFILEPICT format, except
that it identifies a metafile using the enhanced metafile format instructions.

Once a metafile is transferred to the clipboard, the originating application
should not attempt to use either the global memory block or the original metafile
handle, except by requesting access through the clipboard.

DIB Format

The CF_DIB format is used to transfer device-independent bitmaps (DIBs) to the
clipboard. Each DIB is transferred as a global memory block, beginning with a
BITMAPINFO header structure, followed by the bitmap image data. (Bitmap image
structures are discussed in Supplement 13 on the CD.)

NOTE The CF_BITMAP format supported by Windows 2.x and 3.x identifies device-
dependent bitmap formats that are also supported by Windows 98 (but not by
Windows NT/2000). However, the CF_DIB format is preferred, and is supported by
all Windows versions from 95 through 2000.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 8

http://www.sybex.com

9

After a bitmap has been transferred to the clipboard, the originating application
should not attempt to use either the global memory block or the original bitmap
handle, except by requesting access through the clipboard.

Palette and Pen Formats

The CF_PALETTE and CF_PENDATA formats are used to transfer a handle to a color
palette or a pen, respectively. The palette transfer is often used together with the
CF_DIB format to define color palettes used by a bitmap.

Wave Format

The CF_WAVE format is used to transfer audio (waveform) information between
applications.

Special-Purpose Formats

Three special-purpose clipboard formats provide support for data formats that
were originally designed for use by and between specific applications:

CF_TIFF Uses a global memory block to transfer data using the Tagged
Image File Format (TIFF). (See Supplement 15 for more information about
TIFF files.)

CF_DIF Uses a global memory block to transfer data using the Data Inter-
change Format (DIF) created by Software Arts, originally for use with the
VisiCalc spreadsheet program but now controlled by Lotus Corporation.
The format is essentially an ASCII-string format with each line terminated
by CR/LF pairs.

CF_SYLK Uses a global memory block to transfer data using the Microsoft
Symbolic Link format, originally designed for data exchanges between
Microsoft’s Multiplan (spreadsheet), Chart, and Excel applications. The
format is an ASCII string format with each line terminated by a CR/LF pair.

Accessing the Clipboard
While many Windows facilities are designed to permit shared access, access to
the clipboard is permitted to only one application at a time. This restriction pre-
vents conflicts among applications.

Clipboard Operations

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 9

http://www.sybex.com

10

Opening and Closing the Clipboard

Before any application can access the clipboard to read, write, or clear it, the
application must begin by calling the OpenClipboard function to request access.
The OpenClipboard function returns a Boolean result, with TRUE indicating that
the clipboard is available and access is granted or FALSE indicating that access is
denied because another application currently holds access rights.

When an application is finished with the clipboard, the CloseClipboard func-
tion is called, relinquishing access and freeing the clipboard for access by other
applications.

WARNING Remember that the OpenClipboard function must always be matched with a
CloseClipboard call. Emphasis on the always! An application should never, ever
attempt to hold the clipboard open, and should always relinquish control of the
clipboard as quickly as possible.

Transferring Data to the Clipboard

The ClipBoard demo discussed in this chapter provides an example of a clipboard
transfer function that copies a memory block to the clipboard.

BOOL TransferToClipboard(HWND hwnd, HANDLE hMemBlock,
WORD FormatCB)

{
if(OpenClipboard(hwnd))
{

EmptyClipboard();
SetClipboardData(FormatCB, hMemBlock);
CloseClipboard();
return(TRUE);

}
return(FALSE);

}

The TransferToClipboard function begins by requesting access (opening) the
clipboard, then copying a single memory block to the clipboard. Last, the clip-
board is closed, relinquishing further access.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 10

http://www.sybex.com

11

The TransferToClipboard function is quite generic in design, accepting any
type of handle (hMemBlock). However, it does require the FormatCB parameter to
specify the format type (the type of data copied to the clipboard).

The term memory block does not refer to a specific size; the size of the memory
block was set earlier by the GlobalAlloc function. A single memory block might
contain paragraphs of text, multiple records, or any other data. Each memory
block, however, can contain only one data type.

So, what if an application needs to transfer a bitmap, a metafile, a palette, and a
text block? The solution is relatively simple. First, each block is copied, separately,
to globally allocated memory, retaining a handle to each memory block (in the
following example, hBitmap, hPalette, hMetafile, and hText). With this done,
the clipboard is opened and emptied, then each of the handles is transferred to the
clipboard:

if(OpenClipboard(hwnd))
{

EmptyClipboard();
SetClipboardData(CF_BITMAP, hBitmap);
SetClipboardData(CF_PALETTE, hPalette);
SetClipboardData(CF_METAFILEPICT, hMetafile);
SetClipboardData(CF_TEXT, hText);
CloseClipboard();

}

Last, the clipboard is closed, relinquishing further access to other applications.

In actual practice, the preceding example would be rather cumbersome; provid-
ing source code for every possible combination of data types would be more than
a little frustrating. But the data type identifiers are all WORD values, and the mem-
ory block handles are simply that—handles. A simpler form would be to begin by
assigning the data types and handle as arrays of WORD and HANDLE, and then call-
ing the transfer function with a further parameter reporting the number of items
to transfer. This done, the transfer could be handled in this way:

if(OpenClipboard(hwnd))
{

EmptyClipboard();
for(i=0; i<nCount; i++)

SetClipboardData(cfType[i], hData[i]);
CloseClipboard();

}

Clipboard Operations

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 11

http://www.sybex.com

12

Retrieving Clipboard Data
Before attempting to retrieve an item from the clipboard, the first step is to find
out if the clipboard holds a particular type of data. Because different data types
require different handling after they are retrieved, applications need to know
what they’re retrieving and be prepared to handle the result before requesting
retrieval.

One method is to simply ask for data of a desired type and see if anything is
returned. But this approach does lack a certain elegance, not to mention effi-
ciency. The more efficient way to find out about the clipboard contents is to use
one of the two supplied functions: IsClipboardFormatAvailable or Enum-
ClipboardFormats. The IsClipboardFormatAvailable function returns a
Boolean result to report if the clipboard contains a desired data format.
IsClipboardFormatAvailable is called as:

if(IsClipboardFormatAvailable(CF_xxtypexx)) ...

The EnumClipboardFormats function queries all available clipboard formats.
When you initially call EnumClipboardFormats with a NULL parameter, it reports
the first available format. Each time you call the EnumClipboardFormats func-
tion, it returns a value reporting the next available format. Thus, to request a list
of all available formats:

wFormat = NULL;
OpenClipboard(hwnd);
while(wFormat = EnumClipboardFormats(wFormat))
{

... code handling various formats ...
}
CloseClipboard();

The formats returned are reported in the same order as the originating applica-
tion used to paste items to the clipboard. This ordering allows the querying appli-
cation to respond to the first format acceptable. The originating application can
post items in a recommended order—for example, in order of descending data
reliability.

If no further formats are available, if the clipboard is empty, or if the clipboard
has not been opened, the return result will be zero. The wFormat parameter could
be reset to a specific value to repeat the list from that point. Also, the number of
formats available in the clipboard can be retrieved by calling:

nFormats = CountClipboardFormats();

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 12

http://www.sybex.com

13

Once an application has determined that the clipboard contains data of a
desired type, retrieving the clipboard data consists of two operations:

• Retrieving a handle to the clipboard data, the memory block

• Doing something with the data after retrieving the handle

The first is quite simple, as illustrated by the RetriveCB function:

HANDLE RetrieveCB(HWND hwnd, WORD FormatCB)
{

HANDLE hCB;

if(! IsClipboardFormatAvailable(FormatCB))
return(NULL);

OpenClipboard(hwnd);
hCB = GetClipboardData(FormatCB);
CloseClipboard();
return(hCB);

}

This example offers a generic subroutine that returns an untyped handle to a
clipboard memory block. If the requested type is not available, it returns NULL.

In actual practice, a slightly different format is used, as in the ClipBoard demo
where a request is made to the clipboard for a metafile object:

nClipRetrieve = 0;
if(IsClipboardFormatAvailable(CF_METAFILEPICT))
{

OpenClipboard(hwnd);
hGMem = GetClipboardData(CF_METAFILEPICT);
lpMFP = (LPMETAFILEPICT) GlobalLock(hGMem);
SaveDC(hdc);
CreateMapMode(hdc, lpMFP, cxWnd, cyWnd);
PlayMetaFile(hdc, lpMFP->hMF);
RestoreDC(hdc, - 1);
GlobalUnlock(hGMem);
CloseClipboard();

}

The ClipBoard demo program includes several other examples where specific
data types are requested. These are discussed further in the following sections.

Clipboard Operations

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 13

http://www.sybex.com

14

Restrictions on Clipboard Operations
There are a few restrictions on clipboard operations:

• Before you can copy an item to the clipboard, you must call EmptyClipboard
to erase the current contents of the clipboard. Remember, simply accessing
the clipboard does not transfer ownership of the existing contents. Use the
EmptyClipboard function to assign ownership and, at the same time, to
clear (release) any and all existing contents.

• Any application can access the contents of the clipboard, but only the clip-
board owner—an application that has called the EmptyClipboard func-
tion—can write material to the clipboard. However, because the clipboard
can have only one owner, the previous owner’s contents are simply erased,
even if the same application was the previous owner.

• Although you can copy multiple items to the clipboard, you must transfer
all of them in a single operation. The clipboard cannot be opened, written,
closed, and then reopened again to transfer another item (at least not with-
out erasing the first item transferred).

• Only one item of each type can be transferred to the clipboard at any time.
This is for the simple reason that there is no method to distinguish between
multiple items of a given type. However, when multiple items of different
types have been written to the clipboard, an application accessing the clip-
board may request only one item, several items, or all items, but it must
request each item separately.

TIP If an application desires to preserve the original contents of the clipboard while
adding new material, the simple solution is to paste the existing contents, and
then re-copy them to the clipboard together with whatever new material is
desired.

The clipboard can be opened repeatedly to request different items or to request
the same item a second (or third, fourth, and so on) time. But, in general, when
requesting an item from the clipboard, the best option is to make a local copy of
the desired item rather than attempting to request the same item more than once.
Remember, there are no assurances that the data item requested will remain
available locally.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 14

http://www.sybex.com

15

The Office 2000 Clipboard
The Microsoft Office 2000 clipboard (the clipboard feature as of Office 2000, used with
Microsoft Word, Excel, and so on) is no longer the same as the Windows clipboard. While
the two function in a similar manner, and the contents of one clipboard can be accessed
from the other, the Office 2000 clipboard has added capabilities for storing multiple items
of the same type as well as for providing a Clipboard Toolbar for selecting items for paste.

Please note that these features are specific to Microsoft Office 2000 and are not inherent
in Windows 2000, nor can they be readily included in your applications.

The Clipboard Demo: Reading and
Writing Different Data Types

The Clipboard demo demonstrates writing to and reading from the clipboard with
three different data types: text, bitmap, and metafile. Clipboard uses a simple
menu with two primary options, Data To Clipboard and Data From Clipboard,
each with a submenu listing equally straightforward Write and Retrieve options.

The Write Bitmap option includes a simple provision that captures the entire
screen (or at least a 640×480 section of the screen) as a bitmap, writing the image
to the clipboard. The Write Metafile option uses the same metafile construct
demonstrated in the PenDraw6 demo (described in Supplement 21). The Write
Text option copies a simple text string to the clipboard.

NOTE The Clipboard demo is included on the CD that accompanies this book, in the
Supplement 22 folder.

The Clipboard Demo: Reading and Writing Different Data Types

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 15

http://www.sybex.com

16

Clipboard Text Transfers
Text operations may be the simplest type of clipboard operation, if only because
text (string) operations themselves are comfortably familiar and require little
explanation.

Writing Text to the Clipboard

Because the Clipboard demo will be both source and recipient, the first step is to
transfer text information to the clipboard. The text chosen is a brief static string,
declared as, “The quick brown fox jumps over the lazy red dog.” (It’s not very
original, but it serves to demonstrate the principles involved.)

The mechanism for handling the text transfer is provided by a subprocedure
called with two parameters: a handle to the application (hwnd) and a pointer to
the text string (lpText).

BOOL TextToClipboard(HWND hwnd, LPSTR lpText)
{

int i, wLen;
GLOBALHANDLE hGMem;
LPSTR lpGMem;

Within the TextToClipboard subroutine, four local variables are required,
although only the latter two need an explanation. The hGMem variable provides a
global handle to a memory block that has not yet been allocated. The second vari-
able, lpGMem, is used as a pointer into the memory block.

After the wLen variable is initialized with the length of the text parameter,
hGMem becomes a pointer to memory that is globally allocated to hold a copy of
the text. Notice, however, that wLen is one character larger than the string, provid-
ing space allocation for a null terminator. Clipboard text is always stored in
ASCIIZ (or ANSIZ) format:

wLen = strlen(lpText);
hGMem = GlobalAlloc(GHND, (DWORD) wLen + 1);
lpGMem = GlobalLock(hGMem);

Last, lpGMem receives the pointer to the memory block returned by the Global-
Lock function. But remember that the GHND specification has properly declared
this memory block as movable. Also, in addition to returning an address (which
could have been obtained several other ways), the GlobalLock function locks the
memory block, temporarily preventing it from being moved by Windows.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 16

http://www.sybex.com

17

The second feature provided by the GHND specification is to clear the memory
block allocated, filling the memory block with zeros. Thus, the next step is to
copy the local string, pointed to by lpText, into the memory block.

for(i=0; i<wLen; i++)
*lpGMem = *lpText++;

GlobalUnlock(hGMem);
return(TransferToClipboard(hwnd, hGMem, CF_TEXT));

}

After copying the text information, GlobalUnlock is called to release the lock
on hGMem, making it movable and relocatable. However, if the memory block had
been moved while the local text information was being copied, the lpGMem
pointer would not have remained valid.

Memory ownership and the Clipboard
Do not under any circumstances free memory after transferring a data object to the clip-
board. For example, imagine if the text-to-clipboard operation were rewritten to include a
GlobalFree instruction, thus:

for(i=0; i<wLen; i++)
*lpGMem = *lpText++;

GlobalUnlock(hGMem);
GlobalFree(hGMem);
return(TransferToClipboard(hwnd, hGMem, CF_TEXT));

}

In this example, the result of calling GlobalFree would delete the item from the clip-
board. Instead, once a data item has been transferred, ownership of the item has also
been transferred and the local handle should not be used or tampered with further.

Likewise, when a data object is retrieved from the clipboard, the handle to the retrieved
data may be locked and unlocked as necessary, but should not be freed because the
object itself still belongs to the clipboard.

Data objects placed on the clipboard are freed only when an application assumes owner-
ship of the clipboard and calls the EmptyClipboard instruction. At this point, all data
objects owned by the clipboard are freed by the clipboard itself.

The Clipboard Demo: Reading and Writing Different Data Types

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 17

http://www.sybex.com

18

As a last step, the TransferToClipboard function (discussed earlier in this
supplement) is called with the hGMem block, the flag CF_TEXT, and the applica-
tion’s window handle to complete the transfer process.

NOTE In the Clipboard demo, only one item at a time is written to the clipboard. If you
want to experiment, you can try adding a provision to copy multiple items.

Retrieving Text from the Clipboard

Retrieving text from the clipboard is almost as simple as writing it, but instead of
a subroutine, the text-retrieval operations in the Clipboard demo are included in
the response to the WM_PAINT message. This allows the application to update the
window as required. (Other applications may handle this in another fashion.)

Retrieval operations begin by opening the clipboard and using the Get-
ClipboardData API call to return a handle to the clipboard memory block.

OpenClipboard(hwnd);
hTextMem = GetClipboardData(CF_TEXT);
lpText = GlobalLock(hTextMem);

Just as was done during the transfer to the clipboard, and for the same reasons,
GlobalLock is called to lock the memory block, returning a pointer to the mem-
ory address held by lpText. This time, however, instead of a loop, the lstrcpy
function is used to copy the string contents from the memory address (lpText) to
the local variable, TextStr.

lstrcpy(TextStr, lpText);
GlobalUnlock(hTextMem);
CloseClipboard();

Last, GlobalUnlock releases the lock on the memory block while CloseClipboard
completes the operation. It’s important to remember that a memory block should
never be left locked; always call GlobalUnlock after calling GlobalLock.

Bitmap Clipboard Transfers
The Clipboard demo also includes a demonstration of bitmap transfer through the
clipboard. This demonstration begins with provisions to capture the existing
screen to provide a bitmap for transfer to the clipboard. The screen-capture

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 18

http://www.sybex.com

19

process itself is peripheral to the present topic; it follows the general form demon-
strated in the Capture demo (discussed in Supplement 16).

Figure S22.1 shows the Clipboard demo window in a recursive situation follow-
ing several screen captures.

Writing a Bitmap to the Clipboard

The bitmap-to-clipboard transfer process begins by creating a compatible device
context, hdcMem, in memory and then creating and selecting a compatible bitmap
(also in memory).

hdc = GetDC(hwnd);
hdcMem = CreateCompatibleDC(hdc);
hBitmap = CreateCompatibleBitmap(hdc, 640, 480);
SelectObject(hdcMem, hBitmap);

The next step is to copy the bitmap image from the original (the source)—in
this example, the screen—to the memory context before calling the TransferTo-
Clipboard function to complete the transfer.

StretchBlt(hdcMem, 0, 0, 639, 479,
hdc, 0, 0, 639, 479, SRCCOPY);

F I G U R E S 2 2 . 1 :

A recursive clipboard view

The Clipboard Demo: Reading and Writing Different Data Types

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 19

http://www.sybex.com

20

TransferToClipboard(hwnd, hBitmap, CF_BITMAP);
DeleteDC(hdcMem);

Last, as cleanup, the memory device context is deleted, leaving ownership of
the bitmap image to the clipboard.

Retrieving a Bitmap from the Clipboard

Retrieving the bitmap image from the clipboard is similar to the process of copy-
ing the image to the clipboard. The process begins by opening the clipboard and
retrieving a handle to the bitmap (from the clipboard):

OpenClipboard(hwnd);
hBitmap = GetClipboardData(CF_BITMAP);
hdcMem = CreateCompatibleDC(hdc);
SelectObject(hdcMem, hBitmap);

Again, a compatible device context is required. Then the SelectObject func-
tion selects the bitmap.

At this point, there are a few other tasks involved. First, the mapping mode
needs to be set in the memory context for compatibility with the display context.
And, second, before the bitmap can be copied, the size of the bitmap is needed.
The bitmap size is obtained by copying the bitmap header into a local variable, bm.

SetMapMode(hdcMem, GetMapMode(hdc));
GetObject(hBitmap, sizeof(BITMAP), (LPSTR) &bm);

The BITMAP variable (bm) now contains the bitmap header information needed
to copy the actual bitmap from the memory context to the device context, this
time using the BitBlt function.

BitBlt(hdc, 0, 0, bm.bmWidth, bm.bmHeight,
hdcMem, 0, 0, SRCCOPY);

ReleaseDC(hwnd, hdc);
DeleteDC(hdcMem);
CloseClipboard();

All that’s left is a bit of cleanup before closing the clipboard, and the job is done.

NOTE The clipboard could have been closed earlier—just as soon as a handle had been
returned to the image memory block—because closing the clipboard doesn’t
delete the memory block.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 20

http://www.sybex.com

21

Metafile Clipboard Transfers
Metafile transfers introduce an element that is not present in text transfers.
Although this element is present in bitmap transfers, it is not obtrusively visible,
because it was handled virtually without remark. The new element required for
metafile transfers is information about the file: the mapping mode under which
the metafile was originally created and the extent or size information. This data is
not necessarily inherent in the metafile itself.

With a text, metric, English, or TWIPS mapping mode, the mapping scale is
fixed. The isotropic and anisotropic mapping modes, both of which have advan-
tages for metafile operations, present a need for special information to accom-
pany the metafile instructions.

For metafile clipboard transfers, the METAFILEPICT record is used. This record
includes a record of the mapping mode used, size information, and the metafile
script itself.

The METAFILEPICT record structure is defined in WinGDI.H as:

typedef struct tagMETAFILEPICT
{

LONG mm;
LONG xExt;
LONG yExt;
HMETAFILE hMF;

} METAFILEPICT, FAR *LPMETAFILEPICT;

The mm field contains the mapping mode. The hMF field is a handle to the
metafile instructions. The remaining two fields, xExt and yExt, may contain two
different types of information, depending on the mapping mode.

For text, metric, English, or TWIPS mapping modes, the xExt and yExt fields
specify the horizontal and vertical size of the metafile picture in units appropriate
to the mapping mode.

For the MM_ISOTROPIC or MM_ANISOTROPIC mapping modes, the xExt and yExt
fields contain an optional suggested size expressed in MM_HIMETRIC units, or
these fields may be zero if no suggested size is offered. Alternatively, if the xExt
and yExt fields are negative, the information is provided as a suggested size
ratio, rather than an absolute size.

In the Clipboard demo, a metafile image is supplied by duplicating the metafile
image code from Supplement 21, now in a subroutine titled DrawMetafile. Much

The Clipboard Demo: Reading and Writing Different Data Types

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 21

http://www.sybex.com

22

of the DrawMetafile procedure should be familiar from previous examples, but it
does begin with one new variable declaration:

BOOL DrawMetafile(HWND hwnd, int cxWnd, int cyWnd)
{

LPMETAFILEPICT lpMFP;

Aside from the variable lpMFP, which is used as a pointer to an instance of the
METAFILEPICT structure, the DrawMetafile function proceeds by creating a
metafile in memory as demonstrated in Supplement 21. But after the metafile is
created, the next step is to create a METAFILEPICT structure in memory and, using
GlobalLock, to return a value to the lpMFP pointer.

hGMem = GlobalAlloc(GHND, (DWORD) sizeof(METAFILEPICT));
lpMFP = (LPMETAFILEPICT) GlobalLock(hGMem);

Now that the METAFILEPICT structure is allocated and locked, the next steps are
to assign values to the mapping mode, provide a suggested size, and assign the
metafile handle.

lpMFP->mm = MM_ISOTROPIC;
lpMFP->xExt = 200; // suggested size in //
lpMFP->yExt = 200; // MM_HIMETRIC units //
lpMFP->hMF = hMetaFile;

And, with the assignments completed, all that remains is to unlock the memory
before transferring the handle to the clipboard.

GlobalUnlock(hGMem);
TransferToClipboard(hwnd, hGMem, CF_METAFILEPICT);

Retrieving a Metafile from the Clipboard

Retrieving the metafile from the clipboard begins by opening the clipboard, ask-
ing for a handle to the memory block containing the metafile, and locking the
block while returning a pointer.

OpenClipboard(hwnd);
hGMem = GetClipboardData(CF_METAFILEPICT);
lpMFP = (LPMETAFILEPICT) GlobalLock(hGMem);

At this point, the lpMFP variable contains a pointer to the metafile memory
block—or, more accurately, to the METAFILEPICT structure—which contains a
pointer to the metafile proper.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 22

http://www.sybex.com

23

But before replaying the metafile itself, there are a couple of other tasks that
require attention, beginning by saving the present device context (as suggested
in Supplement 21).

SaveDC(hdc);
CreateMapMode(hdc, lpMFP, cxWnd, cyWnd);

After saving the present device context, the METAFILEPICT information is
passed to a subroutine, CreateMapMode, for processing. This is done because deci-
phering the mapping mode and size/extent information is moderately complex.

CreateMapMode is called with four parameters: the application’s device-context
handle, the METAFILEPICT pointer, and the application window’s size.

BOOL CreateMapMode(HDC hdc, LPMETAFILEPICT lpMFP,
int cxWnd, int cyWnd)

{
long lMapScale;
int nHRes, nVRes, nHSize, nVSize;

SetMapMode(hdc, lpMFP->mm);
if(lpMFP->mm != MM_ISOTROPIC && lpMFP->mm != MM_ANISOTROPIC)

return(TRUE);

First, CreateMapMode sets the mapping mode specified for the metafile. If the
mapping mode is anything except MM_ISOTROPIC or MM_ANISOTROPIC, the func-
tion simply returns, with nothing more required.

NOTE The image size data could be extracted, but there really isn’t any point in doing so
in this demo. If you wish, you could get the size information and use it to position
the metafile image. (See Supplement 21.)

If the metafile-mapping mode is MM_ISOTROPIC or MM_ANISOTROPIC, then the
CreateMapMode function still has work to do. First, it proceeds by calling the Get-
DeviceCaps function to query the horizontal and vertical size and resolution.

nHRes = GetDeviceCaps(hdc, HORZRES);
nVRes = GetDeviceCaps(hdc, VERTRES);
nHSize = GetDeviceCaps(hdc, HORZSIZE);
nVSize = GetDeviceCaps(hdc, VERTSIZE);

The next actions depend on the values passed in the xExt and yExt fields.
These values may be positive or negative, or no values at all may be passed. If the

The Clipboard Demo: Reading and Writing Different Data Types

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 23

http://www.sybex.com

24

arguments are positive, the values are intended to suggest a size in MM_HIMETRIC
units. Therefore, the SetViewportExtEx function is called to set the viewport size
appropriately.

if(lpMFP->xExt > 0)
SetViewportExtEx(hdc,

(int)((long) lpMFP->xExt * nHRes / nHSize / 100),
(int)((long) lpMFP->yExt * nHRes / nHSize / 100),

NULL);

If negative values have been entered, the arguments are intended as a ratio
rather than an absolute size. Therefore, the first step is to calculate a scale to fit
the device context.

else
if(lpMFP->xExt < 0)
{

lMapScale = min((100L * (long) cxWnd * nHSize / nHRes
/ -lpMFP->xExt),

(100L * (long) cyWnd * nVSize / nVRes
/ -lpMFP->yExt));

Two scales are calculated: one to fit the x-axis and one to fit the y-axis. But the
iMapScale value is chosen as the smaller of the two possible scales to ensure that
the resulting image fits the display. Once the mapping scale has been calculated,
SetViewportExtEx is called again to size the viewport to fit.

SetViewportExtEx(hdc,
(int)((long) -lpMFP->xExt * lMapScale * nHRes

/ nHSize / 100),
(int)((long) -lpMFP->yExt * lMapScale * nVRes

/ nVSize / 100), NULL);
}

The third possibility is that neither size nor ratio information was supplied. In
this case, the solution is simply to set the viewport to match the window size.

else
SetViewportExtEx(hdc, cxWnd, cyWnd, NULL);

Once the CreateMapMode function returns, the remainder of the task is simple,
requiring nothing more than a call to PlayMetaFile, almost exactly as shown
previously.

PlayMetaFile(hdc, lpMFP->hMF);
RestoreDC(hdc, - 1);

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 24

http://www.sybex.com

25

GlobalUnlock(hGMem);
CloseClipboard();

And, after replaying the metafile, the RestoreDC function is called with an
argument of –1 to restore the original device context, the metafile memory is
unlocked, and the clipboard is closed.

Using Other Clipboard Formats
The three clipboard formats used in the Clipboard demo demonstrate the general
processes involved in working with the clipboard. Any of the other clipboard for-
mats should present no special difficulties. However, there are a few clipboard
formats that merit some explanation, not because they require special handling,
but because they are defined for special purposes.

Private Clipboard Formats
Windows defines the “private” clipboard formats of CF_DSPTEXT, CF_DSPBITMAP,
CF_DSPMETAFILEPICT, and CF_DSPENHMETAFILE. These correspond to the CF_
TEXT, CF_BITMAP, CF_METAFILEPICT, and CF_ENHMETAFILE types, but with one
principal difference: Applications requesting standard formats will not access
these private formats. There are two assumptions here:

• Data using one of these private formats is intended for exchange between
two instances of the same application or two applications specifically
designed to operate together.

• Such exchanges may include private information, such as formatting
and/or font information used by the Windows Write program.

The term private could be misleading. There is nothing to prevent any applica-
tion from requesting access to one or more of these private formats; these are not
designed for security purposes, only to declare nonpublic clipboard transfers.

Also, although two instances of an application (or two related applications)
should understand their own private formats, the use of one of these formats
does not ensure that the originator is indeed another instance of the same appli-
cation or a companion application. In other words, there is nothing to prevent
another totally unrelated application from using these same format designations.

Using Other Clipboard Formats

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 25

http://www.sybex.com

26

However, provisions have been made for this circumstance and you can obtain
the originator of the clipboard contents by calling the GetClipboardOwner function:

hwndCBOwner = GetClipboardOwner();

When the EmptyClipboard function was called in preparation for copying
materials to the clipboard, the calling application became the new clipboard
owner. Other applications accessing the clipboard to retrieve material do not gain
ownership of the clipboard, only access. Thus, only the clipboard owner is
responsible for originating material on the clipboard, and an application cannot
place material on the clipboard without first becoming the clipboard owner and
erasing the previous contents. Therefore, any application accessing information
in a private format should also query the identity of the clipboard owner to deter-
mine if this data is indeed in a common format.

Still, although the GetClipboardOwner function returns a handle identifying
the owner, this handle doesn’t really tell you very much. But given the handle,
you can make another call to query the application’s class name:

GetClassName(hwndCBOwner, &szClassName, 16);

Finally, you can compare szClassName with the current application’s class
name or to a list of companion application class names to identify the source of
the clipboard information.

Delayed Rendering
Posting data to the clipboard frequently involves passing a copy of the data to the
clipboard while keeping the original intact, which means expending memory on
duplicate data blocks. In many circumstances, this may be unimportant, particu-
larly when the memory requirements are small. One obvious solution, which is
used in the Clipboard demo, is to transfer the data without keeping a copy, thus
avoiding the problem entirely.

There is also another solution, which is particularly appropriate when large
amounts of data are involved: delayed rendering of the clipboard data. In
delayed rendering, only the format specification is posted to the clipboard and,
instead of a global memory block handle, the handle parameter is passed as a NULL:

SetClipboardData(wFormat, NULL);

When an application requests a data item that has been posted for delayed ren-
dering, identified by the NULL in place of the data block, Windows recognizes the

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 26

http://www.sybex.com

27

use of delayed rendering. Windows then calls the clipboard owner (the applica-
tion that posted the material to the clipboard) with a WM_RENDERFORMAT message,
with the requested format specified in wParam.

In response to the WM_RENDERFORMAT message, the application is expected to
respond with a SetClipboardData call, accompanied by the global memory
block handle and the format identifier (rather than responding with an Open-
Clipboard and EmptyClipboard call). In this fashion, the actual data is posted
only when the recipient is ready to accept it.

You may pass multiple items to the clipboard as a mixture of conventional data
transfers and delayed rendering transfers.

Special Circumstance Messages

When an application loses ownership of the clipboard, Windows does nothing to
prevent this loss but does post a WM_DESTROYCLIPBOARD message to the previous
owner, indicating that ownership has been lost. In response, an application can
resume ownership and post the same material again, but this is not recom-
mended except in special circumstances.

Also, if an application is ready to terminate itself but is also currently the clip-
board owner and the clipboard contains NULL data handles, Windows will send a
WM_RENDERALLFORMATS message, without any format specifications, before the
application is permitted to terminate. In response, the owner application has two
options: clear the clipboard entirely or complete the delayed calls.

Unlike the response to the WM_RENDERFORMAT call, however, the terminating
application should not use the SetClipboardData call but should simply clear
the clipboard and write new entries entirely, just as if delayed rendering had not
been used at all.

Owner-Displayed Clipboard Data

Another, very private, clipboard format is declared as:

SetClipboardData(CF_OWNERDISPLAY, NULL);

The CL_OWNERDISPLAY type is always passed with the global memory handle
specified as NULL, just as with the delayed rendering format. But, because the
clipboard owner is directly responsible for the display, Windows does not send a
WM_RENDERFORMAT message when the data is requested. Instead, messages must

Using Other Clipboard Formats

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 27

http://www.sybex.com

28

be sent directly from the clipboard viewer to the clipboard owner. See the discus-
sion of the other private clipboard formats for ways to identify the clipboard
owner using the GetClipboardOwner function. Conversely, the clipboard owner
can use the GetClipboardViewer function, if necessary, to identify the viewing
application.

To use this private format, the viewer application would post a request to the
clipboard owner application, requesting the originating application to provide
the actual display and granting the originating application access to the destina-
tion application’s display. Five messages may be sent from the destination:

WM_ASKCBFORMATNAME This message is sent by the clipboard viewer to
request a copy of the format name from the clipboard owner. Remember,
the clipboard itself contains only the CF_OWNERDISPLAY identifier, and the
viewer application is still free to decide if it is interested in the actual data
type. The WM_ASKCBFORMATNAME message is accompanied by a specification
in wParam for the number of bytes to copy. lParam provides a pointer to
the buffer where the response should be posted.

WM_HSCROLLCLIPBOARD/WM_VSCROLLCLIPBOARD These messages are sent
when the viewer application contains a horizontal or vertical scrollbar and
a scrollbar event must be reported to the clipboard owner. The wParam
argument contains a handle to the viewer’s window. The lParam argu-
ment contains the same scrollbar messages that would accompany stan-
dard WM_HSCROLL or WM_VSCROLL messages.

WM_PAINTCLIPBOARD This message is sent requesting a repaint of the
viewer application’s display, probably in response to a WM_PAINT message
received by the viewer application. The wParam argument contains a han-
dle to the viewer’s window. The lParam argument is a global DDESHARE
handle that, when locked, points to a PAINTSTRUCT structure defining the
area requiring repainting. To determine if all or part of the client area
requires repainting, the clipboard owner must compare the dimensions of
the drawing area reported in the rcpaint field of the PAINTSTRUCT with the
dimensions reported in the most recent WM_SIZECLIPBOARD message.

WM_SIZECLIPBOARD This message is sent to indicate that the clipboard
viewer has changed size. The wParam argument contains a handle to
the viewer window. The lParam argument is a global DDESHARE handle
pointing to a RECT structure defining the area to be painted.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 28

http://www.sybex.com

29

In response to any of these messages, the clipboard owner should use the
InvalidateRect function or repaint the viewer as desired, and reset the scrollbar
positions appropriately.

User-Defined Private Formats
Applications may also define their own private clipboard formats, registering a
new clipboard format by calling the RegisterClipboardFormat function:

wFormat = RegisterClipboardFormat(lpszFormatTitle);

The returned wFormat identifier will be a value in the range 0xC000 to 0xFFFF
and can subsequently be used as the format parameter in SetClipboardData and
GetClipboardData calls. Before another application or instance can retrieve clip-
board data in this format, it will require the same wFormat ID. This value could be
passed via the clipboard using the CD_TEXT format.

Alternatively, you could use the EnumClipboardFormats function, discussed
earlier in the supplement, to return all format identifiers, after which you should
call the GetClipboardFormatName function to return the ASCII name of the format:

GetClipboardFormatName(wFormat, lpszBuffer, nCharCount);

WARNING The format identifiers CF_PRIVATEFIRST (0x0200) and CF_PRIVATELAST
(0x02FF) may also be used as a range of integer values for private format identi-
fiers. Note that data handles associated with formats in this range will not be
freed automatically when another application requests clipboard ownership.
Instead, any data handles in this range must be freed by the owner application
before the application terminates or when a WM_DESTROYCLIPBOARD message is
received. Use these latter format IDs with care.

Finally, note that Windows does not require any information about the organi-
zation of the data transferred using a private format. It is the application’s
responsibility to understand the details of the transfer format. All that Windows
requires is a format name and a handle to the memory block.

Using Other Clipboard Formats

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 29

http://www.sybex.com

30

Summary
As you’ve seen in this supplement, a variety of standard and special-purpose clip-
board formats are available, or applications can define and register their own
special formats. The complete listing for the Clipboard program, which demon-
strates working with text, bitmap, and metafile formats, is on the CD that accom-
panies this book.

Supplement 22 • Clipboard Data Transfers

2642S22(wasc20).qxd 12/27/99 9:40 AM Page 30

http://www.sybex.com

S U P P L E M E N T
T W E N T Y - T H R E E

OLE Client and Server
Application Development

� OLE basics

� OLE library functions

� OLE server registration and selection

� OLE client development

� OLE server application development

S23

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 1

http://www.sybex.com

2

You’ve learned about the clipboard and DDE in the previous supplements.
Object Linking and Embedding (OLE) provides yet another way for applications to
share data. OLE has the advantage of being virtually unlimited in its scope. An
OLE application you write now will work perfectly well even if it encounters a
server that supplies data in a format Microsoft hasn’t anticipated. Microsoft
doesn’t need to anticipate formats; if a server can handle the data, any client
can receive it. A user may well apply OLE programs to tasks the developer
never imagined.

Introducing OLE
OLE is a set of protocols and procedures proposed by Aldus Corporation in 1988
to simplify the creation and maintenance of compound documents. A compound
document is a file belonging to one application (for example, a word processor)
that also includes data created by another application (such as a graphics editor).
Blocks of foreign data in a compound document are called objects. An application
that receives data objects and builds compound documents is called an OLE
client, and one that exports objects for other applications to use is called an OLE
server. Whether an application is a client or a server depends on its role in a par-
ticular interaction. One application may act simultaneously as a client and a
server in different interactions.

Application-Based versus Document-Based
Environments

When Microsoft built OLE into Windows, it took a big step toward making the
user’s work center on documents rather than applications. Traditionally, the user
invokes a single application for each new document. Changing from one data for-
mat to another—from text to numbers, or from pictures to sounds—usually
means quitting one application and starting another. Typically, in an application-
based environment, a document makes sense only when read by the application
that created it.

A document-based environment, on the other hand, lets several applications
cooperate in creating a single document. No one application understands all the

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 2

http://www.sybex.com

3

objects in the document, but as you move from piece to piece, the system auto-
matically invokes the appropriate applications. You edit the pieces separately in
their native applications, and the master document automatically receives
updates from every contributor. You have more freedom to exercise creativity in
combining sounds, video, pictures, numbers, and text in a single, integrated doc-
ument. You can show pictures in your word processor or attach video clips to
records in your database.

Compound documents existed in Windows before OLE, but their capabilities
were limited. A user would create a compound document by copying data to the
clipboard and pasting it into another application. In this common transaction, a
data object moves from a server to a client program. But whenever the server sub-
sequently edits its copy of the object, the cut-and-paste operation must be
repeated for all documents into which the object has been pasted.

To create a document-based environment, the system must offer substantial
facilities for coordinating applications. For example, the system must know
which applications can operate on which kinds of data. As the user moves from
object to object through a document, the system must recognize and support links
to various other programs. In Windows, the OLE extension libraries assume these
complex chores. The three libraries that implement OLE currently contain a vari-
ety of functions to help you create programs that handle virtually any kind of
data object through a seamless cooperation with the program that created it.

Linking versus Embedding
An object is any set of data from one application treated as a unit. OLE applica-
tions create compound documents when they combine several objects into one
file. The user sees all the objects from one document displayed together in a sin-
gle window. To the client program, each object looks like a black box full of
incomprehensible data. The program calls OLE functions to manipulate objects; it
does not need to understand them.

When importing an object, a client chooses between linking and embedding.
Embedding, just like pasting, gives the client a complete and independent copy of
the data. An embedded object, however, remembers its origin, and the user can
edit an embedded document by double-clicking it. The double-click invokes the
server application, and the editing happens there. When the user closes the
server, the client receives the updated object.

Introducing OLE

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 3

http://www.sybex.com

4

The second way of storing objects is to link them. Linking does not give the
client its own independent copy of the data; instead, the client receives a live con-
nection to a piece of the server’s document—a kind of window opening into a
view of the server’s data. If the object is modified in the server, the modifications
appear automatically in the client. If several clients link to the same object, an
update in one place is visible in all the others.

In summary, when a document file contains all the data for an object, the object
is embedded. When a document contains only a reference pointing to data in
another document, the object is linked. Both methods produce the same result on
the screen, but only linked objects receive updates. Embedded objects are trans-
ferred through the equivalent of a DDE cold link; when you copy them into your
document, they become independent of their source. By contrast, if you link an
object into several documents, changing the object in one place causes it to
change in all the others.

Linked objects have the advantage of taking less space in the document file.
Embedded objects have the advantage of being very portable; documents that
contain only embedded objects can move from system to system. Because they
carry all their data with them, they do not require the OLE server to reside on the
destination system. The user can change linked objects into embedded objects
at will.

OLE Clients versus OLE Servers
As mentioned earlier, OLE applications come in two basic types: clients and
servers. If you embed a Paintbrush picture in a Write document, Paintbrush is the
server and Write is the client. Write does not need to understand the data that
makes up the image file. Write calls OLE functions to display the data. If the OLE
system doesn’t know how, it calls on the server, Paintbrush, to display data in the
Write window.

Applications such as Word, WordPad, Excel, and Quattro Pro are both clients
and servers. These applications both accept OLE objects supplied by other
servers and act as OLE servers to other client applications. The Write editor and
CardFile programs under Windows 3.x function only as OLE clients; they do not
offer server services. (Few contemporary applications act as clients without also
offering server capabilities.) In contrast, the Windows Paint program is an OLE
server but incorporates no client capabilities. Instead, the Paint program limits
itself to providing images and image-editing services to client applications.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 4

http://www.sybex.com

5

Because Paint is a stand-alone application as well as an OLE server, Paint is a
full server. In contrast, a mini-server does not operate as a stand-alone application;
it does not contain any provisions to open or save files, but it does provide ser-
vices to OLE client applications.

Servers of either type (full server or mini-server) may offer more than one type
of service. Quattro Pro, for example, offers a choice of Quattro Pro Graph or
Quattro Pro Notebook. Microsoft Word offers a choice of Microsoft Word Docu-
ment or Microsoft Word Picture objects.

Object Classes and Verbs
The type of data a server exports is called an object class. Different classes contain
different kinds of data. Paintbrush, for example, exports objects of the PBrush
class. Excel supports the classes ExcelWorksheet and ExcelChart. Servers regis-
ter their classes in the system registry. Only one server may handle each class.

For each of its object classes, a server also registers a set of verbs. A verb is some-
thing a server can do to an object. Two common verbs are Edit and Play. When
the user selects an object in a compound document, the client application
retrieves the list of verbs for that object class and makes the verbs available on
one of its menus. The user manipulates objects by executing their verbs. Different
objects respond to different verbs.

Inserting OLE Objects
The process of adding an object to a container document is simple. From within
the client application, the user chooses the type of object to insert. For example, a
list box might offer picture data, spreadsheet data, and video clips; the list varies
with the available servers.

Suppose that you’re running Microsoft Word and decide to embed a drawing in
your document. You start Paint, the registered server for bitmap objects. Then
you open a .BMP file, select part of the image, and copy it to the clipboard. In
Microsoft Word, you open the destination file and pull down the Edit menu. There
you see a choice of three commands: Paste, Paste Link, and Paste Special. All of
them bring the drawing into the text file. The easiest one, Paste, embeds the object.
(If Paint did not support OLE, the Paste command would merely copy the object,
not embed it.) The Paste Link option, of course, creates a link to the object source.

Introducing OLE

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 5

http://www.sybex.com

6

NOTE The Paste Special command is part of the new Office clipboard and offers options
for the format used to paste an object.

Inserting Object Packages

You can also embed .AVI or .WAV files (multimedia video or sound files) in a
compound document. But what does a video clip or sound look like on the screen
when you paste it? In this case, the application uses a graphical representation of
the data called a package.

A package is an icon that represents an OLE object. When you double-click on
the icon, the OLE libraries determine what data the object contains and perform the
appropriate verb action.

For some data types, such as .WAV or .AVI files, only packages make sense. By
default, the package icon comes from the program that created the data.

TIP Using the Object Packager program that comes with Windows, you can customize
both the icon and the label of any package.

Working with Inserted Objects

Once an object is in the client’s document, the client provides ways to activate it.
Usually, double-clicking activates an object. An activated object performs what-
ever action is appropriate to its format.

Figure S23.1 shows the process of linking a picture into a Microsoft Word docu-
ment, where OLE provides in-place editing (editing the picture directly within
the linked document) using the Paint program.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 6

http://www.sybex.com

7

F I G U R E S 2 3 . 1 :

Linking a picture into a text
document and activating
the picture to edit it.

Introducing OLE

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 7

http://www.sybex.com

8

As illustrated, the Edit menu now contains a Bitmap Image Object submenu
with three verbs—Edit, Open, and Convert—supplied by the Paint application.
For a Paint drawing, the default is the verb Edit, which activates in-place editing.
When you select in-place editing, the Paint menu, palette, and toolbars appear
inside the Word document frame, allowing editing without leaving the docu-
ment. Selecting Open calls the Paint application with the embedded image, as
shown in the lower half of Figure S23.1. Changes made using the Paint program
will be reflected in the embedded object in the Word document when the Paint
program exits, signaling on termination that the compound document should be
updated.

Figure S23.2 shows a sound package and a video package pasted into a Word-
Pad document. The Edit menu, under the Sound Recorder Document Object
entry, offers three verbs associated with sound data: Play, Edit, and Open. Since
more than one OLE object is embedded in this document, the Wave Sound object
must be selected before the Object Properties and Sound Recorder menu options
are enabled.

The Clock.AVI file is also an embedded object and, when selected, provides the
same three verb entries in the Edit menu under the Linked Video Clip Object
entry. Both the .AVI and .WAV files also respond to a double-click: The .AVI object
plays the video in a separate .AVI window, and the .WAV object plays the sound
waveform through the system sound card (assuming that a sound card is
installed).

F I G U R E S 2 3 . 2 :

A WordPad document with
embedded audio and
video clips

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 8

http://www.sybex.com

9

Eventually, with the help of some OLE functions, the client application saves
the compound document. The document can then be transferred from user to
user and read by the same client application on other computers. If the new sys-
tem lacks some servers, all the objects will still display correctly. This is because
the OLE system itself handles standard clipboard formats like bitmaps and
metafiles in any client without calling a server. You cannot activate objects with-
out a server, however. You cannot do much with .WAV packages, for example,
unless you have the Sound Recorder installed (and, of course, a sound card and
speakers).

Storing Objects in Presentation and Native Data
Formats

Two of OLE’s goals seem to place contradictory demands on data objects. In
order to display the object in any application, whether or not the original server is
present in the system, the object must contain data in some common, recogniz-
able display format, such as a metafile or bitmap.

On the other hand, OLE also lets the user continue to edit objects even after they
are pasted into a new application. In order for the server to edit objects, they must
contain whatever data the server uses to represent them internally. Excel, for
example, cannot continue to edit spreadsheet cells that have been converted for
display as a metafile, but neither can client programs—or even the OLE libraries—
be expected to understand Excel’s internal data well enough to display the cells
by themselves on systems where Excel is not installed.

The solution is to supply two copies of the data for every OLE object. You’ll
read more in a moment about how the server does this, but essentially every OLE
object contains data in a native format, as the server created it, and in one of sev-
eral standard presentation formats—usually a metafile—so anyone can display it.

The OLE Libraries
OLE gives you high-level functions to implement low-level data-sharing
processes, similar to the DDE functions provided by the DDEML. The OLE func-
tions reside in three dynamic link libraries. OleCli32.DLL contains all the functions
for an OLE client, and OleCvr32.DLL contains the functions for an OLE server. In

The OLE Libraries

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 9

http://www.sybex.com

10

OLE 1.0, these two libraries exchange data and commands through DDE mes-
sages. The third library, Shell32.DLL, maintains a database of servers and data
types to ensure that requests for assistance are routed correctly.

Interacting through the OLE Libraries
OLE applications interact with each other through the libraries. When a client
decides to edit a picture object, for example, it passes the request to the OleCli
DLL. OleCli sends a message to OleSvr. OleSvr locates a server and asks it to
begin an editing session. When the user activates an object, the OleSvr library
must determine which server application corresponds to the given data format.
To identify servers, OleSvr consults the Shell library. The Shell functions manage
the system registry, which maps each data type to a server application name.
Servers add their own names to the registry during their installation.

When the operation has completed, OleSvr passes the results back to OleCli,
and OleCli passes them on to the client. The interaction of client and server
through the OLE libraries is shown in Figure S23.3.

Choosing between the DDE and OLE Libraries
Like the DDEML, the OLE libraries work through the DDE protocol. OLE com-
mands send DDE messages. The underlying DDE processes are invisible to an

F I G U R E S 2 3 . 3 :

How the three OLE libraries
interact with client and
server applications

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 10

http://www.sybex.com

11

OLE application. Because Microsoft developed the DDEML and OLE systems in
parallel, neither relies on the other.

NOTE Due to shrinking support for DDE and increasing emphasis on OLE under Win-
dows 2000, DDE and DDEML are not discussed in this book.

To choose between the DDEML and OLE, consider what your application
needs to do. For maintaining many links and updating them all frequently,
choose the DDEML. One DDEML conversation can establish many links, but each
OLE conversation transfers only a single object. Although OLE clients can initiate
several conversations with one server, this incurs an overhead that the DDEML
avoids. DDEML links, however, die when either participant terminates.

Choose OLE when you want to support any of the following:

• Persistent embedding and linking

• Rendering common data formats

• Rendering specialized data formats through the server

• Transferring data through the clipboard and through files

• Activating objects

Accessing OLE Information
As mentioned earlier, when an OLE server is installed on your system or is first
executed, it registers itself with the Windows registry. This registration includes,
among other elements, the name and location of the server, as well as the various
types of services that it is prepared to supply.

In turn, an OLE client application can query the registry to find an appropriate
server and service. You can also access the registry information directly by using
the Registry Editor utility (RegEdit.EXE, located in your \windows directory or
RegEdt32.EXE, in your \WINNT\SYSTEM directory), as explained in Chapter 8,
“Using the Registry.”

As an example, Figure S23.4 shows the Registry Editor after using the Edit ➢
Find function to locate the Excel application registry information. Actually, there

Accessing OLE Information

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 11

http://www.sybex.com

12

are quite a few entries for Excel, but the one of interest is the class ID. This is
found under the branch HKEY_CLASSES_ROOT\CLSID\ and identified by a unique
(generated) class ID entry: 00020810-0000-0000-C0000-000000000046. (As with
most registry entries, this same information can also be found under the entry
HKEY_LOCAL_MACHINE\SOFTWARE\Classes\CLSID, as well as in other locations;
this duplication is not unusual.)

As you can see in Figure S23.4, the available information includes data formats,
conversion options, the default extension(s) and icon, the program ID, and, not
least, which action verbs the OLE server supports.

TIP Visual Studio includes an application titled OLEView (found in the Microsoft Visual
Studio\Common\Tools directory), which provides another way to view information
about OLE applications. Despite the lack of documentation, the OLE2View appli-
cation does provide an interesting view of a variety of OLE-support functions.

F I G U R E S 2 3 . 4 :

The Registry Editor with
information about Excel

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 12

http://www.sybex.com

13

Most of the time, there is no need to access the registry directly. A number of
mechanisms provide indirect access, such as the COleInsertDialog method
(discussed later in this supplement), for safe (but restricted) access to registry
information.

Selecting an OLE Server
Before an OLE client can use server services, the client application must select an
OLE server. How a server is selected varies depending on how the client applica-
tion chooses to set up the menu options. For the Ole_Client demo discussed in this
supplement, the Edit menu’s Insert New Object option calls the Insert Object
dialog box, shown in Figure S23.5.

The list box in the Insert Object dialog box lists all of the registered OLE server
object types. The Result box at the bottom offers a brief explanation of the
selected item.

The Create New radio button is selected by default. If you select the Create
from File radio button, the Insert Object dialog box changes to allow you to select
a file of any type to insert as an OLE object, as shown in Figure S23.6. (Inserting a
file does not guarantee that there is a supporting server for that file.) Here, you
may enter path and filename information directly or click the Browse button to
call the standard file-selection dialog box. If you select the Link checkbox, any
changes to an OLE file object through external sources, such as when you edit the
file through another application, are immediately reflected in the linked object.

F I G U R E S 2 3 . 5 :

The Insert Object
dialog box

Selecting an OLE Server

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 13

http://www.sybex.com

14

You can select the Display As Icon checkbox on the right side of the Insert
Object dialog box to insert the object as an icon rather than as an active item. The
advantage is that an “iconized” object does not require redrawing and remains
inactive until selected. (Files are always inserted with icon representation, regard-
less of the selection made in the Display As Icon checkbox.)

NOTE AppWizard supports full in-place editing for only OLE server objects, not for files.
To fully support embedded or linked files, either the client application must be
modified to provide support or the Edit menu’s Packager option must be used to
call the appropriate support utility.

Registering an OLE Server
You’ve been introduced to the Registry Editor utility for viewing the registry and
to the Insert Object dialog box for selecting a registered server. But how do you
register an OLE server?

Full-server applications register themselves automatically the first time the
server application is executed as a stand-alone process by invoking the COle-
ServerRegister member. Furthermore, if the application was created using
MFC and the AppWizard, the COleServerRegister function was installed in the
InitInstance procedure as a call to the COleTemplateServer::RegisterAll
function. These processes are described later in the supplement.

F I G U R E S 2 3 . 6 :

Inserting a file object

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 14

http://www.sybex.com

15

For mini-server applications, which cannot run as stand-alone applications, a
different approach is necessary. AppWizard provides for registering a mini-server
by creating a REG script for the server application:

REGEDIT
; This .REG file may be used by your SETUP program.
; If a SETUP program is not available, the entries below will be
; registered in your InitInstance automatically with a call to
; CWinApp::RegisterShellFileTypes and COleObjectFactory::UpdateRegistryAll.

HKEY_CLASSES_ROOT\Parry.Document = Parry Document
HKEY_CLASSES_ROOT\Parry.Document\protocol\StdFileEditing\server =

PARRY.EXE
HKEY_CLASSES_ROOT\Parry.Document\protocol\StdFileEditing\verb\0 =

&Edit
HKEY_CLASSES_ROOT\Parry.Document\Insertable =
HKEY_CLASSES_ROOT\Parry.Document\CLSID = {C6A0FC60-3173-11D0-93D7-

BA6083000000}
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-BA6083000000} =

Parry Document
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\DefaultIcon = PARRY.EXE,1
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\LocalServer32 = PARRY.EXE
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-BA6083000000}\ProgId

= Parry.Document
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\MiscStatus = 32
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\AuxUserType\3 = Parry
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\AuxUserType\2 = Parry
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-

BA6083000000}\Insertable =
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-BA6083000000}\verb\1

= &Open,0,2
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-BA6083000000}\verb\0

= &Edit,0,2
HKEY_CLASSES_ROOT\CLSID\{C6A0FC60-3173-11D0-93D7-
BA6083000000}\InprocHandler32 = ole32.dll

Registering an OLE Server

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 15

http://www.sybex.com

16

Usually, when a finished application is installed, the Setup procedure also exe-
cutes the REG script. For development purposes, you can also use the Registry
Editor to execute this script directly. From the Registry menu in the Registry Edi-
tor, select Import Registry Files to open the file-selection dialog box. Select the
application’s REG script. A few seconds later, the Registry Editor should inform
you that the registry information has been entered, which is all that is required.

Creating OLE Applications
In the past, creating any OLE application was a long and involved process requir-
ing hundreds of lines of code, simply to provide the most rudimentary client
capabilities. The good news is that creating an OLE client application using MFC
and the AppWizard (or their equivalent in other compilers) is almost trivial. Just
as you can use MFC and the AppWizard to create an OLE client, these services
also provide the means to create a basic OLE server.

TIP If you are interested in developing OLE applications, you should refer to any of the
many books devoted to the topic. For example, Mastering OLE 2 by Bryan Waters
(published by Sybex) provides more details about how to provide extended OLE
support in your applications.

The OLE_Client Demo: Creating an OLE Client
Application

Using MFC’s AppWizard to build the skeleton for your client application, in Step 3
of the AppWizard process, you are presented with an option to include OLE com-
pound document support in your application, as shown in Figure S23.7. (In Step
1 of the AppWizard process, you must select a multi-document application; OLE
support does not function for single-document applications.) By default, the
None option is checked. To provide OLE client support, simply select the Con-
tainer option from the list. Following Step 3, continue to specify the remainder of
the options required for your application.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 16

http://www.sybex.com

17

WARNING While you are experimenting, there is one restriction to observe in creating an OLE
client application. Do not name the application “OLE Client” or “OLEClient”
(however, “OLE_Client, with an underscore, is permissible). Using either of these
proscribed names results in a COleClientDoc class being created as an applica-
tion class, leading to a conflict with the library class of the same name, which is
required to support OLE client operations.

When you complete the AppWizard specifications, MFC creates a multi-document
interface with the usual object classes but includes one new object class: the client
item, COle_ClientCntrItem (container item).

And—surprise!—you now have an OLE client application that is completely
ready to compile, link, and execute. More important, the OLE client is ready to
operate without any further provisions to support OLE. Granted, this simple
application does not do much other than accept OLE support from server appli-
cations. However, given the complexity of creating an OLE client from scratch,
this in itself is no small matter.

F I G U R E S 2 3 . 7 :

Adding OLE client support
for an application

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 17

http://www.sybex.com

18

NOTE The OLE_Client demo is included on the CD in the Supplement 23 folder.

Client Support and Control Methods
When you create an OLE client application through the AppWizard, it provides
classes and functions that handle client support and connections to embedded or
linked OLE items.

The COle_ClientView Class

When you instruct AppWizard to provide OLE client support, the COle_ClientView
class is created, with seven OLE client-support functions, which are already fully
implemented. These functions are discussed in the following sections.

OnInitialUpdate This function includes a provision to set the member variable
m_pSelection to NULL, where the m_pSelection member is a pointer to a
COle_ContainerCntrItem object.

void COle_ClientView::OnInitialUpdate()
{

CView::OnInitialUpdate();
m_pSelection = NULL; // initialize selection

}

The default provision shown is adequate for most purposes. However, if you
are going to use something besides the default selection mechanisms for variant
server classes, you will need to provide the appropriate initialization.

OnDraw This function, which should be familiar from earlier examples, is
expected to draw application-specific data for the client window (the document
window). For OLE objects, this is also where the server drawing operations are
implemented. Now, according to the stated purposes of OLE, the server applica-
tion is responsible for doing the actual drawing, right? So, why do we need spe-
cial provisions in the client’s OnDraw function?

The reason is that before it can carry out its drawing instructions, the OLE
server needs to know where to do the drawing operation.

void COle_ClientView::OnDraw(CDC* pDC)
{

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 18

http://www.sybex.com

19

COle_ClientDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

// TODO: add draw code for native data here
// TODO: also draw all OLE items in the document

if(m_pSelection == NULL)
{

POSITION pos = pDoc->GetStartPosition();
m_pSelection =

(COle_ClientCntrItem*) pDoc->GetNextClientItem(pos);
}
if(m_pSelection != NULL)

m_pSelection->Draw(pDC, CRect(10, 10, 210, 210));
}

In this default version, the selected OLE object is drawn at an arbitrary position
using the rectangle returned by the COle_ClientCntrItem class and an arbitrary
drawing rectangle.

When you create a real application, your application must be responsible for
positioning the OLE object and for determining the area appropriate for the
object’s drawing operations (see the description of the OnSize function).

IsSelected This method performs a test to determine whether a specific object
corresponds to the m_pSelection object, returning either a TRUE or FALSE
response.

BOOL COle_ClientView::IsSelected(const CObject* pDocItem) const
{

// TODO: implement this to test for selected OLE client item
return pDocItem == m_pSelection;

}

As long as the selection is limited to COle_ClientCntrItem objects, no addi-
tional provisions are required. However, if you are planning to handle other
types of selection mechanisms, this implementation will require revisions.

OnInsertObject This method serves two functions. The first function is to
invoke the standard Insert Object dialog box to select an OLE object (described
earlier in the supplement).

void COle_ClientView::OnInsertObject()
{

COleInsertDialog dlg;
if(dlg.DoModal() != IDOK) return;

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 19

http://www.sybex.com

20

If the Insert Object dialog box does not return IDOK, no selection has been made
and no further action is necessary. However, assuming that an OLE object has
been selected, OnInsertObject is responsible for connecting the item to the
application document. It begins by declaring a new instance of the COle_Client-
CntrItem class.

BeginWaitCursor();
COle_ClientCntrItem* pItem = NULL;
TRY
{

// create new item connected to this document
COle_ClientDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
pItem = new COle_ClientCntrItem(pDoc);
ASSERT_VALID(pItem);

Next, the OLE item must be initialized from the dialog box data.

if(! dlg.CreateItem(pItem))
AfxThrowMemoryException(); // any exception will do

Assuming that the item was created from the class list (rather than from a file),
the object’s OLE server is launched to edit the item. In this case, however, editing
is simply the method used to create the item’s data rather than a process to
change the object.

If there is a problem (because of a failure of the server or the system), an excep-
tion is thrown and the current TRY loop terminates before the CATCH response (fol-
lowing) takes over to report the failure.

NOTE The term “throwing an exception” refers to intercepting an error condition and
generating (“throwing”) an exception condition to allow an exception handler to
either correct the error or to recover from the error without terminating the appli-
cation. See Chapter 9, “Exception Handling,” for more information about han-
dling exceptions.

Once the object has been created, the server is instructed to show the selected
object.

ASSERT_VALID(pItem);
if(dlg.GetSelectionType() == COleInsertDialog::createNewItem)

pItem->DoVerb(OLEIVERB_SHOW, this);

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 20

http://www.sybex.com

21

Notice that a number of ASSERT_VALID statements are included in the
TRY...CATCH loop. These are present only for debugging purposes, and have no
effect when the application is compiled for release. The TRY...CATCH loop, how-
ever, is active both in the debug version and the release version.

Last, the default provisions in the OnInsertObject method set the current
selection (m_pSelection) to point to the last selected item before calling the docu-
ment with an UpdateAllViews instruction, which will result in the document
(and, therefore, the view) being refreshed.

ASSERT_VALID(pItem);
m_pSelection = pItem; // set selection to last inserted item
pDoc->UpdateAllViews(NULL);

}

If you don’t want the last selected item to be the current selection, you can
revise this portion of the code to create a different selection. However, regardless
of how the default selection is made, clicking on an object in the document
should still change the object selection.

The CATCH loop simply provides the standard error trapping when an error
exception is generated.

CATCH(CException, e)
{

if(pItem != NULL)
{

ASSERT_VALID(pItem);
pItem->Delete();

}
AfxMessageBox(IDP_FAILED_TO_CREATE);

}
END_CATCH
EndWaitCursor();

}

OnCancelEditCntr This method provides the standard keyboard user interface
(UI) to cancel an in-place editing session, allowing the client, not the server, to
deactivate the operation.

void COle_ClientView::OnCancelEditCntr()
{

// Close any in-place active item on this view.
COleClientItem* pActiveItem =

GetDocument()->GetInPlaceActiveItem(this);

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 21

http://www.sybex.com

22

if(pActiveItem != NULL)
{

pActiveItem->Close();
}
ASSERT(GetDocument()->GetInPlaceActiveItem(this) == NULL);

}

OnSetFocus This method provides the special handling required for an object
being edited in-place.

void COle_ClientView::OnSetFocus(CWnd* pOldWnd)
{

COleClientItem* pActiveItem =
GetDocument()->GetInPlaceActiveItem(this);

if(pActiveItem != NULL &&
pActiveItem->GetItemState() == COleClientItem::activeUIState)

{
// need to set focus to this item if it is in the same view

CWnd* pWnd = pActiveItem->GetInPlaceWindow();
if(pWnd != NULL)
{

pWnd->SetFocus(); // don’t call the base class
return;

}
}
CView::OnSetFocus(pOldWnd);

}

The OnSetFocus method provided is used to check selection and set the focus
to the appropriate OLE object. Except for very unusual circumstances, this
method should not require revision.

OnSize This method allows the user to resize an OLE object by selecting the
object and dragging the object outline.

void COle_ClientView::OnSize(UINT nType, int cx, int cy)
{

CView::OnSize(nType, cx, cy);
COleClientItem* pActiveItem =

GetDocument()->GetInPlaceActiveItem(this);
if(pActiveItem != NULL)

pActiveItem->SetItemRects();
}

Except for very unusual circumstances, this method should not require revision.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 22

http://www.sybex.com

23

The COle_ClientCntrItem Class

The COle_ClientCntrItem class is derived from the COleClientItem class and
is used to provide a connection to an embedded or linked OLE item. The COle_
ClientCntrItem class created by AppWizard is a minimal implementation; the
real functionality is supplied by the parent COleClientItem class.

NOTE There are more than 70 OLE-handling methods supplied by library and API func-
tions. For more details, refer to the online documentation.

The COleClientItem creation methods provide functions to create both
embedded and linked items from the clipboard services, from selected files, or by
launching an OLE server. The Implement_Serial macro generates the basic code
required for a CObject-derived class, providing runtime access to the class name
and base class name defining the class position within the hierarchy. The con-
structor and destructor methods provided for the derived COle_ClientCntrItem
class are skeletal and provide no functionality beyond the derived functionality
of the parent.

IMPLEMENT_SERIAL(COle_ClientCntrItem, COleClientItem, 0)
COle_ClientCntrItem::COle_ClientCntrItem(COle_ClientDoc* pContainer)

: COleClientItem(pContainer)
{

// TODO: add one-time construction code here
}

COle_ClientCntrItem::~COle_ClientCntrItem()
{

// TODO: add cleanup code here
}

The default functionality should be sufficient for most purposes but, if you
decide to add custom construction code to COle_ClientCntrItem, you need to
include corresponding cleanup code in the destructor method.

OnChange Whenever an OLE item is being edited—whether the editing is
occurring in-place or in a fully open server—OnChange notifications are sent to
the client application to notify the client of changes in the state of the item or
changes in the visual appearance of the content. The OnChange method allows the
client application to update its own appearance.

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 23

http://www.sybex.com

24

void COle_ClientCntrItem::OnChange(OLE_NOTIFICATION nCode,
DWORD dwParam)

{
ASSERT_VALID(this);

COleClientItem::OnChange(nCode, dwParam);
// TODO: invalidate the item by calling UpdateAllViews
// (with hints appropriate to your application)

GetDocument()->UpdateAllViews(NULL);
// for now just update ALL views/no hints

}

Again, the default functionality will serve for most purposes. However, you
may wish to alter the update performance for special circumstances.

OnChangeItemPosition This function is used during in-place activation to
change the position of the in-place window. This may be done because changes
to the data in the server document require a change in extent, or it may be a
response to in-place resizing. The default operation is to call the base class COle-
ClientItem::OnChangeItemPosition with the new in-place window rectangle.
In turn, the COleClientItem::SetItemRects function is notified to move
and/or resize the item to fit the specified rectangle.

BOOL COle_ClientCntrItem::OnChangeItemPosition(const CRect &cRectPos)
{

ASSERT_VALID(this);
if(! COleClientItem::OnChangeItemPosition(cRectPos))

return FALSE;
// TODO: update any cache you may have of the item’s
// rectangle/extent

return TRUE;
}

If you wish to provide your own resizing implementation, refer to the SetExtent
method for embedded OLE items.

OnGetItemPosition This method is called to determine the location of an item
during in-place activation. The default implementation provided simply returns a
hard-coded rectangle, which was defined by AppWizard.

void COle_ClientCntrItem::OnGetItemPosition(CRect &cRectPos)
{

ASSERT_VALID(this);
// TODO: return correct rectangle (in pixels) in cRectPos

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 24

http://www.sybex.com

25

cRectPos.SetRect(10, 10, 210, 210);
}

For a more sophisticated approach, this rectangle should reflect the current
position of the item relative to the view used for activation. To obtain the view,
call COle_ClientCntrItem::GetActiveView.

OnActivate This function is used to activate an OLE item in place by calling the
COleDocument::GetInPlaceActiveItem function.

void COle_ClientCntrItem::OnActivate()
{

COle_ClientView* pView = GetActiveView();
ASSERT_VALID(pView);
COleClientItem* pItem = GetDocument()->GetInPlaceActiveItem(pView);
if(pItem != NULL && pItem != this)

pItem->Close();
COleClientItem::OnActivate();

}

NOTE Only one item (per frame) can be activated at a time.

OnDeactivate This function is called when an item that was activated in place
is to be deactivated. This restores the container application’s user interface to its
original state, hiding any menus and other controls that were created for in-place
activation.

void COle_ClientCntrItem::OnDeactivateUI(BOOL bUndoable)
{

COleClientItem::OnDeactivateUI(bUndoable);

DWORD dwMisc = 0;
m_lpObject->GetMiscStatus(GetDrawAspect(), &dwMisc);
if(dwMisc & OLEMISC_INSIDEOUT)

DoVerb(OLEIVERB_HIDE, NULL);
}

If bUndoable is FALSE, the container should disable the Undo command, in
effect discarding the undo state of the container, because it indicates that the last
operation performed by the server is not undoable.

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 25

http://www.sybex.com

26

Serialize This method is used to load or store data related to an OLE item
within the client document. By default, the data contained within an OLE object
is handled by the OLE server and does not require handling by the OLE client.
Depending on the type of application you are designing, however, you may need
to store references to the linked/embedded items as part of your document storage.

void COle_ClientCntrItem::Serialize(CArchive& ar)
{

ASSERT_VALID(this);
COleClientItem::Serialize(ar);

// now store/retrieve data specific to COle_ClientCntrItem
if(ar.IsStoring())
{

// TODO: add storing code here
}
else
{

// TODO: add loading code here
}

}

Other Methods There are a host of methods supplied by the parent class,
COleClientItem, that may be overwritten when special handling is needed by
your application. Status methods provide functions to retrieve OLE item aspects,
including the item’s class ID, the view aspect, and the OLE type and descriptive
string.

The clipboard services support drag-and-drop operations and allow items to be
retrieved from the clipboard or passed to the clipboard. Additional methods
allow items to be drawn, closed, released, or executed. Object activation is pro-
vided by a series of functions handing different aspects of activation. The Set-
Extent and SetItemRects methods provide resizing. All in all, there are 20 or
more functions for various aspects of OLE client operations.

Given these possibilities, you may be properly relieved to know that you do not
need to write all of these yourself. For the most part, the default functionality for
a client has been supplied. And, when necessary, you can override or extend the
default methods.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 26

http://www.sybex.com

27

Creating an OLE Server
Just as you can use MFC and the AppWizard to create an OLE client, these ser-
vices also provide the means to create a basic OLE server, offering a choice of a
mini-server or full-server application.

OLE Server Types

OLE server applications are defined by four base classes: the COleServerDoc and
COleServerItem classes used by all server applications, the COleServer class
used by mini-servers, and the COleTemplateServer class used by full-server
applications.

A Single Document Interface (SDI) server is probably the most common type of
OLE server, as well as the simplest to implement. Each SDI server uses a single
server object and a single document object but launches a new server instance for
each client requesting service. Table S23.1 shows the SDI architecture characteris-
tics. Because mini-servers do not support multiple links, an SDI mini-server
offers only one item object. In contrast, a full server supplies multiple item objects
when multiple clients are linked to the same document.

TA B L E S 2 3 . 1 : SDI Server, Multiple Instances

Class type Classes Mini-server objects Full-server objects

Server 1 1 1

Document 1 1 1

Item 1 1 Many

Multiple Document Interface (MDI) servers are used when DGROUP (the default
data segment) memory constraints preclude multiple-instance servers or when a
full server needs to be MDI in stand-alone mode. For mini-servers, there is still
only one item per document. Table S23.2 shows characteristics of the MDI server
architecture for a single server type, single instance.

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 27

http://www.sybex.com

28

TA B L E S 2 3 . 2 : MDI Server, Single Server Type, Single Instance

Class type Classes Mini-server objects Full-server objects

Server 1 1 1

Document 1 Many Many

Item 1 Many Many

Multiple-instance MDI servers include applications such as Excel or Quattro
Pro, which provide both charts (graphic objects) and spreadsheets. Each server
class has only one document class, and each server object has one document
object. Since full servers support links, each document can provide multiple item
objects, and each document class can support multiple item classes. Table S23.3
shows the MDI server characteristics for multiple instances.

TA B L E S 2 3 . 3 : MDI Server, Multiple Instances

Class type Classes Full-server objects

Server Many Many

Document Many 1

Item Many Many

Using the AppWizard

Just as you are presented with an option to include OLE support in your client
application in Step 3 of the AppWizard process, this step also includes selections
for a mini-server, full-server, or client/server application. In Figure S23.8, a full-
server application has been selected.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 28

http://www.sybex.com

29

For OLE support, creating a mini-server and full-server application are essen-
tially the same. However, it’s easier to test a full-server application during devel-
opment because it can also run in stand-alone mode. The combined client/server
option automatically selects a full server rather than a mini-server, because the
client side insists that the application must run in stand-alone mode (a mini-
server cannot be a client without a user interface).

WARNING When you are creating a full-server application, keep in mind that just because the
server works correctly in stand-alone mode, this is no guarantee that it also works
as a server. Later, we will discuss at least one point of failure where an application
works by itself but fails during client operations.

After you have finished creating your application skeleton, in addition to the
application, mainframe, document, and view classes, AppWizard has also created
an in-place frame class, CInPlaceFrame, and a server class, CxxNAMExxSrvrItem,

F I G U R E S 2 3 . 8 :

Adding OLE server support
for an application

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 29

http://www.sybex.com

30

derived from the COleServerItem class. For the Parry demo discussed in this
supplement, the server class is named CParrySrvrItem.

The Parry Demo: A Simple OLE Application
The Parry demo is a relatively simple OLE application that is intended to demon-
strate how an OLE application can provide embedded services. The embedded
object offers a single menu option and a single toolbar option.

The menu and toolbar entries could be anything you want and could also
duplicate the usual system menus, with File, Edit, and Help entries. Remember,
however, that options provided by the OLE embedded menu and toolbar, which
are presented in the client application when the embedded object is selected,
must also be supported by the server application. Because the Parry demo does
not offer File, Edit, or Help services in the context of the server application, no
menu entries for these items have been provided.

The single service provided by the Parry demo is the Scan action, which, in true
paranoid fashion, looks for enemies (and often finds them). No, this is not a seri-
ous application; it was designed with tongue firmly in cheek and for amusement
as well as education. But even so, the principles demonstrated in the Parry demo
still apply to serious server applications.

NOTE The Parry demo is included on the CD, in the Supplement 23 folder.

Table S23.4 lists the main source files used in this demo. The following sections
describe the classes used for the program.

TA B L E S 2 3 . 4 : Principal Source Files in the Parry Demo

Source File(s) Function

Program Files

SrvrItem.CPP, .H Source files for the CParrySrvrItem class

MainFrm.CPP, .H Defines the CMainFrame class derived from CMDIFrameWnd; controls all MDI
frame features

Continued on next page

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 30

http://www.sybex.com

31

TA B L E S 2 3 . 4 C O N T I N U E D : Principal Source Files in the Parry Demo

Source File(s) Function

Resource Files

ParryDoc.CPP, .H Document class files for the server document class; modify these source files
to add special document features and implement serialization

IpFrame.CPP, .H Source files for the in-place frame class derived from the COleIPFrameWnd
class; controls all frame features when the object is activated in-place

Parry.CPP, .H Source files for the CParryApp application class

ParryView.CPP, .H Source files for the view class files creating the CParryView class; handles in-
place editing capabilities

IToolbar.BMP Bitmap for in-place toolbar

Toolbar.BMP Bitmap for stand-alone toolbar

Parry.ICO Icon for stand-alone operation

ParryDoc.ICO Icon for embedded object

Registry File

Parry.REG Registration script used to register the server

The CParrySrvrItem Class

The CParrySrvrItem class is derived from COleServerItem and provides the
link functionality between the server application and the client through the OLE
system. The parent class provides the default functionality, but there are ample
opportunities within the derived class to customize the server’s behavior.

The first point where the server can be customized is found in the constructor
and destructor methods. The default versions are functional, but they can be
modified to provide, for example, additional clipboard formats specific to the
item’s data source.

CParrySrvrItem::CParrySrvrItem(CParryDoc* pContainerDoc)
: COleServerItem(pContainerDoc, TRUE)

{
// TODO: add one-time construction code here

}

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 31

http://www.sybex.com

32

CParrySrvrItem::~CParrySrvrItem()
{

// TODO: add cleanup code here
}

Serialize The framework calls this method when a data item is copied to the
clipboard, an action that happens automatically though the OLE callback func-
tion OnGetClipboardData.

The default provisions expect the server object to be embedded and delegate
serialization to the document’s Serialize function. Notice that the IsLinkedItem
is called and expects a negative response (FALSE) to identify an embedded object.

void CParrySrvrItem::Serialize(CArchive& ar)
{

if(! IsLinkedItem())
{

CParryDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);
pDoc->Serialize(ar);

}
}

For linked support, additional provisions are needed to serialize only a portion
of the server data.

OnGetExtent This method is designed to check the drawing aspect, returning a
CSize variable with the appropriate size information.

// CParrySrvrItem::OnGetExtent is called to get the extent in
// HIMETRIC units of the entire item. The default implementation
// here simply returns a hard-coded number of units.

BOOL CParrySrvrItem::OnGetExtent(DVASPECT dwDrawAspect, CSize& rSize)
{

if(dwDrawAspect != DVASPECT_CONTENT)
return COleServerItem::OnGetExtent(dwDrawAspect, rSize);

If the drawing aspect is DVASPECT_CONTENT, the parent OnGetExtent method is
called to retrieve the rSize variable. Otherwise, the default implementation pro-
vided by the AppWizard simply returns a hard-coded 3000 by 3000 units (in
MM_HIMETRIC mode).

CParryDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 32

http://www.sybex.com

33

// TODO: replace this arbitrary size
rSize = CSize(3000, 3000); // 3000 x 3000 HIMETRIC units
return TRUE;

}

Normally, the server application is expected to handle drawing the content
aspect of the item. To support other aspects, such as DVASPECT_THUMBNAIL, you
need to override the OnDrawEx function and modify the OnGetExtent function to
handle this additional aspect.

The drawing mode, identified by the dwDrawAspect parameter, may be
DVASPECT_CONTENT, DVASPECT_THUMBNAIL, DVASPECT_ICON, or DVASPECT_
DOCPRINT. To support any modes other than DVASPECT_CONTENT, additional pro-
visions will be required both here and in the OnDraw method.

NOTE Embedded or linked OLE items are always drawn using HIMETRIC units and a
metafile device context. Of course, while the application is executing in stand-
alone mode, any drawing mode is acceptable.

OnDraw This method is provided as a default implementation that sets up the
mapping mode and extent in preparation for drawing in a metafile context. But,
before you duplicate your entire application’s drawing routines, realize that this
is not the purpose of the server item’s OnDraw method.

When the item is active, it is the View class that is called to provide the drawing
operations. The function of the server item’s OnDraw method is to act only when
the OLE item is active, but the client screen still needs to be updated. It might
provide instructions for a simple default drawing operation, for drawing an icon
view, or for whatever is desired to provide an inactive display.

BOOL CParrySrvrItem::OnDraw(CDC* pDC, CSize& rSize)
{

CParryDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

// TODO: set mapping mode and extent
// (the extent is usually same as size returned from OnGetExtent)

pDC->SetMapMode(MM_ANISOTROPIC);
pDC->SetWindowOrg(0, 0);
pDC->SetWindowExt(3000, 3000);

// TODO: add drawing code here. Optionally,
// fill in HIMETRIC extent

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 33

http://www.sybex.com

34

// all drawing takes place in the metafile device context (pDC)
return TRUE;

}

In addition to providing some form of drawing instructions here, the Set-
WindowExt function call should be rewritten to use the CSize value returned by
the OnGetExtent function. Of course, this also assumes that the OnGetExtent
function has been rewritten to return something besides the hard-coded values
supplied by the AppWizard.

Also, if you want the OLE server view to be drawn both when the item is active
and when it is inactive, rather than attempting to provide duplicate code for each
operation, a simpler approach is to provide a set of shared drawing functions that
are called for both.

OnDraw and Drawing in a Metafile Context Although the OnDraw meth-
ods of both the server item class and the view class are called with a pointer to a
device context, the supplied device context is not the same in both cases. When
the view’s OnDraw function is called, the supplied device context is the screen
device; when the server item’s OnDraw method is invoked (while the item is inac-
tive), the device context supplied is a metafile context.

There are several differences between a screen device context and a metafile
context, but the difference you need to be most aware of when designing your
OLE server is that a metafile context does not supply the same information as an
active screen device context. The information supplied for a metafile context does
not include any data that depends on the context actually being a window and an
active element in the window hierarchy. This limitation means that functions
such as GetTextMetrics, GetDeviceCaps, or many of the other Getxxxxxxx
functions simply do not operate in a metafile context because there is no connec-
tion to any actual physical device context. In like fashion, functions such as
CreateCompatibleDC, which might be used to create a bitmap memory context,
simply do nothing.

In view of these limitations, the server item’s OnDraw function must rely on
MM_ANISOTROPIC mode with an extent defined in MM_HIMETRIC units. This selec-
tion is based on providing the highest resolution available.

This limitation means that both types of drawing operations must be carried
out in MM_HIMETRIC units to make the normal drawing operations compatible
with the inactive server drawing operations. Unfortunately, the MM_HIMETRIC
mode is not necessarily ideal for this purpose. For example, consider that

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 34

http://www.sybex.com

35

application fonts must be rendered using MM_HIMETRIC units. (An alternative in
this situation is to use conversion functions such as the CFont::CreateFont or
CFont::CreateFontIndirect to force a font match based on the relative font
size, instead of using a font that is sized according to the metafile context.)

Restrictions aside, most of the output functions, such as MoveTo, TextOut, and
DrawText, still remain valid. Also, if necessary, the CDC::HIMETRICtoDP and
CDC::DPtoHIMETRIC functions can be used to convert coordinates between the
application’s format context and device pixels.

The CParryView Class

The OLE application’s view class, which is CParryView in this instance, provides
the application view in both stand-alone mode and as an active OLE object. As
usual, the CParryView class is derived from the CView class.

The AppWizard has included one provision in the View class to support server
operations: the OnCancelEditSrvr method.

OnCancelEditSrvr This method parallels OnCancelEditCntr in the client
application, providing the standard keyboard UI to cancel an in-place editing ses-
sion. Here the method allows the server, not the client, to deactivate the operation.

void CParryView::OnCancelEditSrvr()
{

GetDocument()->OnDeactivateUI(FALSE);
}

OnDraw Because the Parry application depends on a dialog box (or a series of
dialog boxes) to present information as a pop-up service, the View’s OnDraw
method really doesn’t have much to do besides displaying a text string announc-
ing its services.

void CParryView::OnDraw(CDC* pDC)
{

CParryDoc* pDoc = GetDocument();
ASSERT_VALID(pDoc);

CString csText = “Paranoid Scanning Services”;

pDC->TextOut(10, 10, csText);
}

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 35

http://www.sybex.com

36

However, if you have any graphics information to display (or if you have a
more conventional display), this is where the drawing operations would occur,
just as they would in any conventional application. Keep in mind, however, that
the inactive display for an embedded server item is not drawn in the same con-
text as the active display (see the “OnDraw and Drawing in a Metafile Context”
section).

OnScan In the Parry demo, this method is called by the server-supplied menu
or the server-supplied toolbar and uses a random-number generator to select the
advice message to display. Technically, this is a very minimal application and
shouldn’t require any particular explanation.

void CParryView::OnScan()
{

CDialog *pDlg;
UINT nDlg;

// Seed the random-number generator with current time so that
// the numbers will be different every time we run.

srand((unsigned)time(NULL));
switch((rand() % 10) + 1)
{

case 1: nDlg = IDD_DIALOG1; break;
case 2: nDlg = IDD_DIALOG2; break;
case 3: nDlg = IDD_DIALOG3; break;
case 4: nDlg = IDD_DIALOG4; break;
case 5: nDlg = IDD_DIALOG5; break;
default: nDlg = IDD_DIALOG6; break;

}
if(nDlg != IDD_DIALOG6)

MessageBeep(MB_ICONEXCLAMATION);
pDlg = new CDialog(nDlg, NULL);
pDlg->DoModal();
delete pDlg;

}

The CInPlaceFrame Class

The CInPlaceFrame class, derived from the COleIPFrame class, creates and posi-
tions the frame and control bars for the server window within the client applica-
tion’s document window. The CInPlaceFrame class also handles notifications for
embedded COleResizeBar objects whenever an in-place editing window is

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 36

http://www.sybex.com

37

resized. The parent class provides complete default functionality, but there are
still possibilities for customization in the derived class.

The heart of the CInPlaceFrame class is found in two create functions: OnCreate
and OnCreateControlBars.

OnCreate After calling the usual default method from the parent class, this
method performs two tasks: setting up a CResizeBar instance to provide for in-
place resizing, and providing a default drop target.

int CInPlaceFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)
{

if(COleIPFrameWnd::OnCreate(lpCreateStruct) == -1)
return -1;

if(! m_wndResizeBar.Create(this))
{

TRACE0(“Failed to create resize bar\n”);
return -1; // fail to create

}
m_dropTarget.Register(this);
return 0;

}

The default drop target does nothing for the frame window, but it does prevent
drops (as in “drag-and-drop” operations) from falling through to another class
that does support drag-and-drop, such as the OLE client.

If your application will be supporting drop operations, then this registration
will be necessary anyway—along with provisions to handle drops, naturally.

OnCreateControlBars This method will be called, as required, by the frame-
work to create control bars for the container application’s windows.

BOOL CInPlaceFrame::OnCreateControlBars(CFrameWnd* pWndFrame,
CFrameWnd* pWndDoc)

{
// set owner to this window, so messages are delivered to correct
// app
m_wndToolBar.SetOwner(this);

// create toolbar on client’s frame window
if(! m_wndToolBar.Create(pWndFrame) ||

! m_wndToolBar.LoadToolBar(IDR_SRVR_INPLACE))
{

TRACE0(“Failed to create toolbar\n”);
return FALSE;

}

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 37

http://www.sybex.com

38

The pWndFrame argument is the client application’s top-level frame window
and is always non-NULL. The pWndDoc argument is the document-level frame win-
dow and, if the client is an SDI application, may be NULL. The server application
may place control bars on either window, but in this case, the principal task is to
create the toolbar and (by default) to dock the toolbar to the client’s document
window.

// TODO: remove this if you don’t want tool tips
// or a resizable toolbar

m_wndToolBar.SetBarStyle(m_wndToolBar.GetBarStyle() | CBRS_TOOLTIPS |
CBRS_FLYBY | CBRS_SIZE_DYNAMIC);

// TODO: delete these three lines if you don’t want the toolbar to
// be dockable

m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);
pWndFrame->EnableDocking(CBRS_ALIGN_ANY);
pWndFrame->DockControlBar(&m_wndToolBar);
return TRUE;

}

The toolbar docking and tool tips provisions, as well as the toolbar button
assignments, provide operations only while the OLE item is active in-place. If the
OLE item is not active, the toolbar (and menu) will not appear.

The CParryApp Class

The CParryApp class is derived from the CWinApp class. In earlier examples, we
have paid little attention to any of the applications’ CWinApp-derived classes.
We’ve simply assumed that these classes were there and that they provided, by
default, the essentials necessary for initializing and executing our application
instances. For our OLE server application, however, the derived CParryApp class
continues to supply the same functionality as previous examples, but now also
offers a few elements that non-OLE applications haven’t needed. These elements
are described in the following sections.

The CLSID Value This is the CLSID (CLasS ID) value used by the system reg-
istry. The CLSID value is defined in the CParry.CPP file as:

static const CLSID clsid =
{ 0xc6a0fc60, 0x3173, 0x11d0,
{ 0x93, 0xd7, 0xba, 0x60, 0x83, 0x0, 0x0, 0x0 } };

The generated value, C6A0FC60-3173-11D0-93D7-BA6083000000, is statistically
unique but may be changed if you want to substitute another identifier.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 38

http://www.sybex.com

39

InitInstance This function begins by initializing the OLE libraries through a
call to AfxOleInit, reporting failure if there is an error.

BOOL CParryApp::InitInstance()
{

// initialize OLE libraries
if(! AfxOleInit())
{

AfxMessageBox(IDP_OLE_INIT_FAILED);
return FALSE;

}

Next, as usual, the standard profile settings are loaded, and the document, win-
dow, and view class names are assigned.

LoadStdProfileSettings();
CSingleDocTemplate* pDocTemplate;
pDocTemplate = new CSingleDocTemplate(IDR_MAINFRAME,

RUNTIME_CLASS(CParryDoc),
RUNTIME_CLASS(CMainFrame), // main SDI frame

// window
RUNTIME_CLASS(CParryView));

Now the InitInstance routine departs from the usual routine by calling the
SetServerInfo function to identify server resources, including menus and accel-
erator tables, which are used by the server application when an embedded object
is activated.

pDocTemplate->SetServerInfo(IDR_SRVR_EMBEDDED, IDR_SRVR_INPLACE,
RUNTIME_CLASS(CInPlaceFrame));

AddDocTemplate(pDocTemplate);

The ConnectTemplate function is called to connect the server to the document
template so that COleTemplateServer can use information in the document tem-
plate to create new documents on behalf of OLE clients.

m_server.ConnectTemplate(clsid, pDocTemplate, TRUE);

// note: SDI applications register server objects only
// if /Embedding or /Automation is present on the
// command line.

// parse command line for standard shell commands, DDE, file open
CCommandLineInfo cmdInfo;
ParseCommandLine(cmdInfo);

Creating OLE Applications

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 39

http://www.sybex.com

40

Finally, after parsing any command-line instructions, a check is made to deter-
mine if the application instance is being launched as an OLE server and, if so, to
register all of the OLE services as running (RegisterAll), allowing the OLE
libraries to create objects from other applications.

if(cmdInfo.m_bRunEmbedded || cmdInfo.m_bRunAutomated)
{

COleTemplateServer::RegisterAll();
return TRUE;

}

If the application is being executed as a server rather than as a stand-alone
application, the InitInstance routine returns TRUE here, so that the application’s
main window is not created or displayed.

On the other hand, if the application is being run as a stand-alone application,
this is a good time to call UpdateRegistry to update the system registry with
information about the OLE services before proceeding with normal operations
(including starting the command processor and displaying the application
window).

m_server.UpdateRegistry(OAT_INPLACE_SERVER);
if(! ProcessShellCommand(cmdInfo))

return FALSE;
return TRUE;

}

Summary
Programming OLE client/server applications is a major topic deserving much
more than a single chapter, but at least we have given you an introduction and an
overview of OLE requirements. In particular, we’ve started by taking a look at the
basics of OLE operations and the OLE libraries before discussing OLE server and
registration. Finally, after briefly studying developing client and server applica-
tions, we finished with Parry, a relatively simple but paranoid OLE server.

Supplement 23 • OLE Client and Server Application Development

2642S23(wasc21).qxd 12/27/99 9:42 AM Page 40

http://www.sybex.com

A P P E N D I X
A

Windows 2000 Certification

� Windows 2000 Readiness Program

� Rational Windows 2000 TestFoundation

� Authoring Tools for Windows Installer Service

A

2642appA.qxd 12/27/99 9:44 AM Page 1

http://www.sybex.com

2

As Windows 2000 becomes the newest operating system in Microsoft’s arse-
nal, a set of certification standards for Windows 2000 applications has also been
produced. To qualify for Windows 2000 certification, an application must:

• Comply with the Application Specification for Windows 2000.

• Undergo compliance testing by VeriTest.

• Be able to run on any of the Windows 2000 operating system versions: Win-
dows 2000 Professional, Windows 2000 Server, Windows 2000 Advanced
Server, or Windows 2000 Datacenter.

• Optionally, developers can also choose to have applications certified on
additional Windows operating systems.

The Certified for Windows logo issued for an application will indicate the oper-
ating system(s) that the application has been certified for.

NOTE Information on the Windows 2000 certification program can be found at
msdn.microsoft.com/certification/default.asp.

Additional resources for development and certification are available, as
described in the following sections.

Windows 2000 Readiness Program
The Windows 2000 Readiness Program is a free program from Microsoft offering
such technical benefits as free developer support and training opportunities to
help developers meet the Application Specification for Windows 2000.

NOTE Information on the Windows 2000 Readiness Program can be found at
msdnisv.microsoft.com/msdnisv/win2000/.

Appendix A • Windows 2000 Certification

2642appA.qxd 12/27/99 9:44 AM Page 2

http://www.sybex.com

3

Rational Windows 2000 TestFoundation
The Rational Windows 2000 TestFoundation is a free downloadable set of test
tools, including common tools, data, methods, and metrics created by Rational
Software to help developers introduce compliance testing early on in their appli-
cation development life cycle. To provide automated testing solutions, the Ratio-
nal Windows 2000 TestFoundation can be combined with Rational TeamTest.

Authoring Tools for Windows Installer
Service

Two installation authoring services are available: InstallShield for Windows
Installer (see Appendix B) and Wise for Windows Installer. Both allow setup
authors to build installations that use the Microsoft Windows installer service—a
requirement for Windows Certification. Both vendors provide tools and top-level
technical support to software developers creating installations for Windows 2000
applications.

NOTE Information about InstallShield for Windows Installer can be found at www
.installshield.com/iswi/.

NOTE Information about Wise for Windows Installer can be found at www
.wisesolutions.com/wfwi/.

Authoring Tools for Windows Installer Service

2642appA.qxd 12/27/99 9:44 AM Page 3

http://www.sybex.com

A P P E N D I X
B

Windows InstallShield

� How InstallShield Operates

� A Shortcut to Creating a Setup Project

� Finishing the Setup Project

� InstallShield’s Script Structure

� Building a Disk Image

� Limits and Shortcomings

B

2642appB.qxd 12/27/99 9:45 AM Page 1

http://www.sybex.com

2

Application installation has always been a special headache, both for the
application developer and for the prospective application users. Historically,
installation solutions have varied from complex utility scripts prompting users
for drive and directory information to equally complex instructions intended to
guide users through confusing choices, options, and requirements.

Functionally, few (if any) of these “solutions” have proved exceptionally satis-
factory and the need for a “better mousetrap” has been more than evident for
most of the history of the personal computer.

Today, as a very different solution, InstallShield for Microsoft Windows (dis-
tributed with Visual Studio 6.0) provides the means for creating a complete, semi-
automatic installation package for distributing both commercial and in-house
applications. InstallShield installation packages are customized for individual appli-
cations and can not only handle file transfer operations but also provide registry
entries and other special provisions.

In operation, InstallShield provides its own IDE together with guides to defin-
ing installation requirements—wizards, in effect, to walk you through the cre-
ation of a complete setup operation. The completed executable setups include
provisions for uninstalling applications, for making entries in the Start Programs
menu and for building disk images that are appropriate for the desired distribu-
tion media.

Using InstallShield, a complete installation package, including uninstall provi-
sions, can be created in a matter of minutes. Of course, exactly how much time is
required will depend on the complexity of your application package and how
ready your components are for packaging.

TIP While InstallShield for Microsoft Visual C++ 6 is a powerful 32-bit setup creation
application, it is also only a subset of the full features and power available in
InstallShield 5.1, Professional Edition.

How InstallShield Operates
InstallShield guides you through designing an application setup by organizing
applications as building blocks consisting of application files, file groups, compo-
nents, and not least, setup types.

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:45 AM Page 2

http://www.sybex.com

3

As a first step, application files are bundled into file groups that are then linked
into components and subcomponents. Finally, components are associated (as
appropriate) with setup types.

Once this is done, for installation, users simply select the components or sub-
components they wish to install without needing to worry about which specific
files they need to install or the directory structures needed.

Grouping Files
One of the primary tasks in setting up any application is transferring files from
the distribution media to the target system (nominally, but not always, a hard
drive). Normally, files can be grouped according to function, usage, or installation
location. For example, file groups could be application executables, data files,
help files and documentation, or system DLLs. Frequently, these groups may also
correspond to intended destination directories, but regardless of directory struc-
tures, any selection of files that have common characteristics can be defined as a
file group.

Other characteristics that could be applied to define groups are compressed/
uncompressed, international languages, locked/not locked, purpose/function,
shared/not shared, or supported operating system or system version. These
groups do not necessarily need to correspond to specific application installation
configurations but can simply be how you (as the setup author) view the applica-
tion files.

Component Organization
While file groups can represent the developer’s view of the application, compo-
nents and subcomponents should represent the client’s (user’s) view of the appli-
cation. That is, component organization is used to produce functional groups
that—unlike file groups—do mirror installation configurations.

If your setup is intended for a single application, then you will have only one
component group. Alternately, if your application is distributed in several ver-
sions—for example, for different operating system versions—then each version
could comprise a separate component. Or, of course, if your setup is for a product
suite, each separate product can be the basis for a separate component. For example,
office suites such as Corel’s or Microsoft’s are comprised of multiple applications
including a word processor, spreadsheet, presentation manager, and database,
among others.

How InstallShield Operates

2642appB.qxd 12/27/99 9:45 AM Page 3

http://www.sybex.com

4

While all of these applications are distributed in a single package, individual
users may wish to install only specific programs. Organizing these as compo-
nents for setup makes it possible to select which elements will be installed and
which will not.

Further, each component can consist of or include subcomponents representing
optional utilities, tutorial programs, support files, or supplementary data files.

Setup Types

While components provide a means for organizing selective installations, setup
types offer a different level of convenience. Simply offering the user access to
select or reject components for a custom installation is fine, but providing setup
types—predefined configuration sets—offers the convenience of not having to
work though complex choices. For example, offering the user a choice of the
setup types Normal, Minimal (for portable systems), and Custom allows the first
two types to satisfy 90% of the user installations, while the third (Custom) would
allow users with special requirements to tailor their installations however
they wish.

In this fashion, most users are saved from an unnecessary maze of decisions,
while those who do have custom needs are still free to pick and choose among
options.

Creating an Application Setup
The first step in creating an application setup using InstallShield is to take advan-
tage of InstallShield’s Project Wizard. After launching InstallShield (from the
VC++ Tools menu), select the Project Wizard icon (Figure B.1).

The Project Wizard can help you create an executable setup in fifteen minutes
or less. The Project Wizard creates a setup script that includes IDE settings for the
operating system, language selections, file groups, Components, and setup types.
Once created, the setup script can be modified as necessary.

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:45 AM Page 4

http://www.sybex.com

5

Basic Project Information

Initially, the Project Wizard will request some basic information about the appli-
cation (see Figure B.2).

F I G U R E B . 2 :

Application Information

F I G U R E B . 1 :

Starting the InstallShield
Project Wizard

How InstallShield Operates

2642appB.qxd 12/27/99 9:45 AM Page 5

http://www.sybex.com

6

The most essential items, of course, are the application name and the applica-
tion executable—in this example, the BatteryTest demo from Chapter 4.

Setup Dialogs

In the next step, the Project Wizard offers a series of dialog boxes that can be
included in the setup application. These consist of:

Welcome Message *

Software License Agreement *

Readme Information

User Information *

Choose Destination Location *

Setup Type *

Custom Setup *

Select Program Folder *

Start Copying Files

Setup Complete *

Asterisks (*) show dialogs that are selected by default, but the list can be modi-
fied as desired.

For the demo installation for the BatteryTest program, only the four dialogs
listed in boldface are used. This selection avoids displaying a license agreement
(since there is none), omits requesting user information and a serial/registration
number (unnecessary, see “Limits and Shortcomings”) and skips requesting a
setup type (there’s only one). Instead, the resulting product simply asks for a des-
tination location and program folder and performs the installation—which is all
that BatteryTest really requires.

Operating Systems

The Operating Systems screen in the Project Wizard offers a choice of showing
only the available platforms (that is, the platforms for which you have purchased
setup availability from InstallShield Corporation—in other words, the WinTel x86
platforms) or all platform types (includes WinNT MIPS and Alpha platforms).

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:45 AM Page 6

http://www.sybex.com

7

From the list, select the operating system(s) on which the application is designed
to perform.

WARNING Since 16-bit platforms such as Windows 3.1 do not support long filenames, if you
are targeting a 16-bit platform, avoid long filenames for application files.

In this example, the selected targets are Windows 95 and NT 3.51/4.0. (No
options for Windows 98 or Windows 2000 are included at present.)

Supported Languages

The Specify Languages screen offers a list of available languages. Select those lan-
guages that your application will be localized to support.

Setup Types

Project Wizard offers a list of seven basic setup types: Compact, Typical, Custom,
Network, Administrator, Network (Best Performance), and Network (Efficient
Space). Two or more setup types can be selected and each can be modified during
setup creation.

Alternately, if you do not choose to offer a choice of installation types—as, for
example, when you only have one installation option—click on a blank entry to
deselect all types.

Component List

The Components list offers four basic component types: Program Files, Example
Files, Help Files, and Shared DLLs. Existing component types can be deleted
from the list or additional component types can be added as needed. All compo-
nents will be modifiable at any point during setup creation.

File Groups

File groups are used to create logical sets of files that comprise an application. A
default set of five file groups is supplied: Program Executable Files, Program
DLLs, Example Files, Help Files, and Shared DLLs. (Note the close correspon-
dence between the file groups and the components list.)

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 7

http://www.sybex.com

8

Summary Panel

The Summary panel (see Figure B.3) shows the choices and settings made thus far.

Click the Finish button, and the Project Wizard will create the setup project and
open the Project workspace shown in Figure B.4.

A Shortcut to Creating a Setup Project
A shortcut to creating a setup project is also available. If you have your applica-
tion project open in Visual Studio (VC/C++), before you call InstallShield from
the Tools menu, you can simply select the project directly and skip many of the
preceding steps.

The downside, however, is that a variety of default settings are used and that
you have less freedom to customize the installation process. While the results are
still functional, the choices may or may not be entirely appropriate to your pro-
ject’s needs. The defaults will, however, automatically include both local and sys-
tem DLLs required for support as well as the application’s executable files.

F I G U R E B . 3 :

Project Summary

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 8

http://www.sybex.com

9

In either case, whether the shortcut or the full process is used, the finishing
steps (following) will still be required.

Finishing the Setup Project
At this point, InstallShield’s Project Wizard has created a basic script for the setup
project. There are, however, a few additional steps before the setup is complete:

• Assigning files to file groups

• Assigning file groups to component groups

• Adding the “your application” icon to the Start Programs menu

• Creating a disk image

Assigning Files to File Groups

To create the BatteryWatch setup, the BatteryTest.exe program needs to be
added to the Program Executable Files file group:

1. Select the File Groups pane tab (Figure B.4), then opening the Program Exe-
cutable Files folder icon and the Links subfolder.

F I G U R E B . 4 :

Assigning Files to File
Groups

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 9

http://www.sybex.com

10

2. In the File Group Links window, a right-click with the mouse brings up a
pop-up menu. From the menu, select Insert Files to open the Insert File
Links to FileGroup dialog box.

3. Use the file selection dialog box to locate and select all executable files that
will be installed as part of this project. For the demo application, the only
executable file is BatteryTest.exe. After selection, the files (and directory
information) appear in the File Group Links window.

In the example, since the BatteryTest application relies on two system DLLs—
MFC42.dll and MSVCRT.dll—these are added to the Shared DLLs link in the
same fashion.

Assigning File Groups to Components

The next step is to assign files—from the Program Executable Files and the
Shared DLLs file groups—to Program Executable and Shared DLLs components.
The process is similar to assigning files to file groups:

1. Select the Components pane tab and open the Program Files folder icon to
show the Component Properties window (see Figure B.5).

F I G U R E B . 5 :

The Component—Program
Executables window

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 10

http://www.sybex.com

11

2. In the Component Properties window, double-click on the Included File
Groups item (at the bottom of the list) to open the Included File Groups
property page.

3. Click the Add button to open the Add File Group dialog box and select Pro-
gram Executable Files from the File Group Name list.

Repeat as necessary for additional components—like, in the example, the
Shared DLLs component.

The properties for each component group can be modified as necessary, but the
default settings will serve adequately in most cases. When changes or modifica-
tions are necessary, simply double-click on any item in the Component Properties
to bring up a dialog box showing the options and offering an explanation for the
property.

Adding the Application Icon to the Start Programs Menu

Adding the application’s icon to the Start Programs menu requires changes to the
setup script. Begin by selecting the Scripts tab. In return, the Setup.rul file
should be visible in the Script Editor window. If it is not, select Setup.rul from
the Scripts files tree.

Next, scroll through the script to find the SetupFolders() function or use the
Find... function from the Edit menu to search for “function SetupFolders.” The
default function code should look something like this:

function SetupFolders()
NUMBER nResult;

begin
// TODO : Add all your folder (program group) along with
// shortcuts (program items)
//
// CreateProgramFolder, AddFolderIcon....
//
nResult = CreateShellObjects(“”);
return nResult;

end;

Notice that the script code looks something like a crossbreed between C/C++
and Pascal, or maybe with elements of Visual Basic thrown in. In one sense, it is

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 11

http://www.sybex.com

12

none of the above–but also appears to have elements of all of these. Still, the pro-
gramming required is relatively simple and online help is readily available.

The next couple of steps, for those who are unfamiliar with InstallShield’s
script language, require some explanation, not because the programming is par-
ticularly complex but simply because the tools and forms are unfamiliar.

The objective is to add code to the script that will place the application’s icon on
the Start Programs menu. This begins by declaring a string variable and then set-
ting the variable equal to the application path before passing the variable to the
LongPathToQuote and AddFolderIcon functions.

First, add the variable declaration to the function header, preceding the begin
keyword:

STRING svPath;

Next, following the TODO comment block, add a command to set the variable
(svPath) equal to the path to the application:

svPath = TARGETDIR ^ “Notepad.exe”;

On a blank line following this entry, right-click on the line to call a pop-up
menu and from the menu select Function Wizard. The Function Wizard allows
function calls to be pasted into the script and appears in Figure B.6.

F I G U R E B . 6 :

The Function Wizard

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 12

http://www.sybex.com

13

In the Function Wizard, select Long filename in the category list and in the
Function Name list select LongPathToQuote. This places double quotation marks
around long filenames as required by the AddFolderIcon function.

TIP The Function Wizard’s Help button can be used to learn more about any of the
functions.

Select the Next button to open step 2 (see Figure B.7) in the Function Wizard.

In this case, since the default parameters are fine and no modifications are
required, simply click the Finish button to paste the function into the script.

The next function to add to the script requires a bit more work. If necessary,
add new lines to the script, then right-click to bring up the menu, and again select
Function Wizard.

This time, select Shell from the Function Category list and then select
AddFolderIcon from the Function Name list. This is the function that will add an
icon to the specified folder.

F I G U R E B . 7 :

Modifying Function
Parameters

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 13

http://www.sybex.com

14

Click Next to continue with step 2 of the Function Wizard (see Figure B.8) and
modify the parameter list of the AddFolderIcon function.

While the Function Wizard has supplied arguments for the parameters, these
defaults are not appropriate for the present task and the supplied entries have
been changed, as shown in Figure B.8.

TIP The blank strings—shown by quotation marks (“”)—are required entries.

Click the Help button to display an explanation for the function and parameter
requirements. The nIcon entry, for example, is specified as 0, identifying the first
icon in the executable application.

After changing the parameter list, click Finish to paste the completed function
into the script.

When you are finished, the SetupFolders function should look something
like this:

function SetupFolders()
NUMBER nResult;
STRING svPath;

F I G U R E B . 8 :

Modifying the Parameter List

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 14

http://www.sybex.com

15

begin
// TODO : Add all your folder (program group) along with
// shortcuts (program items)
//
// CreateProgramFolder, AddFolderIcon....
//
svPath = TARGETDIR ^ “BatteryTest.exe”;
LongPathToQuote (svPath , TRUE);
AddFolderIcon (“” , “Battery Watch” , svPath , “” ,

“” , 0 , “” , REPLACE);
nResult = CreateShellObjects(“”);
return nResult;

end;

Finally, select Save from the File menu to save the setup project.

TIP Unlike Visual Basic, line breaks within function definitions (see the AddFolder-
Icon function above) are permitted. Instead, like C/C++ or Pascal, a semicolon
must be use to terminate each instruction.

InstallShield’s Script Structure
The structure of an InstallShield script, while not precisely like any other lan-
guage, is similar to C/C++, Pascal, or Visual Basic and you should be able to
puzzle out most of the requirements simply by reading the generated script sup-
plied by InstallShield’s Wizard. However, as a brief overview, the script begins
with #include statements—like those used in C/C++—for header files as:

// Include header file
#include “sdlang.h”
#include “sddialog.h”

Following the header declaration, the string defines also follow C/C++
format as:

///////////////// string defines //////////////////////

#define UNINST_LOGFILE_NAME “Uninst.isu”

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 15

http://www.sybex.com

16

The next block—installation declarations—offers a location to define any DLL
prototypes that you may be using to customize the installation process. Since the
BatteryTest demo is quite simple, no custom DLLs are invoked during installation,
and obviously no prototypes are needed.

///////////// installation declarations //////////////

// ——- DLL prototypes ——-

// your DLL prototypes

The next block in the code consists of function prototypes:

// —— script prototypes ——-

// generated
prototype ShowDialogs();
prototype MoveFileData();
prototype HandleMoveDataError(NUMBER);
...

Notice that the functions do not specify a return type although they may iden-
tify a parameter type. The generated script contains a number of prototypes for
functions that have been supplied by the Wizard. Any custom functions that you
choose to add to the setup script would also require prototype definitions follow-
ing the same format. Following the function prototypes, global variables are
defined:

BOOL bWinNT, bIsShellExplorer, bInstallAborted,
bIs32BitSetup;

STRING svDir;
STRING svName, svCompany, svSerial;
STRING szAppPath;
STRING svSetupType;
...

Here again, the format follows C/C++ conventions and should be relatively
familiar. Any custom (global) variables required by your installation would fol-
low the Wizard-supplied variables.

The main program, identified by the program label, consists of a linear process.
Remember that this is an installation script, not an application, and, since certain
tasks are expected to be performed in sequence (once only), there really isn’t any

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 16

http://www.sybex.com

17

need for elaborate branching or any special provisions to control the order of
execution.

program
Disable(BACKGROUND);
CheckRequirements();
SetupInstall();
SetupScreen();
if(ShowDialogs() < 0) goto end_install;
if(ProcessBeforeDataMove() < 0) goto end_install;
if(MoveFileData()< 0) goto end_install;
if(ProcessAfterDataMove() < 0) goto end_install;
if(SetupRegistry() < 0) goto end_install;
if(SetupFolders() < 0) goto end_install;

Notice that the first several functions called are not tested—the assumption is
simply that these will perform, but any results returned are irrelevant. Granted,
this does seem a little odd in the case of the CheckRequirements function, but
examination of the function proper will show that the function uses an Abort
operation, presumably to terminate the script if the system requirements aren’t
satisfied.

In any case, the last six procedures are tested for an error result (some negative
value) and branch to the end_install label if an error occurs. The end_install
label is a small curiosity of its own, since it is identified by a terminal colon (:)
rather than a leading colon.

end_install:
CleanUpInstall();

// If an unrecoverable error occurred, clean up the
// partial installation. Otherwise, exit normally.

if(bInstallAborted) then
abort;

endif;
endprogram

Also notice that this if statement uses an endif while the previous if state-
ments—which branched to a label—did not.

In any case, the overall structure of the program’s main routine remains essen-
tially linear. For the most part, the subroutines are also linear tasks, although
some of the subroutines can be less linear. The ShowDialogs subroutine, for

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 17

http://www.sybex.com

18

example, relies on a series of labels and if statements to potentially loop back
after each call to a subroutine.

function ShowDialogs()
NUMBER nResult;

begin
Dlg_Start: // beginning of dialogs label

Dlg_SdWelcome:
nResult = DialogShowSdWelcome();
if(nResult = BACK) goto Dlg_Start;

Dlg_SdAskDestPath:
nResult = DialogShowSdAskDestPath();
if(nResult = BACK) goto Dlg_SdWelcome;

Dlg_SdSelectFolder:
nResult = DialogShowSdSelectFolder();
if(nResult = BACK) goto Dlg_SdAskDestPath;

return 0;
end;

In this particular subroutine, each of the called functions displays a dialog with
[Next] and [Back] buttons, and if the [Back] button is selected, the subroutine
returns to the previous step.

Subroutine Structures

Like other elements in the InstallShield script, the structure of a subroutine is
both familiar and quite different from other programming languages.

First, the term function is required to identify the name as a function label.
Next, the label is followed by any local variable declarations before the keyword
begin identifies the start of the actual function.

function FunctionName()
NUMBER nResult;

begin

The body of the function can consist of a variety of operations and there’s really
no purpose in trying to delineate all of the possibilities here. You should note,
however, that a switch/case structure—similar to C/C++—is commonly used for
branching.

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 18

http://www.sybex.com

19

Also, without trying to examine all of the possibilities in detail, it appears likely
that any complex operation—such as verifying an encoded registration key—
might be easier to implement as a function supplied by an external DLL than as a
direct part of the script.

Regardless of the internal operations, each function has the potential of a
LONG value as a response code. Any other data types needed could be returned
as parameters, declared using a BYREF statement (similar to Visual Basic).

return nResult;
end;

Finally, each function is terminated by an end statement.

TIP All individual statements are terminated—C/C++ fashion—with a semicolon.

Functions that are called with arguments contain only the argument name
(local variable name) while the argument types have been previously declared in
the function prototype statement. Thus, a function with an argument would be
identified using the form:

function Function2Name(nArg)

Where further information is needed, the InstallShield IDE includes an exten-
sive online help library with function definitions and explanations, sample code,
and explanations of the various processes and structures that can be used.

Building a Disk Image
The final step (testing aside) in creating the application setup is to build a disk
image using the Media Build Wizard.

The Media Build Wizard is used to create disk image folders on a local or net-
work drive that contain all of the files needed for the application setup. A typical
disk image folder includes one (or more) .CAB files that contain the actual applica-
tion executable and associated files. In addition to the .CAB file, the folder will also
include the Setup.exe program and other files used during installation. To create
a distribution volume, the contents of the subdirectory are simply copied to a dis-
tributable media (or placed in a shared directory on a network).

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 19

http://www.sybex.com

20

NOTE A setup program for the demo program BatteryTest.exe is found on the CD
accompanying this book in the subdirectory \Appendix B\Battery Test
Install Disk. The files in this directory can be copied to a 3.5” disk, or the
Setup.exe program can be run directly from the CD.

To complete the task of creating a distributable application setup:

1. Run InstallShield, click the Media pane tab and then select the Media Build
Wizard icon. Initially, the Media Build Wizard will ask for a media name.
This can be any appropriate name such as “Battery Test Installation” or
“Floppy Disk Install.”

2. Media Build Wizard requests the media type. Options include 3.5” disks
(from 1.44MB to 4.0MB), 5.25” disks (1.2MB), CD-ROM (650MB), and install
from the Internet, as well as a custom size option.

3. After naming the media build and selecting the media type, Media Build
Wizard will ask for the Build Type, either Full or Quick. The Quick option is
used only for testing and the Full Build must be requested for distribution.
Also in this step, the Review Report Before Build checkbox is selected by
default. Clear the checkbox unless a preliminary report is desired.

4. While the Tag File dialog (Figure B.9) is used to identify each disk in a
multi-disk distribution set, the information supplied here is optional.

F I G U R E B . 9 :

The Tag File dialog

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 20

http://www.sybex.com

21

5. After confirming the supported platforms (operating systems and CPUs),
the Summary panel will offer a review of the choices made. You may click the
Back button repeatedly to step back through the Media Build Wizard
screens or click Finish to build a media distribution set.

When the build is completed, the new build will appear on the Media tree,
while the Media list will show the files included in the media build (Figure B.10).

Limits and Shortcomings
While InstallShield for Windows does produce a working setup program (using
the preceding instructions and steps), further refinements are also possible.

For one, the setup.bmp file used as a splash screen during setup is a default
sample, and should ideally be replaced by a custom bitmap that is appropriate
for your application.

Second, the license agreement is also a dummy and should be rewritten, as
appropriate, to satisfy your legal and corporate requirements.

Third, the default setup, when executed, includes provisions for a serial number.
While the default implementation will accept any entry as a valid serial num-
ber (or installation key), a more appropriate format would be to modify the setup
code to either omit this element or to make provisions for actual verification.

F I G U R E B . 1 0 :

The Completed Media Build

How InstallShield Operates

2642appB.qxd 12/27/99 9:46 AM Page 21

http://www.sybex.com

22

Last, there are a variety of other features that can be used (or ignored) to cus-
tomize the installation process as appropriate to your needs and requirements.

These brief caveats aside, one further curiosity, although not precisely a flaw, is
found after the setup program is exercised. This discrepancy was noted in the
Start menu where the installed application was correctly added, except that the
icon provided was the default Visual C/C++ icon, not the application icon.

Why this happens is uncertain, since the application itself does display the cor-
rect icon and since the icon appearing on the menu is not found in the applica-
tion. In any case, as this is a minor discrepancy, resolution and explanation are
left to the interested reader.

Appendix B • Windows InstallShield

2642appB.qxd 12/27/99 9:46 AM Page 22

http://www.sybex.com

	Mastering Windows 2000 Programming with Visual Basic C++
	Supplement 1: Message Handlers and the Microsoft Foundation Classes
	PainText versus PainText2: Conventional versus MFC Message Handling
	Screen-Recovery Operations
	The WM_PAINT Message
	The PAINTSTRUCT Structure
	Painting Operations

	Windows Font Metrics and Measurements
	Text Sizing
	Window Coordinates and Limits
	Outputting Text to a Window

	Scrollbar Operations
	Scrollbar Messages
	Scrollbar Ranges and Thumbpad Positions
	Scrollbar Message Handling

	Window Sizing and Resizing
	Size Message Handling
	Scrollbar Adjustments

	Simplified Operations with MFC
	Setup for CScrollView
	The OnDraw Method
	Differences in the Demos

	Supplement 2: Keyboards, Carets, and Characters
	The Evolution of Keyboard Character Sets and International Language Support
	Handling Keyboard Events
	Types of Keyboard-Event Messages
	Elements of Keyboard Messages
	The KeyCodes Demo: Deciphering Keyboard- Event Messages
	Ignoring Keyboard Messages
	Translating Character-Event Messages
	Using MFC to Handle Keyboard Messages

	Handling Virtual Keys
	Required Key Codes
	New Windows Keys
	Function Key and Other Special Key Codes
	The Editor Demo: Basic Keyboard Handling
	Getting Shift-State Data for Virtual Keys

	Handling Text Input
	Changing the Caret Type and Position
	Deleting the Character at the Caret Position
	Handling Carets for Variable-Width Fonts
	Handling WM_CHAR Messages

	Generating Event Messages
	Sending Messages to Applications
	Scrolling with Arrow Keys

	Supplement 3: Mouse Operations
	The Evolution of the Genus MusMechano
	Mouse Actions and Events
	Mouse-Event Messages
	Information in Mouse Messages
	The Mouse1 Demo: Tracking the Mouse

	The Mouse Cursor
	The Mouse2 Demo: Mouse Cursor Shapes

	The Mouse3 Demo: Hit Testing

	Supplement 4: Child Windows and Control Elements
	The Programmer and Child Window Controls
	Control Button Types
	Pushbutton Styles
	Checkbox Styles
	Radio Button Styles
	Special Controls and Modifiers

	The Button1 and Button2 Demos: Button Operations
	Using CreateWindow for Buttons
	Grouping Controls
	Controlling Button Communications: A Two- Way Channel
	Changing Button (Window) Labels

	A More Elaborate Version: Button3

	Supplement 5: An Introduction to Application Resources
	Advantages of the Windows Structural Approach
	Types of Resources
	Files and File Types
	Linking Resources
	Dynamic Link Libraries
	Header Files

	Using a Resource Editor
	Opening Project and Resource Files
	Adding and Editing Resource Elements
	Viewing and Changing Resource Identifiers
	Copying Resource Elements

	Supplement 6: Bitmaps, Toolbars, Icons, and Cursors
	Types of Image Resources
	Bitmap Images
	Toolbar Images
	Icon Images
	Cursor Images

	A Bitmap Editor
	Toolbar Resources
	Icon Resources
	Cursor Resources
	Cursor Elements
	Animated Cursors

	Two Icons for FileView

	Supplement 7: Dialog Box Resources
	A Dialog Box Editor
	Dialog Box Properties
	General Properties
	Dialog Box Styles
	More Dialog Box Style Options
	Extended Dialog Box Style Options

	Dialog Box Control Elements
	Button Types
	General Properties for Other Controls
	Text-Oriented Fields
	Range and Adjustment Controls
	Other Control Types

	Alignment, Positioning, and Sizing Tools
	Three Dialog Boxes for FileView1
	The About Dialog Box
	The File Type Dialog Box
	The File Selection Dialog Box

	Supplement 8: Menu Resources
	A Menu Editor
	Menu Size Limitations
	Text for Menu Entries
	Menu Hotkeys
	Menu Item Properties
	Adding Menus to Dialog Boxes
	Menu Scripts
	Two Menus for FileView

	Supplement 9: Accelerators, Strings, Header Files, and Version Information
	Accelerator Key Resources
	Accelerator Key Combinations
	Accelerator Key Scripts
	An Accelerator Editor

	String Resources
	String Resource Definition
	String Table Construction
	A String Table Editor

	Header File Resources
	An Editor for Headers
	The Version Resource

	A Header File for FileView1

	Supplement 10: Application Resources Working Together
	The FileView1 Demo: Using Application Resources
	WinMain Operations
	Dialog Box Handling
	Dialog Box Initialization
	Dialog Box Information Retrieval

	The FileView2 Demo: Using a Common Dialog Box
	A Pointer to the CFileDialog Class
	The Filter List
	The CFileDialog Instance

	Supplement 11: Colors and Color Palettes
	Windows Palettes
	Color Definitions
	The Standard Palette
	The Color1 Demo: Painting with the Standard Palette
	Types of RGB Color Specifications

	Dithered Colors
	The Color2 Demo: A Dithering Demonstration
	Characteristics of Dithered Colors

	Custom Colors
	The Color3 Demo: A Custom Color Palette
	Custom Brushes and Color Messages

	Color Drawing Modes
	Windows ROP2 Operations
	The PenDraw1 Demo: Demonstrating Drawing Modes

	Color to Gray-Scale
	Gray-Scale Palettes
	Gray Scales and Plaiding
	Gray Scale to Color Conversions

	Supplement 12: Drawing Tools
	Graphics Tools and Shapes
	Standard Shapes
	Logical Pens
	Logical Brushes
	The PenDraw2 Demo: Drawing Shapes

	Creating Business Graphs
	The BarGraph Demo: Building a Bar Graph
	The PieGraph Demo: Building a Pie Graph

	Drawing Polygon Figures
	Polygon Fill Modes
	The PenDraw3 Demo: Creating Polygons

	Supplement 13: Brushes and Bitmaps
	Bitmaps Defined as Arrays
	Array to Bitmap Conversion
	A Brush with the Bitmap Pattern
	Disadvantages of Bitmaps Defined as Arrays

	Resource Bitmaps
	The PenDraw4 Demo: Using Resource Bitmaps for Brushes

	Predefined Bitmaps
	Old-Style Bitmaps
	Functions for Old-Style Bitmaps
	Bitmap Image Data
	Old-Style Monochrome Bitmaps
	Old-Style Color Bitmaps

	Device-Independent Bitmaps
	The DIB File Format
	Bitmap Dimension Functions
	Device-Independent Bitmap Creation
	Stretching Bitmaps
	The PenDraw5 Demo: Displaying Device- Independent Bitmaps

	Supplement 14: Typefaces and Styles
	Text-Output Features
	Text Alignment
	Extended Text Output Options
	Tabbed Text
	Gray Text
	Multiple Text Lines
	Device-Context Elements

	Fonts and Typefaces
	A Brief History of Typefaces
	Windows Default Fonts
	Font Selection Using Logical Fonts
	The Fonts Demo: Demonstrating Logical Fonts

	Supplement 15: Graphics Utilities and File Operations
	A Screen-Capture Utility
	The Capture Demo: Capturing and Displaying Screen Images
	Screen-Capture Operations
	Clipboard-Capture Operations
	File-Capture Operations
	Bitmap Compression Formats

	Windows 98 Graphics File Operations
	File-Open Operations
	File-Write Operations
	File-Read Operations
	Overlapped-File Operations
	File-Size Reports
	File-Close Operations

	Image File Formats
	Paintbrush's PCX Format
	CompuServe's Graphics Interchange Format
	Tagged Image File Format
	Truevision's TARGA Format

	Techniques for Converting 24-Bit Color Images
	A Frequency-Ordered Palette
	A Distributed Palette

	Supplement 16: Graphics Selection Operations
	Area-Selection Tools
	Static Bitmap Area Selection
	Active Video Image Selection
	Area-Selection Tool Conventions

	The Target Demo: Selecting Parts of an Image
	Bitmap File Operations
	Mouse Responses
	Other Methods of Interest

	Supplement 17: Graphics Printing Operations
	Printer Operations
	Win.INI versus Up-to-Date Printer Information
	Printer Queries

	The GrayImage Demo: Sending a Bitmap to a Printer
	The Printer Context
	A Check for a Color or Monochrome Printer
	Image Gray-Scaling
	Improved Gray-Scale Printing

	Gray Images Printed in Color
	Color Images Printed in Color

	Supplement 18: Graphics Selection Operations
	Creating a Selection Tool
	Drawing an Overlay
	Active Video Image Selection
	Area Selection Conventions

	The Target Demo: Selecting Parts of an Image
	Opening a Bitmap File
	Responding to the Mouse
	Other Methods of Interest

	Summary

	Supplement 19: Interactive Images
	Complex Regions in Interactive Images
	Methods for Identifying Regions and Enclosures
	Identifying Regions by Color
	Using a Hidden Color Map
	Using the Drunkard's Walk Algorithm
	Using a Recursive Search

	The MapDemo Program: Identifying Event Locations in a Bitmap
	Color Matching
	Implementing the DrunkardÌs Walk Search
	Using a Hidden Map
	Using Direct Coordinate Searches

	Summary

	Supplement 20: Graphics Simulations
	Using Graphics in Simulations
	Creating a Dynamic (Memory) Cosmos
	The Forest Cosmos Size
	Rules of the Forest Cosmos
	Handling Boundary Problems: Creating a Closed, Unbounded Cosmos
	Using Colors in Simulations

	The Forest Demo: Operating the Simulation
	Defining the Color Palette
	Initiating the Cosmos
	Setting Variable Time for Events
	Forest Growth Simulation
	Forest Fire Simulation

	Simulation Design
	Simplification Choices
	Extending a Simulation
	Simulating Mechanical Systems
	Simulating Theoretical Systems

	Summary

	Supplement 21: Metafile Operations
	Metafile Uses
	Recording Metafiles
	Creating the Metafile Device Context
	Closing and Disposing of the Metafile

	Replaying Metafiles
	Providing a Mapping Mode and Extents
	Controlling the Image Position

	Metafiles as Disk Files
	Writing Metafiles to Disk Files
	Generating Temporary Files
	Deleting Temporary Files
	Accessing Temporary Metafiles

	Metafile Structures
	The Metafile Header Structure
	The Metafile Record Structure
	Sample Metafile Instructions

	Metafile Cautions
	Summary

	Supplement 22: Clipboard Data Transfers
	Clipboard Uses
	Clipboard Operations
	Clipboard Data Formats
	Accessing the Clipboard
	Retrieving Clipboard Data
	Restrictions on Clipboard Operations

	The Clipboard Demo: Reading and Writing Different Data Types
	Clipboard Text Transfers
	Bitmap Clipboard Transfers
	Metafile Clipboard Transfers

	Using Other Clipboard Formats
	Private Clipboard Formats
	Delayed Rendering
	User-Defined Private Formats

	Summary

	Supplement 23: OLE Client and Server Application Development
	Introducing OLE
	Application-Based versus Document-Based Environments
	Linking versus Embedding
	OLE Clients versus OLE Servers
	Object Classes and Verbs
	Inserting OLE Objects
	Storing Objects in Presentation and Native Data Formats

	The OLE Libraries
	Interacting through the OLE Libraries
	Choosing between the DDE and OLE Libraries

	Accessing OLE Information
	Selecting an OLE Server
	Registering an OLE Server
	Creating OLE Applications
	The OLE_Client Demo: Creating an OLE Client Application
	Client Support and Control Methods
	Creating an OLE Server
	The Parry Demo: A Simple OLE Application

	Summary

	Appendix A: Windows 2000 Certification
	Windows 2000 Readiness Program
	Rational Windows 2000 TestFoundation
	Authoring Tools for Windows Installer Service

	Appendix B: Windows InstallShield
	How InstallShield Operates
	Grouping Files
	Component Organization
	Creating an Application Setup
	A Shortcut to Creating a Setup Project
	Finishing the Setup Project
	InstallShield's Script Structure
	Building a Disk Image
	Limits and Shortcomings

	Exit

	Copyright ©2000 SYBEX Inc:
	, Alameda, CA: Copyright ©2000 SYBEX, Inc., Alameda, CA.

	www:
	sybex:
	com:

