
Bonus Content

We finish this book with three online chapters on building and consuming specialized services,
using .NET MAUI, and protecting your data and applications. The book closes with the
answers to the Test your knowledge sections from the end of each chapter. This PDF contains
all three online chapters and the appendix.

Chapter 18, Building and Consuming Specialized Services, introduces you to building services
using gRPC, implementing real-time communications between server and client using SignalR,
exposing an EF Core model using OData, and hosting functions in the cloud that respond to
triggers using Azure Functions.

Chapter 19, Building Mobile and Desktop Apps Using .NET MAUI, introduces you to building
cross-platform mobile and desktop apps for Android, iOS, macOS, and Windows. You will
learn the basics of XAML, which can be used to define the user interface for a graphical app.

Chapter 20, Protecting Your Data and Applications, is about protecting your data from being
viewed by malicious users using encryption and from being manipulated or corrupted using
hashing and signing. You will also learn about authentication and authorization to protect
applications from unauthorized users.

Appendix, Answers to the Test Your Knowledge Questions, has the answers to the test questions at
the end of each chapter.

[ii]

Table of Contents
Chapter 18: Building and Consuming Specialized Services 1

Understanding specialized service technologies 1
Understanding Windows Communication Foundation (WCF) 2

Exposing data as a web service using OData 2
Understanding OData 2
Building a web service that supports OData 3

Defining OData models for EF Core models 4
Testing the OData models 6

Creating and testing OData controllers 7
Testing OData controllers using REST Client 9
Querying OData models 10

Understanding OData operators 11
Understanding OData functions 11
Exploring OData queries 12

Logging OData requests 12
Versioning OData controllers 15
Enabling entity inserts using POST 17
Building a client for OData 18

Adding a services page to the Northwind MVC website 19
Exposing data as a service using GraphQL 21

Understanding GraphQL 21
Building a service that supports GraphQL 22
Defining GraphQL schema for Hello World 24
Defining GraphQL schema for EF Core models 26
Exploring GraphQL queries with Northwind 30
Understanding GraphQL mutations and subscriptions 32
Building a client for GraphQL 33

Implementing services using gRPC 36
Understanding gRPC 36
Building a gRPC service 36
Building a gRPC client 39
Testing a gRPC client to the gRPC service 40
Implementing a gRPC service for an EF Core model 41
Implementing a gRPC client for an EF Core model 43

Implementing real-time communication using SignalR 45
Understanding the history of real-time communication on the web 45

Understanding XMLHttpRequest 46

Table of Contents

[iii]

Understanding AJAX 46
Understanding WebSocket 46
Introducing SignalR 47
Designing method signatures 47

Building a live communication service using SignalR 48
Defining some shared models 48
Enabling a server-side SignalR hub 49
Adding the SignalR client-side JavaScript library 51
Adding a chat page to the Northwind MVC website 52

Testing the chat feature 55
Building a console app chat client 58

Implementing serverless services using Azure Functions 60
Understanding Azure Functions 61

Understanding Azure Functions triggers and bindings 61
Understanding Azure Functions versions and languages 62
Understanding Azure Functions hosting models 62

Setting up a local development environment for Azure Functions 63
Building an Azure Functions project for running locally 63

Using Visual Studio 2022 63
Using Visual Studio Code 64
Using the func CLI 65

Reviewing the project 66
Implementing the function 66
Testing the function 67
Publishing an Azure Functions project to the cloud 69

Using Visual Studio 2022 69
Cleaning up Azure resources 72

Understanding identity services 72
Summary of choices for specialized services 72
Practicing and exploring 73

Exercise 18.1 – Test your knowledge 73
Exercise 18.2 – Explore topics 74

Summary 74
Chapter 19: Building Mobile and Desktop Apps Using .NET MAUI 75

Understanding the .NET MAUI delay 76
Understanding XAML 77

Simplifying code using XAML 77
Choosing common controls 78
Understanding markup extensions 78

Understanding .NET MAUI 79
Development tools for mobile first, cloud first 79

Using Windows to create iOS and macOS apps 80
Understanding additional functionality 80

Understanding MVVM 80
Understanding the INotificationPropertyChanged interface 81
Understanding ObservableCollection 82
Understanding dependency services 82

Table of Contents

[iv]

Understanding .NET MAUI user interface components 83
Understanding the ContentPage view 83
Understanding the ListView control 84
Understanding the Entry and Editor controls 84

Understanding .NET MAUI handlers 84
Writing platform-specific code 84

Building mobile and desktop apps using .NET MAUI 85
Creating a virtual Android device for local app testing 85
Creating a .NET MAUI solution 86
Creating a view model with two-way data binding 88
Creating views for the list of customers and customer details 92
Implementing the customer list view 93
Implementing the customer detail view 97
Setting the main page for the mobile app 99
Testing the mobile app 99

Consuming a web service from a mobile app 101
Configuring the web service to allow insecure requests 102

Configuring the iOS app to allow insecure connections 102
Configuring the Android app to allow insecure connections 103

Getting customers from the web service 103
Practicing and exploring 105

Exercise 19.1 – Test your knowledge 105
Exercise 19.2 – Explore topics 105

Summary 105
Chapter 20: Protecting Your Data and Applications 107

Understanding the vocabulary of protection 108
Keys and key sizes 108
IVs and block sizes 109
Salts 109
Generating keys and IVs 110

Encrypting and decrypting data 110
Encrypting symmetrically with AES 111

Hashing data 116
Hashing with the commonly used SHA256 117

Signing data 121
Signing with SHA256 and RSA 122

Generating random numbers 124
Generating random numbers for games and similar apps 124
Generating random numbers for cryptography 125

Authenticating and authorizing users 126
Authentication and authorization mechanisms 127

Identifying a user 127
User membership 128

Implementing authentication and authorization 129
Protecting application functionality 132

Table of Contents

[v]

Real-world authentication and authorization 133
Practicing and exploring 134

Exercise 20.1 – Test your knowledge 134
Exercise 20.2 – Practice protecting data with encryption and hashing 134
Exercise 20.3 – Practice protecting data with decryption 135
Exercise 20.4 – Explore topics 135

Summary 135
Appendix: Answers to the Test Your Knowledge Questions 137

Chapter 1 – Hello, C#! Welcome, .NET! 137
Chapter 2 – Speaking C# 138

Exercise 2.1 – Test your knowledge 138
Exercise 2.2 – Test your knowledge of number types 139

Chapter 3 – Controlling the Flow and Converting Types 140
Exercise 3.1 – Test your knowledge 140
Exercise 3.2 – Explore loops and overflow 142
Exercise 3.5 – Test your knowledge of operators 142

Chapter 4 – Writing, Debugging, and Testing Functions 143
Chapter 5 – Building Your Own Types with Object-Oriented Programming 144
Chapter 6 – Implementing Interfaces and Inheriting Classes 145
Chapter 7 – Packaging and Distributing .NET Types 146
Chapter 8 – Working with Common .NET Types 148
Chapter 9 – Working with Files, Streams, and Serialization 149
Chapter 10 – Working with Data Using Entity Framework Core 150
Chapter 11 – Querying and Manipulating Data Using LINQ 152
Chapter 12 – Improving Performance and Scalability Using Multitasking 154
Chapter 13 – Practical Applications of C# and .NET 155
Chapter 14 – Building Websites Using ASP. NET Core Razor Pages 155
Chapter 15 – Building Websites Using the Model-View-Controller Pattern 158
Chapter 16 – Building and Consuming Web Services 160
Chapter 17 – Building User Interfaces Using Blazor 162
Chapter 18 – Building and Consuming Specialized Services 163
Chapter 19 – Building Mobile and Desktop Apps Using .NET MAUI 164
Chapter 20 – Protecting Your Data and Applications 166

[1]

18
Building and Consuming

Specialized Services
In this chapter, you will be introduced to the fundamentals of several service technologies that are
used in more specialized scenarios than a general-purpose web service. Once you understand the
concepts and benefits of each, then you can dig deeper into the ones that interest you most.

This chapter will cover the following topics:

• Understanding specialized service technologies
• Exposing data as a web service using OData
• Exposing data as a service using GraphQL
• Implementing services using gRPC
• Implementing real-time communication using SignalR
• Implementing serverless services using Azure Functions
• Understanding identity services
• Summary of choices for specialized services

Understanding specialized service technologies
ASP.NET Core Web API is often the best choice for implementing a general-purpose web
service, but it is not the only technology for implementing services or communicating between
components of a distributed application.

Although we will not cover these technologies in detail, you should be aware of what they can
do and when they should be used.

Building and Consuming Specialized Services

[2]

Understanding Windows Communication
Foundation (WCF)
In 2006, Microsoft released .NET Framework 3.0 with some major new frameworks, one of
which was Windows Communication Foundation (WCF). It abstracted the business logic
implementation of a service from the communication technology infrastructure so that you
could easily switch to an alternative in the future or even have multiple mechanisms to
communicate with the service.

WCF heavily uses XML configuration to declaratively define endpoints, including their
address, binding, and contract. This is known as the ABC of WCF endpoints. Once you
understand how to do this, WCF is a powerful yet flexible technology.

Microsoft decided not to officially port WCF to modern .NET, but there is a community-owned
OSS project named Core WCF managed by the .NET Foundation. If you need to migrate an
existing service from .NET Framework to modern .NET or build a client to a WCF service,
then you could use Core WCF. Be aware that it can never be a full port since parts of WCF are
Windows-specific.

Technologies like WCF allow for the building of distributed applications. A client application
can make remote procedure calls (RPCs) to a server application. Instead of using a port of
WCF to do this, we could use an alternative RPC technology like gRPC that is covered later in
this chapter.

Exposing data as a web service using OData
One of the most common uses of a web service is to expose a database to clients that do
not understand how to work with a native database. Another common use is to provide a
simplified or abstracted API that exposes only an authenticated interface to a subset of the data.

In Chapter 10, Working with Data Using Entity Framework Core, you learned how to create an EF
Core model to expose a database to any .NET app or website. But what about non-.NET apps
and websites? I know it's crazy to imagine, but not every developer uses .NET!

Luckily, all development platforms support HTTP so that they can call web services, and
ASP.NET Core has a package for making that easy and powerful using a standard named
OData.

Understanding OData
OData (Open Data Protocol) is an ISO/IEC approved OASIS standard that defines a set of best
practices for building and consuming RESTful APIs. Microsoft created it in 2007 and released
versions 1.0, 2.0, and 3.0 under their Microsoft Open Specification Promise. Version 4.0 was
then standardized at OASIS and released in 2014.

ASP.NET Core OData implements OData version 4.0.

Chapter 18

[3]

OData is based on HTTP and has multiple endpoints to support multiple versions and entity
sets.

Unlike traditional Web APIs where the service defines all the methods and what gets returned,
OData uses query strings for its queries that enable the client to have more control over what
is returned and minimizes round trips. For example, a client might only need two fields of
data, ProductName and Cost, and the related Supplier object, and only for products where
ProductName contains the word burger and the cost is less than 4.95, as shown in the following
request:

GET https://example.com/v1/products?$filter=contains(ProductName, 'burger') and
Cost lt 4.95&$orderby=Country,Cost&$select=ProductName,Cost&$expand=Supplier

Building a web service that supports OData
There is no dotnet new project template for ASP.NET Core OData, and it uses controller classes,
so we will use the Web API project template and then add package references for OData
support:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core Web API / webapi
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.OData
4. Other Visual Studio options: Authentication Type: None, Configure for

HTTPS: selected, Enable Docker: cleared, Enable OpenAPI support: selected.
In Visual Studio Code, select Northwind.OData as the active OmniSharp project.

2. Add a package reference for ASP.NET Core OData, as shown highlighted in the
following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.OData"
 Version="8.0.1" />
 <PackageReference Include="Swashbuckle.AspNetCore"
 Version="6.1.4" />
</ItemGroup>

3. Add a project reference to the Northwind database context project for either SQLite or
SQL Server, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->

Good Practice: The version numbers of the NuGet packages above are
likely to increase after the book is published. As a general guide, you
will want to use the latest package version.

Building and Consuming Specialized Services

[4]

 <ProjectReference Include=
"..\Northwind.Common.DataContext.Sqlite\Northwind.Common.DataContext.
Sqlite.csproj" />
</ItemGroup>

4. In the Northwind.OData folder, delete WeatherForecast.cs.
5. In the Controllers folder, delete WeatherForecastController.cs.
6. In Program.cs, configure UseUrls to specify port 5004 for HTTPS, as shown highlighted in

the following code:
var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls("https://localhost:5004");

7. Build the Northwind.OData project.

Defining OData models for EF Core models
The first task is to define what we want to expose as OData models in the web service. You
have complete control, so if you have an existing EF Core model, as we do for Northwind, you
do not have to expose all of it. You do not even have to use EF Core models. The data source
can be anything, although in this book we will only look at using it with EF Core because that is
the most common use for .NET developers.

Let's define two OData models: one to expose the Northwind product catalog, i.e. the categories
and products tables; and one to expose the customers, their orders, and related tables:

1. In Program.cs, import namespaces for working with OData and our EF Core model for
the Northwind database, as shown in the following code:

using Microsoft.AspNetCore.OData; // AddOData extension method
using Microsoft.OData.Edm; // IEdmModel
using Microsoft.OData.ModelBuilder; // ODataConventionModelBuilder
using Packt.Shared; // NorthwindContext and entity models

2. At the bottom of Program.cs, add a method to define and return an OData model for
the Northwind catalog that will only expose the entity sets, i.e. tables for Categories,
Products, and Suppliers, as shown in the following code:

IEdmModel GetEdmModelForCatalog()
{
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Category>("Categories");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Supplier>("Suppliers");
 return builder.GetEdmModel();
}

Chapter 18

[5]

3. Add a method to define an OData model for the Northwind customer orders, and note
that the same entity set can appear in multiple OData models like Products does, as
shown in the following code:

IEdmModel GetEdmModelForOrderSystem()
{
 ODataConventionModelBuilder builder = new();
 builder.EntitySet<Customer>("Customers");
 builder.EntitySet<Order>("Orders");
 builder.EntitySet<Employee>("Employees");
 builder.EntitySet<Product>("Products");
 builder.EntitySet<Shipper>("Shippers");
 return builder.GetEdmModel();
}

4. In the services configuration section, after the call to AddControllers, chain a call to
the AddOData extension method to define two OData models and enable features like
projection, filtering, and sorting, as shown in the following code:

builder.Services.AddControllers()
 .AddOData(options => options
 // register OData models including multiple versions
 .AddRouteComponents(routePrefix: "catalog",
 model: GetEdmModelForCatalog())
 .AddRouteComponents(routePrefix: "ordersystem",
 model: GetEdmModelForOrderSystem())

 // enable query options
 .Select() // enable $select for projection
 .Expand() // enable $expand to navigate to related entities
 .Filter() // enable $filter
 .OrderBy() // enable $orderby
 .SetMaxTop(100) // enable $top
 .Count() // enable $count
);

5. Add statements before the call to AddControllers, to register the Northwind database
context, as shown in the following code:

builder.Services.AddNorthwindContext();

6. In the Properties folder, open launchSettings.json.
7. In the Northwind.OData profile, modify the applicationUrl to use port 5004, as shown

in the following markup:

"applicationUrl": "https://localhost:5004",

Building and Consuming Specialized Services

[6]

Testing the OData models
Now we can check that the OData models have been defined correctly:

1. Start the Northwind.OData web service.
2. Start Chrome.
3. Navigate to https://localhost:5004/swagger and note the Northwind.OData v1 service

is documented.
4. In the Metadata section, click GET /catalog, click Try it out, click Execute, and note the

response body that shows the names and URLs of the three entity sets in the catalog
OData model, as shown in the following output:

{
 "@odata.context": "https://localhost:5004/catalog/$metadata",
 "value": [
 {
 "name": "Categories",
 "kind": "EntitySet",
 "url": "Categories"
 },
 {
 "name": "Products",
 "kind": "EntitySet",
 "url": "Products"
 },
 {
 "name": "Suppliers",
 "kind": "EntitySet",
 "url": "Suppliers"
 }
]
}

5. Click GET /catalog to collapse that section.
6. Click GET /catalog/$metadata, click Try it out, click Execute, and note the model

describes entities like Category in detail with properties and keys, including navigation
properties for the products in each category, as shown in Figure 18.1:

Chapter 18

[7]

Figure 18.1: OData model metadata for the Northwind catalog

7. Click GET /catalog/$metadata to collapse that section.
8. Close Chrome and shut down the web server.

Creating and testing OData controllers
Next, we must create OData controllers, one for each type of entity, to retrieve data:

1. In the Controllers folder, add an empty controller class named CategoriesController.
2. Modify its contents to inherit from ODataController, get an instance of the Northwind

database context using constructor parameter injection, and define two Get methods
to retrieve all categories or one category using a unique key, as shown in the following
code:

using Microsoft.AspNetCore.Mvc; // IActionResult
using Microsoft.AspNetCore.OData.Query; // [EnableQuery]
using Microsoft.AspNetCore.OData.Routing.Controllers; // ODataController
using Packt.Shared; // NorthwindContext

namespace Northwind.OData.Controllers;

Building and Consuming Specialized Services

[8]

public class CategoriesController : ODataController
{
 private readonly NorthwindContext db;

 public CategoriesController(NorthwindContext db)
 {
 this.db = db;
 }

 [EnableQuery]
 public IActionResult Get()
 {
 return Ok(db.Categories);
 }

 [EnableQuery]
 public IActionResult Get(int key)
 {
 return Ok(db.Categories.Find(key));
 }
}

3. Repeat the above step for Products and Suppliers. (I will leave it to you to do the same
for the other entities to enable the order system OData model if you choose. Note that
CustomerId is a string instead of an integer.)

4. Start the Northwind.OData web service.
5. Start Chrome.
6. Navigate to https://localhost:5004/swagger and note the Categories, Products, and

Suppliers entity sets are now usable because you created OData controllers for them.
7. Click GET /catalog/Categories, click Try it out, click Execute, and note the response

body that shows a JSON document containing all categories in the entity set, as
partially shown in the following output:

{
 "@odata.context": "https://localhost:5004/catalog/$metadata#Categories",
 "value": [
 {
 "CategoryId": 1,
 "CategoryName": "Beverages",
 "Description": "Soft drinks, coffees, teas, beers, and ales",
 "Picture": null
 },
 {
 "CategoryId": 2,

Chapter 18

[9]

 "CategoryName": "Condiments",
 "Description": "Sweet and savory sauces, relishes, spreads, and
seasonings",
 "Picture": null
 },
 ...
]
}

8. Close Chrome and shut down the web server.

Testing OData controllers using REST Client
Using the Swagger user interface to test OData controllers can quickly get clumsy. A better tool
is the Visual Studio Code extension named REST Client:

1. If you have not already installed REST Client by Huachao Mao (humao.rest-client),
then install it in Visual Studio Code now.

2. In your preferred code editor, start the Northwind.OData project web service.
3. In Visual Studio Code, in the PracticalApps folder, if it does not already exist, create a

RestClientTests folder, and then open the folder.
4. In the RestClientTests folder, create a file named odata-catalog.http and modify its

contents to contain a request to get all categories, as shown in the following code:
GET https://localhost:5004/catalog/categories/ HTTP/1.1

5. Click Send Request, and note the response is the same as what was returned by
Swagger, a JSON document containing all categories.

6. In odata-catalog.http, add more requests separated by ###, as shown in the following
table:

Request Response
https://localhost:5004/catalog/
categories(3)

{
 "@odata.context":
"https://localhost:5004/catalog/$metadata#Categ
ories/$entity",
 "CategoryId":3,
 "CategoryName":"Confections",
 "Description":"Desserts, candies, and sweet
breads",
 "Picture":null
}

https://localhost:5004/catalog/
categories/3

Same as above.

https://localhost:5004/catalog/
categories/$count

8

Building and Consuming Specialized Services

[10]

https://localhost:5004/catalog/
products

JSON document containing all products.

https://localhost:5004/catalog/
products/$count

77

https://localhost:5004/catalog/
products(2)

{
 "@odata.context": "https://localhost:5004/cat
alog/$metadata#Products/$entity",
 "ProductId": 2,
 "ProductName": "Chang",
 "SupplierId": 1,
 "CategoryId": 1,
 "QuantityPerUnit": "24 - 12 oz bottles",
 "UnitPrice": 19,
 "UnitsInStock": 17,
 "UnitsOnOrder": 40,
 "ReorderLevel": 25,
 "Discontinued": false
}

https://localhost:5004/catalog/
suppliers

JSON document containing all suppliers.

https://localhost:5004/catalog/
suppliers/$count

29

Querying OData models
To execute arbitrary queries against an OData model, we earlier enabled selecting, filtering, and
ordering. One of the benefits of OData is that it defines standard query options, as shown in the
following table:

Option Description Example
$select Selects properties for each entity. $select=CategoryId,CategoryName
$expand Selects related entities via navigation

properties.
$expand=Products

$filter The expression is evaluated for each
resource, and only entities where the
expression is true are included in the
response.

$filter=startswith(ProductName,'ch')
or (UnitPrice gt 50)

$orderby Sorts the entities by the properties listed
in ascending (default) or descending
order.

$orderby=UnitPrice desc,ProductName

$skip

$top

Skips the specified number of items.
Takes the specified number of items.

$skip=40&$take=10

For performance reasons, batching with $skip and $top is disabled by default.

Chapter 18

[11]

Understanding OData operators
OData has operators for use with the $filter option, as shown in the following table:

Operator Description
eq Equals.
ne Not equals.
lt Less than.
gt Greater than.
le Less than or equal to.
ge Greater than or equal to.
and And.
or Or.
not Not.
add Arithmetic addition for numbers and date/time values.
sub Arithmetic subtraction for numbers and date/time values.
mul Arithmetic multiplication for numbers.
div Arithmetic division for numbers.
mod Arithmetic modulus division for numbers.

Understanding OData functions
OData has functions for use with the $filter option, as shown in the following table:

Operator Description
startswith(property, 'value') Text values that start with the specified value.
endswith(property, 'value') Text values that end with the specified value.
concat(property, 'value') Concatenate two text values.
contains(property, 'value') Text values that contain the specified value.
indexof(property, 'value') Returns the position of a text value.
length(property) Returns the length of a text value.
substring Extracts a substring from a text value.
tolower Converts to lowercase.
toupper Converts to uppercase.
trim Trims whitespace before and after text value.
now The current date and time.
date, day, month, year Extracts date components.
time, hour, minute, second Extracts time components.

Building and Consuming Specialized Services

[12]

Exploring OData queries
Let's experiment with some OData queries:

1. In the RestClientTests folder, create a file named odata-catalog-queries.http, and
modify its contents to contain a request to get all categories, as shown in the following
code:

GET https://localhost:5004/catalog/categories/
 ?$select=CategoryId,CategoryName

2. Click Send Request and note the response – a JSON document containing all categories
but only the CategoryId and CategoryName properties.

3. In odata-catalog-queries.http, add a request to get products with names that start
with "Ch," like Chai and Chef Anton's Gumbo Mix, or have a unit price of more than 50,
like Mishi Kobe Niku or Sir Rodney's Marmalade, as shown in the following request:

GET https://localhost:5004/catalog/products/
 ?$filter=startswith(ProductName,'Ch') or (UnitPrice gt 50)

4. In odata-catalog-queries.http, add a request to get products sorted by price, with the
most expensive at the top, and then sorted by product name, and only include the ID,
name, and price properties, as shown in the following request:

GET https://localhost:5004/catalog/products/
 ?$orderby=UnitPrice desc,ProductName
 &$select=ProductId,ProductName,UnitPrice

5. In odata-catalog-queries.http, add a request to get categories and their related
products, as shown in the following request:

GET https://localhost:5004/catalog/categories/
 ?$select=CategoryId,CategoryName
 &$expand=Products

Logging OData requests
How does OData querying work? Let's find out by adding logging to the Northwind database
context to see the actual SQL statements that are executed:

1. In the Northwind.Common.DataContext.Sqlite (and SqlServer) project, add a file named
ConsoleLogger.cs.

2. Modify the file to define three classes, one to implement ILoggerFactory, one to
implement ILoggerProvider, and one to implement ILogger, as shown in the following
code:

using Microsoft.Extensions.Logging;

using static System.Console;

Chapter 18

[13]

namespace Packt.Shared;

public class ConsoleLoggerFactory : ILoggerFactory
{
 public void AddProvider(ILoggerProvider provider) { }

 public ILogger CreateLogger(string categoryName)
 {
 return new ConsoleLogger();
 }

 public void Dispose() { }
}

public class ConsoleLogger : ILogger
{
 public IDisposable BeginScope<TState>(TState state)
 {
 return null;
 }

 public bool IsEnabled(LogLevel logLevel)
 {
 switch(logLevel)
 {
 case LogLevel.Trace:
 case LogLevel.Information:
 case LogLevel.None:
 return false;
 case LogLevel.Debug:
 case LogLevel.Warning:
 case LogLevel.Error:
 case LogLevel.Critical:
 default:
 return true;
 };
 }

 public void Log<TState>(LogLevel logLevel,
 EventId eventId, TState state, Exception exception,
 Func<TState, Exception, string> formatter)
 {
 if (eventId.Id == 20100) // execute SQL statement
 {

Building and Consuming Specialized Services

[14]

 Write($"Level: {logLevel}, Event Id: {eventId.Id}");

 // only output the state or exception if it exists
 if (state != null)
 {
 Write($", State: {state}");
 }

 if (exception != null)
 {
 Write($", Exception: {exception.Message}");
 }
 WriteLine();
 }
 }
}

3. In NorthwindContextExtensions.cs, in the AddNorthwindContext method, after the call
to UseSqlServer or UseSqlite, call UseLoggerFactory to register your custom console
logger, as shown highlighted in the following code:

services.AddDbContext<NorthwindContext>(options =>
 options.UseSqlServer(connectionString) // or UseSqlite(...)
 .UseLoggerFactory(new ConsoleLoggerFactory())
);

4. Start the Northwind.OData web service.
5. Start Chrome.
6. Navigate to https://localhost:5004/catalog/products/?$filter=startswith(Product

Name,'Ch') or (UnitPrice gt 50)&$select=ProductId,ProductName,UnitPrice.
7. In Chrome, note the result, as shown in the following output:

{"@odata.context":"https://localhost:5004/catalog/$metadata#Products(Prod
uctId,ProductName,UnitPrice)","value":[{"ProductId":1,"ProductName":"Chai
","UnitPrice":18.0000},{"ProductId":2,"ProductName":"Chang","UnitPrice":1
9.0000},{"ProductId":4,"ProductName":"Chef Anton's Cajun Seasoning","Uni
tPrice":22.0000},{"ProductId":5,"ProductName":"Chef Anton's Gumbo Mix","
UnitPrice":21.3500},{"ProductId":9,"ProductName":"Mishi Kobe Niku","Unit
Price":97.0000},{"ProductId":18,"ProductName":"Carnarvon Tigers","UnitPr
ice":62.5000},{"ProductId":20,"ProductName":"Sir Rodney's Marmalade","Un
itPrice":81.0000},{"ProductId":29,"ProductName":"Th\u00fcringer Rostbrat
wurst","UnitPrice":123.7900},{"ProductId":38,"ProductName":"C\u00f4te de
Blaye","UnitPrice":263.5000},{"ProductId":39,"ProductName":"Chartreuse ver
te","UnitPrice":18.0000},{"ProductId":48,"ProductName":"Chocolade","UnitPr
ice":12.7500},{"ProductId":51,"ProductName":"Manjimup Dried Apples","UnitP
rice":53.0000},{"ProductId":59,"ProductName":"Raclette Courdavault","UnitP
rice":55.0000}]}

Chapter 18

[15]

8. At the command prompt or terminal, note the logged SQL statement, for example, if
using the SQL Server database provider, as shown in the following output:

Level: Debug, Event Id: 20100, State: Executing DbCommand [Parameters=[@__
TypedProperty_0='?' (Size = 4000), @__TypedProperty_1='?' (DbType =
Decimal)], CommandType='Text', CommandTimeout='30']
SELECT [p].[ProductId], [p].[ProductName], [p].[UnitPrice]
FROM [Products] AS [p]
WHERE ((@__TypedProperty_0 = N'') OR (LEFT([p].[ProductName], LEN(@__
TypedProperty_0)) = @__TypedProperty_0)) OR ([p].[UnitPrice] > @__
TypedProperty_1)

Versioning OData controllers
It is good practice to plan for future versions of your OData models that might have different
schemas and behavior.

To maintain backwards compatibility, you can use OData URL prefixes to specify a version
number:

1. In the Northwind.OData project, in Program.cs, in the services configuration section,
after adding the two OData models for catalog and ordersystem, add a third OData
model that has a version number, as shown highlighted in the following code:

.AddRouteComponents(routePrefix: "catalog",
 model: GetEdmModelForCatalog())
.AddRouteComponents(routePrefix: "ordersystem",
 model: GetEdmModelForOrderSystem())
.AddRouteComponents(routePrefix: "v{version}",
 model: GetEdmModelForCatalog())

2. In ProductsController.cs, statically import Console and then modify the Get methods
to add a string parameter named version, and use it to change the behavior of the
methods if version 2 is specified in a request, as shown highlighted in the following
code:

[EnableQuery]
public IActionResult Get(string version = "1")
{

It might look like the Get action method on the ProductsController returns
the entire Products table, but it actually returns an IQueryable<Products>
object. In other words, it returns a LINQ query, not yet the results. We
decorated the Get action method with the [EnableQuery] attribute. This
enables OData to extend the LINQ query with filters, projections, sorting,
and so on, and only then does it execute the query, serialize the results, and
return them to the client. This makes OData services as flexible and efficient as
possible.

Building and Consuming Specialized Services

[16]

 WriteLine($"ProductsController version {version}.");
 return Ok(db.Products);
}

[EnableQuery]
public IActionResult Get(int key, string version = "1")
{
 WriteLine($"ProductsController version {version}.");
 Product? p = db.Products.Find(key);
 if (p is null)
 {
 return NotFound($"Product with id {key} not found.");
 }
 if (version == "2")
 {
 p.ProductName += " version 2.0";
 }
 return Ok(p);
}

3. In your preferred code editor, start the Northwind.OData project web service.
4. In Visual Studio Code, in odata-catalog-queries.http, add a request to get the product

with ID 50 using the v2 OData model, as shown in the following code:
GET https://localhost:5004/v2/products(50)

5. Click Send Request, and note the response is the product with its name appended with
version 2.0, as shown highlighted in the following output:

{
 "@odata.context": "https://localhost:5004/
v2/$metadata#Products/$entity",
 "ProductId": 50,
 "ProductName": "Valkoinen suklaa version 2.0",
 "SupplierId": 23,
 "CategoryId": 3,
 "QuantityPerUnit": "12 - 100 g bars",
 "UnitPrice": 16.2500,
 "UnitsInStock": 65,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

Chapter 18

[17]

Enabling entity inserts using POST
The most common use for OData is to provide a Web API that supports custom queries. You
might also want to support CRUD operations like inserts.

1. In ProductsController.cs, add an action method to respond to POST requests, as shown
in the following code:

public IActionResult Post([FromBody] Product product)
{
 db.Products.Add(product);
 db.SaveChanges();
 return Created(product);
}

2. Start the web service.
3. Create a file named odata-catalog-insert-product.http, as shown in the following

HTTP request:
POST https://localhost:5004/catalog/products
Content-Type: application/json
Content-Length: 234

{
 "ProductName": "Impossible Burger",
 "SupplierId": 7,
 "CategoryId": 6,
 "QuantityPerUnit": "Pack of 4",
 "UnitPrice": 40.25,
 "UnitsInStock": 50,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

4. Click Send Request.
5. Note the successful response, as shown in the following markup:

HTTP/1.1 201 Created
Connection: close
Content-Type: application/json; odata.metadata=minimal; odata.
streaming=true
Date: Sat, 17 Jul 2021 12:01:57 GMT
Server: Kestrel
Location: https://localhost:5004/catalog/Products(80)
Transfer-Encoding: chunked

Building and Consuming Specialized Services

[18]

OData-Version: 4.0

{
 "@odata.context": "https://localhost:5004/catalog/$metadata#Products/$e
ntity",
 "ProductId": 78,
 "ProductName": "Impossible Burger",
 "SupplierId": 7,
 "CategoryId": 6,
 "QuantityPerUnit": "Pack of 4",
 "UnitPrice": 40.25,
 "UnitsInStock": 50,
 "UnitsOnOrder": 0,
 "ReorderLevel": 30,
 "Discontinued": false
}

Building a client for OData
In this section, let's see how a client might call the OData web service.

If we want to query the OData service for products that start with the letters Cha, then we
would need to send a GET request with a relative URL path similar to the following:

catalog/products/?$filter=startswith(ProductName, 'Cha')&$select=ProductId,Produ
ctName,UnitPrice

OData returns data in a JSON document with a property named value that contains the
resulting products as an array, as shown in the following JSON document:

{
 "@odata.context": "https://localhost:5004/catalog/$metadata#Products",
 "value": [
 {
 "ProductId": 1,
 "ProductName": "Chai",
 "SupplierId": 1,
 "CategoryId": 1,
 "QuantityPerUnit": "10 boxes x 20 bags",
 "UnitPrice": 18,
 "UnitsInStock": 39,
 "UnitsOnOrder": 0,
 "ReorderLevel": 10,
 "Discontinued": false
 },

Chapter 18

[19]

We will create a model class to make it easy to deserialize the response:

1. In the Northwind.Mvc project, in the Models folder, add a new class file named
ODataProducts.cs, as shown in the following code:

using Packt.Shared; // Product

namespace Northwind.Mvc.Models;

public class ODataProducts
{
 public Product[]? Value { get; set; }
}

2. In Program.cs, add statements to register an HTTP client for the OData service, as
shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.OData",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5004/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

Adding a services page to the Northwind MVC website
Next, we will create a services page:

1. In the Controllers folder, open HomeController.cs, and add a new action method for
services that calls the OData service to get products that start with Cha and stores the
result in the ViewData dictionary, as shown in the following code:

public async Task<IActionResult> Services()
{
 try
 {
 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.OData");

 HttpRequestMessage request = new(
 method: HttpMethod.Get, requestUri:
 "catalog/products/?$filter=startswith(ProductName, 'Cha')&$select=Pr
oductId,ProductName,UnitPrice");

 HttpResponseMessage response = await client.SendAsync(request);

Building and Consuming Specialized Services

[20]

 ViewData["productsCha"] = (await response.Content
 .ReadFromJsonAsync<ODataProducts>())?.Value;
 }
 catch (Exception ex)
 {
 _logger.LogWarning($"Northwind.OData service exception: {ex.
Message}");
 }

 return View();
}

2. In Views/Shared, in _Layout.cshtml, add a new nav item after the Privacy nav item that
goes to a services page, as shown in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Services">Services

3. In Views/Home, add a new empty view named Services.cshtml and modify its contents
to render the products, as shown in the following markup:

@using Packt.Shared
@using Northwind.Common
@{
 ViewData["Title"] = "Services";
 Product[]? products = ViewData["productsCha"] as Product[];
}
<div class="text-center">
 <h1 class="display-4">@ViewData["Title"]</h1>
 @if (ViewData["productsCha"] != null)
 {
 <h2>Products that start with Cha using OData</h2>
 <p>
 @if (products is null)
 {
 No products found.
 }
 else
 {
 @foreach (Product p in products)
 {

 @p.ProductId
 @p.ProductName

Chapter 18

[21]

 @(p.UnitPrice is null ? "" : p.UnitPrice.Value.ToString("c"))

 }
 }
 </p>
 }
</div>

4. Optionally, start the Minimal.Web project without debugging. (If you are using Visual
Studio 2022, select the project in Solution Explorer to make it the current selection and
then navigate to Debug | Start Without Debugging.)

5. Start the Northwind.OData project without debugging.
6. Start the Northwind.Mvc project without debugging.
7. Start Chrome.
8. Navigate to the Services page by clicking the menu or navigating to the following link:

https://localhost:5001/home/services.
9. Note three products are returned from the OData service, as shown in Figure 18.2:

Figure 18.2: Three product names start with Cha returned from the OData service

10. Close Chrome and shut down all the web servers.

Exposing data as a service using GraphQL
If you would prefer to use more modern technology for exposing your data as a service, then
an alternative to OData is GraphQL.

Understanding GraphQL
Like OData, GraphQL is a standard for describing your data and then querying it that gives
the client control over exactly what they need. It was developed internally by Facebook in 2012
before being open sourced in 2015 and is now managed by the GraphQL Foundation.

Building and Consuming Specialized Services

[22]

Some benefits of GraphQL over OData are that it does not require HTTP because it is transport-
agnostic, so you could use alternative transport protocols like WebSockets, and GraphQL has a
single endpoint, usually simply /graphql.

GraphQL uses its own document format for its queries, which is a bit like JSON, but GraphQL
queries do not require commas between field names, as shown in the following query:

{
 product (productId: 23) {
 productId
 productName
 cost
 supplier {
 companyName
 country
 }
 }
}

Building a service that supports GraphQL
There is no dotnet new project template for GraphQL so we will use the Web API project
template (even though GraphQL does not have to be hosted in a web service) and then add
package references for GraphQL support:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core Web API / webapi
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.GraphQL
4. Other Visual Studio options: Authentication Type: None, Configure for

HTTPS: selected, Enable Docker: cleared, Enable OpenAPI support: cleared.

2. In Visual Studio Code, select Northwind.GraphQL as the active OmniSharp project.

The official media type for GraphQL query documents is application/
graphql.

Good Practice: Since GraphQL is not a traditional Web API service,
Swagger should not be enabled. If you are using the command line,
then use the following switch: dotnet new webapi --no-openapi.

Chapter 18

[23]

3. Add package references for the core GraphQL server-side components and the
GraphQL playground user interface, as shown in the following markup:

<ItemGroup>
 <PackageReference
 Include="GraphQL.Server.Transports.AspNetCore"
 Version="5.0.2" />
 <PackageReference
 Include="GraphQL.Server.Transports.AspNetCore.SystemTextJson"
 Version="5.0.2" />
 <PackageReference
 Include="GraphQL.Server.Ui.Playground"
 Version="5.0.2" />
</ItemGroup>

4. Add a project reference to the Northwind database context project for either SQLite or
SQL Server, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include=
"..\Northwind.Common.DataContext.Sqlite\Northwind.Common.DataContext.
Sqlite.csproj" />
</ItemGroup>

5. In the Northwind.GraphQL folder, delete WeatherForecast.cs.
6. In the Controllers folder, delete WeatherForecastController.cs.
7. Delete the Controllers folder.
8. In Program.cs, add an extension method call to UseUrls to specify port 5005 for HTTPS,

as shown highlighted in the following code:
var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls("https://localhost:5005/");
9. In the Properties folder, open launchSettings.json and modify the launchUrl and

applicationUrl settings, as shown highlighted in the following markup:
"profiles": {
 "Northwind.GraphQL": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": true,

Good Practice: Remove the GraphQL playground user interface
package before deploying the service into production. Although you
could only enable the playground in development mode, any unused
packages increase the potential attack surface of your project.

Building and Consuming Specialized Services

[24]

 "launchUrl": "ui/playground",
 "applicationUrl": "https://localhost:5005",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 },

10. Build the Northwind.GraphQL project.

Defining GraphQL schema for Hello World
The first task is to define what we want to expose as GraphQL models in the web service.

Let's define a GraphQL model for the most basic Hello World example:

1. In the Northwind.GraphQL project/folder, add a class file named GreetQuery.cs.
2. Modify the class to define an object graph type named greet that responds with the

plain text "Hello, World!", as shown in the following code:
using GraphQL.Types; // ObjectGraphType

namespace Northwind.GraphQL;

public class GreetQuery : ObjectGraphType
{
 public GreetQuery()
 {
 Field<StringGraphType>(name: "greet",
 description: "A query type that greets the world.",
 resolve: context => "Hello, World!");
 }
}

3. In the Northwind.GraphQL project/folder, add a class file named NorthwindSchema.cs.
4. Modify the class to define an object graph schema that registers the GreetQuery class as

the only type of query, as shown in the following code:
using GraphQL.Types; // Schema

namespace Northwind.GraphQL;

public class NorthwindSchema : Schema
{
 public NorthwindSchema(IServiceProvider provider) : base(provider)
 {
 Query = new GreetQuery();
 }
}

Chapter 18

[25]

5. In Program.cs, import the namespace for working with GraphQL and the GraphQL
query and schema that you just defined, as shown in the following code:

using GraphQL.Server; // GraphQLOptions
using Northwind.GraphQL; // GreetQuery, NorthwindSchema

6. In the section for configuring services, after the call to AddControllers, add statements
to register the schema class as a scoped dependency service and to add GraphQL
support, as shown in the following code:

builder.Services.AddScoped<NorthwindSchema>();

builder.Services.AddGraphQL()
 .AddGraphTypes(typeof(NorthwindSchema), ServiceLifetime.Scoped)
 .AddDataLoader()
 .AddSystemTextJson(); // serialize responses as JSON

7. In the section for configuring the HTTP pipeline, add statements to use GraphQL with
the Northwind schema and use the playground user interface if in development mode,
as shown highlighted in the following code:

if (builder.Environment.IsDevelopment())
{
 app.UseGraphQLPlayground(); // default path is /ui/playground
}

app.UseGraphQL<NorthwindSchema>(); // default path is /graphql

app.UseHttpsRedirection();

8. Start the Northwind.GraphQL service project.
9. If you are using Visual Studio Code, then start Chrome and navigate to https://

localhost:5005/ui/playground.

Good Practice: Use constructor parameter injection to get the
IServiceProvider that will be used to get registered dependency
services.

Good Practice: Later, the Northwind database context will be
registered as a scoped dependency service so any services that use it
must also be registered as scoped rather than singleton.

Building and Consuming Specialized Services

[26]

10. On the left-hand side, write an unnamed query to request greet, as shown in the
following markup:

{
 greet
}

11. Click the circular gray play button, and note the endpoint URL used by the playground,
https://localhost:5005/graphql, and the response, as shown in the following output
and Figure 18.3:

{
 "data": {
 "greet": "Hello, World!"
 },
 "extensions": {}
}

Figure 18.3: Using the GraphQL playground to execute a greet query

12. Close Chrome and shut down the web server.

We could also have created it as a named query, as shown in the following code:

query QueryNameGoesHere {
 greet
}

Named queries allow clients to identify queries and responses for telemetry purposes, for
example, when hosting in Microsoft Azure cloud services and monitoring using Application
Insights.

Defining GraphQL schema for EF Core models
Now that we have a basic GraphQL service operating successfully, let's add types to enable
querying the Northwind database:

Chapter 18

[27]

1. In Program.cs, import the namespace for working with our EF Core model for the
Northwind database, as shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

2. Add a statement to the top of the section for configuring services to register the
Northwind database context class, as shown in the following code:

builder.Services.AddNorthwindContext();

3. In the Northwind.GraphQL project/folder, add a class file named CategoryType.cs. This
is used to describe the Category entity class to the GraphQL system.

4. Modify the CategoryType class to define an object graph type that matches the structure
of the Category entity model, as shown in the following code:

using GraphQL.Types; // ObjectGraphType<T>, ListGraphType<T>
using Packt.Shared; // Category

namespace Northwind.GraphQL;

public class CategoryType : ObjectGraphType<Category>
{
 public CategoryType()
 {
 Name = "Category";
 Field(c => c.CategoryId).Description("Id of the category.");
 Field(c => c.CategoryName).Description("Name of the category.");
 Field(c => c.Description).Description("Description of the category.");
 Field(c => c.Products, type: typeof(ListGraphType<ProductType>))
 .Description("Products in the category.");
 }
}

5. In the Northwind.GraphQL project/folder, add a class file named ProductType.cs.
6. Modify the class to define an object graph type that matches the structure of the Product

entity model, as shown in the following code:
using GraphQL.Types; // ObjectGraphType<T>, IntGraphType, DecimalGraphType
using Packt.Shared; // Category, Product

namespace Northwind.GraphQL;

public class ProductType : ObjectGraphType<Product>

The ProductType class will generate a temporary error because we
have not created it yet.

Building and Consuming Specialized Services

[28]

{
 public ProductType()
 {
 Name = "Product";
 Field(p => p.ProductId).Description("Id of the product.");
 Field(p => p.ProductName).Description("Name of the product.");
 Field(p => p.CategoryId, type: typeof(IntGraphType))
 .Description("CategoryId of the product.");
 Field(p => p.Category, type: typeof(CategoryType))
 .Description("Category of the product.");
 Field(p => p.UnitPrice, type: typeof(DecimalGraphType))
 .Description("Unit price of the product.");
 Field(p => p.UnitsInStock, type: typeof(IntGraphType))
 .Description("Units in stock of the product.");
 Field(p => p.UnitsOnOrder, type: typeof(IntGraphType))
 .Description("Units on order of the product.");
 }
}

7. In the Northwind.GraphQL project/folder, add a class file named NorthwindQuery.cs.
8. Modify the class to define an object graph type that has three types of query to

return a list of categories, a single category, and products for a category, as shown in
the following code:

using GraphQL; // GetArgument extension method
using GraphQL.Types; // ObjectGraphType, QueryArguments, QueryArgument<T>
using Microsoft.EntityFrameworkCore; // Include extension method
using Packt.Shared; // NorthwindContext

namespace Northwind.GraphQL;

public class NorthwindQuery : ObjectGraphType
{
 public NorthwindQuery(NorthwindContext db)
 {
 Field<ListGraphType<CategoryType>>(

Good Practice: Simple types like int and string are automatically
recognized by GraphQL. Nullable types like int? and decimal? used
by the CategoryId and UnitPrice properties, complex types like
Category used by the Category property, and small integers like
short need to be explicitly specified, otherwise GraphQL will throw
exceptions at runtime.

Chapter 18

[29]

 name: "categories",
 description: "A query type that returns a list of all categories.",
 resolve: context => db.Categories.Include(c => c.Products)
);

 Field<CategoryType>(
 name: "category",
 description: "A query type that returns a category using its Id.",
 arguments: new QueryArguments(
 new QueryArgument<IntGraphType> { Name = "categoryId" }),
 resolve: context =>
 {
 Category? category = db.Categories.Find(
 context.GetArgument<int>("categoryId"));
 db.Entry(category).Collection(c => c.Products).Load();
 return category;
 }
);

 Field<ListGraphType<ProductType>>(
 name: "products",
 arguments: new QueryArguments(
 new QueryArgument<IntGraphType> { Name = "categoryId" }),
 resolve: context =>
 {
 Category? category = db.Categories.Find(
 context.GetArgument<int>("categoryId"));
 db.Entry(category).Collection(c => c.Products).Load();
 return category.Products;
 }
);
 }
}

9. In NorthwindSchema.cs, import the namespace for getting a service with
dependency injection and for the Northwind database context, as shown in the
following code:

using Packt.Shared; // NorthwindContext
using Microsoft.Extensions.DependencyInjection; // GetRequiredService

10. In the constructor, comment out the statement that sets Query to use GreetQuery
and add a statement that sets it to use NorthwindQuery, getting and passing the required
Northwind database context, as shown in the following code:

// Query = new GreetQuery();
Query = new NorthwindQuery(provider.GetRequiredService<NorthwindConte
xt>());

Building and Consuming Specialized Services

[30]

Exploring GraphQL queries with Northwind
Now we can test writing GraphQL queries for the Northwind database:

1. Start the Northwind.GraphQL service project.
2. If you are using Visual Studio Code, then start Chrome and navigate to https://

localhost:5005/ui/playground.
3. In the playground, click the Schema tab on the right-hand side, and note the schema,

query, and type definitions, and note the IntelliSense help provided as you type a
query, as shown in Figure 18.4:

Figure 18.4: Schema for querying the Northwind categories and products using GraphQL

4. Click the Docs tab and then click categories, category(…), and products(…) to review
the documentation.

5. Click the Docs tab again to collapse the pane.
6. On the left-hand side, write a named query to request all categories, as shown

in the following markup:
query AllCategories {
 categories {
 categoryId
 categoryName
 description
 }
}

7. Click the play button, and note the response, as shown in the following partial
output:

{
 "data": {

Chapter 18

[31]

 "categories": [
 {
 "categoryId": 1,
 "categoryName": "Beverages",
 "description": "Soft drinks, coffees, teas, beers, and ales"
 },
 {
 "categoryId": 2,
 "categoryName": "Condiments",
 "description": "Sweet and savory sauces, relishes, spreads, and
seasonings"
 },
 ...

8. Click the + tab to open a new tab, write a query to request the category with Id 2,
including the Id, name, and price of its products, as shown in the following markup:

query Condiments {
 category (categoryId: 2) {
 categoryId
 categoryName
 products {
 productId
 productName
 unitPrice
 }
 }
}

9. Click the play button, and note the response, as shown in the following partial output:
{
 "data": {
 "category": {
 "categoryId": 2,
 "categoryName": "Condiments",
 "products": [
 {
 "productId": 3,
 "productName": "Aniseed Syrup",

Make sure that the I in categoryId is uppercase.

Building and Consuming Specialized Services

[32]

 "unitPrice": 10
 },
 {
 "productId": 4,
 "productName": "Chef Anton's Cajun Seasoning",
 "unitPrice": 22
 },
 ...

10. Click the + tab to open a new tab, write a query to request the Id, name, and units in
stock of the products in the category with Id 1, as shown in the following markup:

query BeverageProducts {
 products (categoryId: 1) {
 productId
 productName
 unitsInStock
 }
}

11. Click the play button, and note the response, as shown in the following partial
output:

{
 "data": {
 "products": [
 {
 "productId": 1,
 "productName": "Chai",
 "unitsInStock": 39
 },
 {
 "productId": 2,
 "productName": "Chang",
 "unitsInStock": 17
 },
 ...

12. Close Chrome and shut down the web server.

Understanding GraphQL mutations and
subscriptions
As well as queries, other standard GraphQL features are mutations and subscriptions.

• Mutations enable creating, updating, and deleting resources.

Chapter 18

[33]

• Subscriptions enable a client to get notified when resources change. They work best
with alternative communication technologies like WebSockets.

If you would like me to add coverage of these in the next edition, please get in touch and let
me know.

Building a client for GraphQL
Finally in this section, let's see how a client could call the GraphQL service:

We will create a model class to make it easy to deserialize the response:

1. In the Northwind.Mvc project, in the Models folder, add a new class file named
GraphQLProducts.cs, as shown in the following code:

using Packt.Shared; // Product

namespace Northwind.Mvc.Models;

public class GraphQLProducts
{
 public class DataProducts
 {
 public Product[]? Products { get; set; }
 }

 public DataProducts? Data { get; set; }
}

2. In Program.cs, add statements to register an HTTP client for the GraphQL
service, as shown in the following code:

builder.Services.AddHttpClient(name: "Northwind.GraphQL",
 configureClient: options =>
 {
 options.BaseAddress = new Uri("https://localhost:5005/");
 options.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue(
 "application/json", 1.0));
 });

3. In the Controllers folder, in HomeController.cs, import the namespace for
working with text encodings, as shown in the following code:

using System.Text; // Encoding

Building and Consuming Specialized Services

[34]

4. In the Services action method, add statements to call the GraphQL service, and note
the HTTP request is a POST request, the media type is for GraphQL, and the query
requests all products in category 8 (which is Seafood), as shown in the following code:

try
{
 HttpClient client = clientFactory.CreateClient(
 name: "Northwind.GraphQL");

 HttpRequestMessage request = new(
 method: HttpMethod.Post, requestUri: "graphql");

 request.Content = new StringContent(content: @"
 {
 products (categoryId: 8) {
 productId
 productName
 unitsInStock
 }
 }",
 encoding: Encoding.UTF8,
 mediaType: "application/graphql");

 HttpResponseMessage response = await client.SendAsync(request);

 if (response.IsSuccessStatusCode)
 {
 ViewData["seafoodProducts"] = (await response.Content
 .ReadFromJsonAsync<GraphQLProducts>())?.Data?.Products;
 }
 else
 {
 ViewData["seafoodProducts"] = Enumerable.Empty<Product>().ToArray();
 }
}
catch (Exception ex)
{
 _logger.LogWarning($"Northwind.GraphQL service exception: {ex.
Message}");
}

5. In the Views/Home folder, in Services.cshtml, add a new section inside the outmost
<div> after the @if section that renders products that start with Cha from the OData
service, and to render the Seafood products, as shown highlighted in the following
markup:

@{
 ViewData["Title"] = "Services";
 Product[]? products = ViewData["productsCha"] as Product[];

Chapter 18

[35]

 Product[]? seafoodProducts = ViewData["seafoodProducts"] as Product[];
}
...
@if (seafoodProducts is not null)
{
 <h2>Seafood products using GraphQL</h2>
 <p>
 @foreach (Product p in seafoodProducts)
 {

 @p.ProductId
 @p.ProductName
 -
 @(p.UnitsInStock is null ? "0" : p.UnitsInStock.Value) in stock

 }
 </p>
}

6. Optionally, start the Minimal.Web project without debugging.
7. Optionally, start the Northwind.OData project without debugging.
8. Start the Northwind.GraphQL project without debugging.
9. Start the Northwind.Mvc project.
10. Navigate to the Services page: https://localhost:5001/home/services.
11. Note Seafood products are successfully retrieved using GraphQL, as shown in

Figure 18.5:

Figure 18.5: Products in the Seafood category from the GraphQL service

12. Close Chrome and shut down all the web servers.

Building and Consuming Specialized Services

[36]

Implementing services using gRPC
gRPC is a modern open source high-performance RPC framework that can run in any
environment.

Understanding gRPC
A gRPC client can call methods in a gRPC service on a different server as if it was a local object.
The developer defines a service interface with methods that can be called remotely including
their parameters and return types. The server implements this interface and runs a gRPC server
to handle client calls. On the client, a strongly typed gRPC client provides the same methods as
on the server.

Like WCF, gRPC uses contract-first API development that supports language-agnostic
implementations. You write the contracts using .proto files that have their own language
syntax and then use tools to convert them into various languages like C#. The .proto files are
used by both the server and client to exchange messages in the correct format.

gRPC minimizes network usage by using Protobuf binary serialization that is not human
readable, unlike JSON or XML used by web services. gRPC requires HTTP/2 that provides
significant performance benefits over earlier versions like binary framing and compression, and
multiplexing of HTTP/2 calls over a single connection.

The main limitation of gRPC is that it cannot be used in web browsers because no browser
provides the level of control required to support a gRPC client. For example, browsers do not
allow a caller to require that HTTP/2 be used. There is an initiative called gRPC-Web that adds
an extra proxy layer and the proxy forwards requests to the gRPC server.

Building a gRPC service
Let's see an example service for managing suppliers in the Northwind database:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: ASP.NET Core gRPC Service / grpc
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.gRPC

2. In Visual Studio Code, select Northwind.gRPC as the active OmniSharp project.

For working with .proto files in Visual Studio Code, you can install
the extension vscode-proto3 (zxh404.vscode-proto3).

Chapter 18

[37]

3. In the Protos folder, open greet.proto, and note that it defines a service named Greeter
with a method named SayHello that exchanges messages named HelloRequest and
HelloReply, as shown in the following code:

syntax = "proto3";

option csharp_namespace = "Northwind.gRPC";

package greet;

// The greeting service definition.
service Greeter {
 // Sends a greeting
 rpc SayHello (HelloRequest) returns (HelloReply);
}

// The request message containing the user's name.
message HelloRequest {
 string name = 1;
}

// The response message containing the greetings.
message HelloReply {
 string message = 1;
}

4. Open the Northwind.gRPC.csproj file, and note the package reference for
implementing a gRPC service hosted in ASP.NET Core and the .proto file is registered
for use on the server-side, as shown in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
</ItemGroup>

<ItemGroup>
 <PackageReference Include="Grpc.AspNetCore" Version="2.32.0" />
</ItemGroup>

5. In the Services folder, open GreeterService.cs, and note that it implements the
Greeter service contract, as shown in the following code:

using Grpc.Core; // ServerCallContext
using Northwind.gRPC;

namespace Northwind.gRPC.Services;
public class GreeterService : Greeter.GreeterBase
{
 private readonly ILogger<GreeterService> _logger;

Building and Consuming Specialized Services

[38]

 public GreeterService(ILogger<GreeterService> logger)
 {
 _logger = logger;
 }

 public override Task<HelloReply> SayHello(
 HelloRequest request, ServerCallContext context)
 {
 return Task.FromResult(new HelloReply
 {
 Message = "Hello " + request.Name
 });
 }
}

6. In Program.cs, in the section that configures services, note the call to add gRPC
to the services collection, as shown in the following code:

builder.Services.AddGrpc();

7. In Program.cs, in the section for configuring the HTTP pipeline, note the call to
map the Greeter service, as shown in the following code:

app.MapGrpcService<GreeterService>();

8. In Program.cs, add an extension method call to UseUrls to specify port 5006 for
HTTPS, as shown highlighted in the following code:

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls("https://localhost:5006/");

9. In the Properties folder, open launchSettings.json and modify the
applicationUrl setting to use port 5006, as shown highlighted in the following markup:

{
 "profiles": {
 "Northwind.gRPC": {
 "commandName": "Project",
 "dotnetRunMessages": "true",
 "launchBrowser": false,
 "applicationUrl": "https://localhost:5006",
 "environmentVariables": {
 "ASPNETCORE_ENVIRONMENT": "Development"
 }
 }
 }
}

10. Build the Northwind.gRPC project.

Chapter 18

[39]

Building a gRPC client
We will add gRPC client packages to the Northwind MVC website project to enable it to call
the gRPC service:

1. In the Northwind.Mvc project, add package references for Google's Protobuf format, the
gRPC client, and tools, as shown in the following markup:

<PackageReference Include="Google.Protobuf" Version="3.17.3" />
<PackageReference Include="Grpc.Net.Client" Version="2.38.0" />
<PackageReference Include="Grpc.Tools" Version="2.38.1">
 <PrivateAssets>all</PrivateAssets>
 <IncludeAssets>runtime; build; native; contentfiles;
 analyzers; buildtransitive</IncludeAssets>
</PackageReference>

2. Copy the Protos folder from the Northwind.gRPC project/folder to the Northwind.Mvc
project/folder. (In Visual Studio 2022, you can drag and drop to copy. In Visual Studio
Code, drag and drop while holding the Ctrl or Cmd key.)

3. In the Northwind.Mvc project, in greet.proto, modify the namespace to match the
namespace for the current project so that the automatically generated classes will be in
the same namespace, as shown in the following code:

option csharp_namespace = "Northwind.Mvc";

4. In the Northwind.Mvc project file, add an item group to register the .proto file as being
used on the client side, as shown in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
</ItemGroup>

5. Build the Northwind.Mvc project to ensure that the automatically generated classes are
created.

Good Practice: The Grpc.Tools package is only used during
development, so it is marked as PrivateAssets=all to ensure that
the tools are not published with the production website.

Visual Studio will have created the item group for you but it will set
the GrpcServices to Server by default so you must manually change
that to Client.

Building and Consuming Specialized Services

[40]

6. In HomeController.cs, import namespaces to work with gRPC as a client, as shown in
the following code:

using Grpc.Net.Client; // GrpcChannel

7. In the Services action method, add statements to create a gRPC client and call the Greet
method, as shown in the following code:

try
{
 using (GrpcChannel channel =
 GrpcChannel.ForAddress("https://localhost:5006"))
 {
 Greeter.GreeterClient greeter = new(channel);
 HelloReply reply = await greeter.SayHelloAsync(
 new HelloRequest { Name = "Henrietta" });
 ViewData["greeting"] = "Greeting from gRPC service: " + reply.Message;
 }
}
catch (Exception)
{
 _logger.LogWarning($"Northwind.gRPC service is not responding.");
}

8. In Views/Home, in Services.cshtml, add code to render the greeting directly
below the title, before the products are rendered, as shown in the following markup:

@if (ViewData["greeting"] != null)
{
 <p class="alert alert-primary">@ViewData["greeting"]</p>
}

Testing a gRPC client to the gRPC service
Now we can start the gRPC service and see if the Northwind MVC website can call it
successfully:

1. Optionally, start the Minimal.WebApi project without debugging.
2. Optionally, start the Northwind.OData project without debugging.
3. Optionally, start the Northwind.GraphQL project without debugging.
4. Start the Northwind.gRPC service project without debugging.

Good Practice: If you clean a gRPC project then you will lose the automatically
generated types and see compile errors. To recreate them, simply make any
change to a .proto file or close and reopen the project/solution.

Chapter 18

[41]

5. Start the Northwind.Mvc project.
6. Navigate to the Services page: https://localhost:5001/home/services.
7. Note the greeting on the services page, as shown in Figure 18.6:

Figure 18.6: Services page after calling the gRPC service to get a greeting

8. View the command prompt or terminal for the gRPC service and note the info messages
that indicate an HTTP/2 POST was processed by the greet.Greeter/SayHello endpoint in
about 41ms, as shown in the following output:

info: Microsoft.AspNetCore.Hosting.Diagnostics[1]
 Request starting HTTP/2 POST https://localhost:5006/greet.Greeter/
SayHello application/grpc -
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[0]
 Executing endpoint 'gRPC - /greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Routing.EndpointMiddleware[1]
 Executed endpoint 'gRPC - /greet.Greeter/SayHello'
info: Microsoft.AspNetCore.Hosting.Diagnostics[2]
 Request finished HTTP/2 POST https://localhost:5006/greet.Greeter/
SayHello application/grpc - - 200 - application/grpc 41.3434ms

9. Close Chrome and shut down the web servers.

Implementing a gRPC service for an EF Core model
Now we will add support for working with the Northwind database to the gRPC service:

1. In the Northwind.gRPC project, add a project reference to the Northwind database
context project for either SQLite or SQL Server, as shown in the following markup:

<ItemGroup>
 <!-- change Sqlite to SqlServer if you prefer -->
 <ProjectReference Include=
"..\Northwind.Common.DataContext.Sqlite\Northwind.Common.DataContext.
Sqlite.csproj" />
</ItemGroup>

Building and Consuming Specialized Services

[42]

2. In the Northwind.gRPC project, in the Protos folder, add a new file (the item template is
named Protocol Buffer File in Visual Studio) named shipper.proto, as shown in the
following code:

syntax = "proto3";

option csharp_namespace = "Northwind.gRPC";

package shipr;

service Shipr {
 rpc GetShipper (ShipperRequest) returns (ShipperReply);
}

message ShipperRequest {
 int32 shipperId = 1;
}

message ShipperReply {
 int32 shipperId = 1;
 string companyName = 2;
 string phone = 3;
}

3. Open the project file and add an entry to include the shipper.proto file, as
shown highlighted in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Server" />
 <Protobuf Include="Protos\shipper.proto" GrpcServices="Server" />
</ItemGroup>

4. Build the Northwind.gRPC project.
5. In the Services folder, add a new class file named ShipperService.cs, and

modify its contents to define a shipper service that uses the Northwind database
context to return shippers, as shown in the following code:

using Grpc.Core; // ServerCallContext
using Packt.Shared; // NorthwindContext, Shipper

namespace Northwind.gRPC.Services;

public class ShipperService : Shipr.ShiprBase
{
 private readonly ILogger<ShipperService> _logger;
 private readonly NorthwindContext db;

 public ShipperService(ILogger<ShipperService> logger,

Chapter 18

[43]

 NorthwindContext db)
 {
 _logger = logger;
 this.db = db;
 }

 public override async Task<ShipperReply> GetShipper(
 ShipperRequest request, ServerCallContext context)
 {
 return ToShipperReply(
 await db.Shippers.FindAsync(request.ShipperId));
 }

 private ShipperReply ToShipperReply(Shipper? shipper)
 {
 return new ShipperReply
 {
 ShipperId = shipper?.ShipperId ?? 0,
 CompanyName = shipper?.CompanyName ?? string.Empty,
 Phone = shipper?.Phone ?? string.Empty
 };
 }
}

6. In Program.cs, import the namespace for the Northwind database context, as
shown in the following code:

using Packt.Shared; // AddNorthwindContext extension method

7. In the section that configures services, add a call to register the Northwind
database context, as shown in the following code:

builder.Services.AddNorthwindContext();

8. In the section that configures the HTTP pipeline, after the call to register the Greeter
service, add a statement to register the shipper service, as shown in the following code:

app.MapGrpcService<ShipperService>();

Implementing a gRPC client for an EF Core model
Now we can add client capabilities to the Northwind MVC website:

1. Copy the shipper.proto file from the Protos folder in the Northwind.gRPC project to
the Protos folder in the Northwind.Mvc project. (Hold down Ctrl or Cmd while dragging
and dropping if you use Visual Studio Code.)

Building and Consuming Specialized Services

[44]

2. In the Northwind.Mvc project, in shipper.proto, modify the namespace to match the
namespace for the current project so that the automatically generated classes will be in
the same namespace, as shown in the following code:

option csharp_namespace = "Northwind.Mvc";

3. In the Northwind.Mvc project file, add an entry to register the .proto file as being
used on the client side, as shown highlighted in the following markup:

<ItemGroup>
 <Protobuf Include="Protos\greet.proto" GrpcServices="Client" />
 <Protobuf Include="Protos\shipper.proto" GrpcServices="Client" />
</ItemGroup>

4. In the Controllers folder, in HomeController.cs, in the Services action method,
add statements to call the Shipper gRPC service, as shown in the following code:

try
{
 using (GrpcChannel channel =
 GrpcChannel.ForAddress("https://localhost:5006"))
 {
 Shipr.ShiprClient shipr = new(channel);

 ShipperReply reply = await shipr.GetShipperAsync(
 new ShipperRequest { ShipperId = 3 });

 ViewData["shipr"] = new Shipper
 {
 ShipperId = reply.ShipperId,
 CompanyName = reply.CompanyName,
 Phone = reply.Phone
 };
 }
}
catch (Exception)
{
 _logger.LogWarning($"Northwind.gRPC service is not responding.");
}

5. In Views/Home, in Services.cshtml, add code to render the shipper details after
the greeting, as shown in the following markup:

@if (ViewData["shipr"] != null)
{
 Shipper? shipper = ViewData["shipr"] as Shipper;
 <p class="alert alert-danger">
 ShipperId: @shipper?.ShipperId, CompanyName: @shipper?.CompanyName,
Phone: @shipper?.Phone

Chapter 18

[45]

 </p>
}

6. Optionally, start the Minimal.WebApi project without debugging.
7. Optionally, start the Northwind.OData project without debugging.
8. Optionally, start the Northwind.GraphQL project without debugging.
9. Start the Northwind.gRPC service project without debugging.
10. Start the Northwind.Mvc project.
11. Navigate to the Services page: https://localhost:5001/home/services.
12. Note the shipper information on the services page, as shown in Figure 18.7:

Figure 18.7: Services page after calling the gRPC service to get a shipper

13. Close Chrome and shut down the web servers.

Implementing real-time communication using
SignalR
The web is great for building general-purpose websites and services, but it was not designed
for specialized scenarios that require a web page to be instantaneously updated with new
information as it becomes available.

Understanding the history of real-time
communication on the web
To understand the benefits of SignalR, it helps to know the history of HTTP and how
organizations worked to make it better for real-time communication between clients and
servers.

Building and Consuming Specialized Services

[46]

In the early days of the Web in the 1990s, browsers had to make a full-page HTTP GET request
to the web server to get fresh information to show to the visitor.

Understanding XMLHttpRequest
In late 1999, Microsoft released Internet Explorer 5.0 with a component named
XMLHttpRequest that could make asynchronous HTTP calls in the background. This,
alongside dynamic HTML (DHTML), allowed parts of the web page to be updated with
fresh data smoothly.

The benefits of this technique were obvious and soon all browsers added the same component.

Understanding AJAX
Google took maximum advantage of this capability to build clever web applications such
as Google Maps and Gmail. A few years later, the technique became popularly known as
Asynchronous JavaScript and XML (AJAX).

AJAX still uses HTTP to communicate, however, and that has limitations:

• First, HTTP is a request-response communication protocol, meaning that the server
cannot push data to the client. It must wait for the client to make a request.

• Second, HTTP request and response messages have headers with lots of potentially
unnecessary overhead.

• Third, HTTP typically requires a new underlying TCP connection to be created on each
request.

Understanding WebSocket
WebSocket is full duplex, meaning that either the client or server can initiate communicating
new data. WebSocket uses the same TCP connection for the lifecycle of the connection. It is
also more efficient in the message sizes that it sends because they are minimally framed with 2
bytes.

WebSocket works over HTTP ports 80 and 443 so it is compatible with the HTTP protocol and
the WebSocket handshake uses the HTTP Upgrade header to switch from the HTTP protocol to
the WebSocket protocol.

Modern web apps are expected to deliver up-to-date information. Live chat is a canonical
example, but there are lots of potential applications, from stock prices to games.

Whenever you need the server to push updates to the web page, you need a web-compatible,
real-time communication technology. WebSocket could be used but it is not supported by all
clients.

Chapter 18

[47]

Introducing SignalR
ASP.NET Core SignalR is an open source library that simplifies adding real-time web
functionality to apps by being an abstraction over multiple underlying communication
technologies, which allows you to add real-time communication capabilities using C# code.

The developer does not need to understand or implement the underlying technology used, and
SignalR will automatically switch between underlying technologies depending on what the
visitor's web browser supports. For example, SignalR will use WebSocket when it's available,
and gracefully falls back on other technologies such as AJAX long polling when it isn't, while
your application code stays the same.

SignalR is an API for server-to-client remote procedure calls (RPCs). The RPCs call JavaScript
functions on clients from server-side .NET code. SignalR has hubs to define the pipeline and
handles the message dispatching automatically using two built-in hub protocols: JSON and a
binary one based on MessagePack.

On the server side, SignalR runs everywhere that ASP.NET Core runs: Windows, macOS, or
Linux servers. SignalR supports the following client platforms:

• JavaScript clients for current browsers including Chrome, Firefox, Safari, Edge, and
Internet Explorer 11.

• .NET clients including Blazor and Xamarin for Android and iOS mobile apps.
• Java 8 and later.

Designing method signatures
When designing the method signatures for a SignalR service, it is best to define methods with
a single object parameter rather than multiple simple type parameters. For example, define
a class with multiple properties to use as the type of a single parameter instead of passing
multiple string values, as shown in the following code:

// bad practice
public void SendMessage(string to, string body)

// better practice
public class Message
{
 public string To { get; set; }
 public string Body { get; set; }
}

public void SendMessage(Message message)

Building and Consuming Specialized Services

[48]

The reason is that it allows future changes like adding a message title. For the bad practice
example, a third string parameter named title would need to be added, and existing clients
would get errors because they are not sending the extra string value. But using the good
practice example will not break the method signature so existing clients can continue to call it
as before the change. On the server side, the extra title property will just have a null value
that can be checked for and perhaps set to a default value.

Building a live communication service using
SignalR
The SignalR server library is included in ASP.NET Core. But the JavaScript client library is not
automatically included in the project. We will use the Library Manager CLI to get the client
library from unpkg, a content delivery network (CDN) that can deliver anything found in
Node.js package manager.

Let's add a SignalR server-side hub and client-side JavaScript to the Northwind MVC project
to implement a chat feature to allows visitors to send messages to everyone currently using the
website, to dynamically defined groups, or to a single specified user.

Defining some shared models
First, we will define two shared models that can be used on both the server-side and client-side
.NET projects that will work with our chat service:

1. In the Northwind.Common project, add a class file named RegisterModel.cs, and modify
its contents to define a model for registering a username and the groups that they want
to belong to, as shown in the following code:

namespace Northwind.Chat.Models;

public class RegisterModel
{
 public string? Username { get; set; }
 public string? Groups { get; set; }
}

2. In the Northwind.Common project, add a class file named MessageModel.cs, and modify
its contents to define a message model with properties for who the message is sent to
and their type (user, group, or everyone) and who the message was sent from, and the
message body, as shown in the following code:

Good Practice: In a production solution it would be better to host the SignalR
hub in a separate web project so that it can be hosted and scaled independently
from the rest of the website. Live communication can often put excessive load
on a website.

Chapter 18

[49]

namespace Northwind.Chat.Models;

public class MessageModel
{
 public string? To { get; set; }
 public string? ToType { get; set; }
 public string? From { get; set; }
 public string? Body { get; set; }
}

Enabling a server-side SignalR hub
Next, we will enable a SignalR hub on the server side of the Northwind MVC project:

1. In the Northwind.Mvc project, add a reference to the Northwind.Common project, if you
did not add the project reference earlier.

2. In the Northwind.Mvc project, add a Hubs folder.
3. In the Hubs folder, add a class file named ChatHub.cs, and modify its contents to

inherit from the Hub class, and implement two methods that can be called by a client, as
shown in the following code:

using Microsoft.AspNetCore.SignalR; // Hub
using Northwind.Chat.Models; // RegisterModel, MessageModel

namespace Northwind.Mvc.Hubs;

public class ChatHub : Hub
{
 // a new instance of ChatHub is created to process each method so
 // we must store usernames and their connectionids in a static field
 private static Dictionary<string, string> users = new();

 public async Task Register(RegisterModel model)
 {
 // add to or update dictionary with username and its connectionId
 users[model.Username] = Context.ConnectionId;

 foreach (string group in model.Groups.Split(','))
 {
 await Groups.AddToGroupAsync(Context.ConnectionId, group);
 }
 }

 public async Task SendMessage(MessageModel command)
 {
 MessageModel reply = new()
 {

Building and Consuming Specialized Services

[50]

 From = command.From,
 Body = command.Body
 };

 IClientProxy proxy;

 switch (command.ToType)
 {
 case "User":
 string connectionId = users[command.To];
 reply.To = $"{command.To} [{connectionId}]";
 proxy = Clients.Client(connectionId);
 break;

 case "Group":
 reply.To = $"Group: {command.To}";
 proxy = Clients.Group(command.To);
 break;

 default:
 reply.To = "Everyone";
 proxy = Clients.All;
 break;
 }

 await proxy.SendAsync(
 method: "ReceiveMessage", arg1: reply);
 }
}

Note the following:
• ChatHub has two methods that a client can call: Register and SendMessage.
• Register has a single parameter of type RegisterModel. The username and its

connection Id are stored in the static dictionary so that the username can be
used to look up the connection Id later and send messages directly to that one
user.

• SendMessage has a single parameter of type MessageModel. The method creates
an instance of the MessageModel class that will be the message it sends to one or
more clients. Then it switches based on the type of recipient. For a user, it looks
up the connection Id using the username and then calls the Client method to
get a proxy that will communicate just with that one client. For a group, it calls
the Group method to get a proxy that will communicate with just the members
of that group. In all other cases, it calls the All method to get a proxy that will
communicate with every client. Finally, it sends the message asynchronously
using the proxy.

Chapter 18

[51]

4. In Program.cs, import the namespace for your SignalR hub, as shown in the following
code:

using Northwind.Mvc.Hubs; // ChatHub

5. In the section that configures services, add a statement to add support for
SignalR to the services collection, as shown in the following code:

builder.Services.AddSignalR();

6. In the section that configures the HTTP pipeline, after the call to map Razor
Pages, add a statement to map the relative URL path /chat to your SignalR hub, as
shown in the following code:

app.MapHub<ChatHub>("/chat");

Adding the SignalR client-side JavaScript library
Next, we will add the SignalR client-side JavaScript library so that we can use it on a web page:

1. Open a command prompt or terminal for the Northwind.Mvc project.
2. Install the Library Manager CLI tool, as shown in the following command:

dotnet tool install -g Microsoft.Web.LibraryManager.Cli

3. Note the success message, as shown in the following output:
You can invoke the tool using the following command: libman
Tool 'microsoft.web.librarymanager.cli' (version '2.1.113') was
successfully installed.

4. Add the signalr.js and signalr.min.js libraries to the project from the unpkg source,
as shown in the following command:

libman install @microsoft/signalr@latest -p unpkg -d wwwroot/js/signalr
--files dist/browser/signalr.js --files dist/browser/signalr.min.js

5. Note the success message, as shown in the following output:

Downloading file https://unpkg.com/@microsoft/signalr@latest/dist/browser/
signalr.js...
Downloading file https://unpkg.com/@microsoft/signalr@latest/dist/browser/
signalr.min.js...
wwwroot/js/signalr/dist/browser/signalr.js written to disk
wwwroot/js/signalr/dist/browser/signalr.min.js written to disk
Installed library "@microsoft/signalr@latest" to "wwwroot/js/signalr"

This tool might already be installed. To update it to the latest version,
repeat the command but replace install with update.

Building and Consuming Specialized Services

[52]

Adding a chat page to the Northwind MVC website
Next, we will create a chat page:

1. In the Controllers folder, open HomeController.cs, and add a new action method for
chat, as shown in the following code:

public IActionResult Chat()
{
 return View();
}

2. In Views/Shared, in _Layout.cshtml, add a new nav item after the Services nav
item that goes to a chat page, as shown in the following markup:

<li class="nav-item">
 <a class="nav-link text-dark" asp-area=""
 asp-controller="Home" asp-action="Chat">Chat

3. In Views/Home, add a new empty view named Chat.cshtml, and modify its
contents, as shown in the following markup:

@{
 ViewData["Title"] = "Chat";
}
<div class="container">
 <h1>@ViewData["Title"]</h1>
 <div class="row">
 <div class="col-12">
 <h2>Register</h2>
 </div>
 </div>
 <div class="row">
 <div class="col-4">My name</div>
 <div class="col-8"><input type="text" id="from" /></div>
 </div>
 <div class="row">
 <div class="col-4">My groups</div>
 <div class="col-8"><input type="text" id="groups" value="Sales,IT"
/></div>
 </div>
 <div class="row">
 <div class="col-12">
 <input type="button" id="registerButton" value="Register" />

Visual Studio has a GUI for adding client-side JavaScript libraries. To use it,
right-click a web project and then navigate to Add | Client Side Libraries.

Chapter 18

[53]

 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <h2>Message</h2>
 </div>
 </div>
 <div class="row">
 <div class="col-4">To type</div>
 <div class="col-8">
 <select id="toType">
 <option selected>Everyone</option>
 <option>Group</option>
 <option>User</option>
 </select>
 </div>
 </div>
 <div class="row">
 <div class="col-4">To</div>
 <div class="col-8"><input type="text" id="to" /></div>
 </div>
 <div class="row">
 <div class="col-4">Body</div>
 <div class="col-8"><input type="text" id="body" /></div>
 </div>
 <div class="row">
 <div class="col-12">
 <input type="button" id="sendButton" value="Send" />
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <hr />
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <h2>Messages received</h2>
 </div>
 </div>
 <div class="row">
 <div class="col-12">
 <ul id="messages">
 </div>
 </div>
</div>
<script src="~/js/signalr/dist/browser/signalr.js"></script>
<script src="~/js/chat.js"></script>

Building and Consuming Specialized Services

[54]

Note the following:
• There are three sections on the page: Register, Message, and Messages

received.
• The Register section has two inputs for the visitor's name and a comma-

separated list of the groups that they want to be a member of, and a button to
click to register.

• The Message section has three inputs for the type of recipient, the recipient's
name, and the body of the message, and a button to click to send the message.

• The Messages received section has an unordered list element that will be
dynamically populated with list items when a message is received.

• The two script elements for the SignalR client-side library are followed by the
implementation of the chat client.

4. In wwwroot/js, add a new JavaScript file named chat.js, and modify its
contents, as shown in the following code:

"use strict";

var connection = new signalR.HubConnectionBuilder()
 .withUrl("/chat").build();

document.getElementById("registerButton").disabled = true;
document.getElementById("sendButton").disabled = true;

connection.start().then(function () {
 document.getElementById("registerButton").disabled = false;
 document.getElementById("sendButton").disabled = false;
}).catch(function (err) {
 return console.error(err.toString());
});

connection.on("ReceiveMessage", function (received) {
 var li = document.createElement("li");
 document.getElementById("messages").appendChild(li);
 // note the use of backtick ` to enable a formatted string
 li.textContent =
 `${received.from} says ${received.body} (sent to ${received.to})`;
});

document.getElementById("registerButton").addEventListener("click",
 function (event) {
 var registermodel = {
 username: document.getElementById("from").value,
 groups: document.getElementById("groups").value
 };
 connection.invoke("Register", registermodel).catch(function (err) {

Chapter 18

[55]

 return console.error(err.toString());
 });
 event.preventDefault();
});

document.getElementById("sendButton").addEventListener("click",
 function (event) {
 var messageToSend = {
 to: document.getElementById("to").value,
 toType: document.getElementById("toType").value,
 from: document.getElementById("from").value,
 body: document.getElementById("body").value
 };
 connection.invoke("SendMessage", messageToSend).catch(function (err) {
 return console.error(err.toString());
 });
 event.preventDefault();
});

Note the following:
• The script creates a SignalR hub connection builder specifying the relative URL

path to the chat hub on the server/chat.
• The script disables the Register and Send buttons until the connection is

successfully established to the server-side hub.
• When the connection gets a ReceiveMessage call from the server-side hub, it

adds a list item element to the messages unordered list. The content of the list
item contains details of the message like from, to, and body. Note JavaScript uses
camelCasing.

• A click event handler is added to the Register button that creates a register
model with the username and their groups and then invokes the Register
method on the server side.

• A click event handler is added to the Send button that creates a message model
with the from, to, type, and message body, and then invokes the SendMessage
method on the server side.

Testing the chat feature
Now we are ready to try sending chat messages between multiple website visitors:

1. Start the Northwind.Mvc project website.
2. Start Chrome.
3. Navigate to https://localhost:5001/home/chat.
4. Enter Alice for the name, Sales,IT for the groups, and then click Register.
5. Open a new browser window or start another browser like Firefox or Edge.

Building and Consuming Specialized Services

[56]

6. Navigate to https://localhost:5001/home/chat.
7. Enter Bob for the name, Sales for the groups, and then click Register.
8. Open a new browser window or start another browser like Firefox or Edge.
9. Navigate to https://localhost:5001/home/chat.
10. Enter Charlie for the name, IT for the groups, and then click Register.
11. Arrange the browser windows so that you can see all three simultaneously.
12. In Alice's browser, select Group, enter Sales, enter Sell more! and then click

Send.
13. Note that Alice and Bob receive the message, as shown in Figure 18.8:

Figure 18.8: Alice sends a message to the Sales group

Chapter 18

[57]

14. In Bob's browser, select Group, enter IT, enter Fix more bugs! and then click Send.
15. Note that Alice and Charlie receive the message, as partially shown in Figure 18.9:

Figure 18.9: Bob sends a message to the IT group

16. In Alice's browser, select User, enter Bob, enter Bonjour Bob! and then click Send.

Building and Consuming Specialized Services

[58]

17. Note that only Bob receives the message, as shown in Figure 18.10:

Figure 18.10: Alice sends a message to Bob

18. In Charlie's browser, leave To type set to Everyone, leave To blank, enter any message
and then click Send, and note that everyone receives the message.

19. Close the browsers and shut down the web server.

Building a console app chat client
Now, let's create a .NET client for SignalR. We will use a console app, although any .NET
project type would need the same package reference and implementation code:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: Console Application / console
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.SignalR.ConsoleClient

2. Add a package reference for the ASP.NET Core SignalR client and a project
reference for Northwind.Common, as shown in the following markup:

<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.SignalR.Client"
 Version="6.0.0" />
</ItemGroup>
<ItemGroup>

Chapter 18

[59]

 <ProjectReference
 Include="..\Northwind.Common\Northwind.Common.csproj" />
</ItemGroup>

3. In Program.cs, import namespaces for working with SignalR as a client and the
chat models, and then add statements to create a hub connection, prompt the user to
enter a username and groups to register with, and then listen for received messages, as
shown in the following code:

using Microsoft.AspNetCore.SignalR.Client; // HubConnection
using Northwind.Chat.Models; // RegisterModel, MessageModel

using static System.Console;

Write("Enter a username: ");
string? username = ReadLine();

Write("Enter your groups: ");
string? groups = ReadLine();

HubConnection hubConnection = new HubConnectionBuilder()
 .WithUrl("https://localhost:5001/chat")
 .Build();

hubConnection.On<MessageModel>("ReceiveMessage", message =>
{
 WriteLine($"{message.From} says {message.Body} (sent to {message.To})");
});

await hubConnection.StartAsync();

WriteLine("Successfully started.");

RegisterModel registration = new()
{
 Username = username,
 Groups = groups
};

await hubConnection.InvokeAsync("Register", registration);

WriteLine("Successfully registered.");
WriteLine("Listening... (press ENTER to stop.)");
ReadLine();

4. Start the Northwind.Mvc project website without debugging.

Building and Consuming Specialized Services

[60]

5. Start Chrome.
6. Navigate to https://localhost:5001/home/chat.
7. Enter Alice for the name, Sales,IT for the groups, and then click Register.
8. Start the Northwind.SignalR.ConsoleClient project, and then enter your name

and the groups Sales,Admins.
9. Arrange the browser and console app windows so that you can see both

simultaneously.
10. In Alice's browser, in the Message section, select Group, enter Sales, enter Go

team!, click Send, and note that Alice and you receive the message.
11. Try sending messages only to yourself, only to members of the Admins group, and to

everyone, as shown in Figure 18.11:

Figure 18.11: Alice sends messages to different types of recipient

12. In the console app, press Enter to stop it.
13. Close Chrome and shut down the web server.

Implementing serverless services using Azure
Functions
Azure Functions is an event-driven serverless compute platform. You can build and debug
locally and later deploy to the Microsoft Azure cloud. Azure Functions can be implemented in
many languages, not just C# and .NET. It has extensions for Visual Studio and Visual Studio
Code.

Chapter 18

[61]

Why would you need to create a service without a server? Serverless does not literally mean
without a server. What serverless means is without a permanently running server, usually for
most of the time.

For example, organizations often have business functions that only need to run once per month,
or on an ad hoc basis. Perhaps the organization prints checks (cheques) to pay its employees at
the end of the month. Those checks might need the salary amounts converted to words to print
on the check. A function to convert numbers to words could be implemented as a serverless
service.

Azure Functions can be much more than just a single function. They support complex, stateful
workflows and event-driven solutions using Durable Functions. We will not cover these in
this book so if you are interested then you can learn more about them at the following link:
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-
overview?tabs=csharp

Understanding Azure Functions
Azure Functions has a programming model based on triggers and bindings that enable your
serverless applications to respond to events and connect to other services like data stores.

Understanding Azure Functions triggers and bindings
Triggers and bindings are key concepts of Azure Functions. Triggers are what make a function
execute. Each function must have one and only one trigger. The most common triggers are
shown in the following list:

• HTTP: this trigger responds to an incoming HTTP request.
• Queue: this trigger responds to a message arriving in a queue ready for processing.
• Timer: this trigger responds to a time occurring.
• Event Grid: this trigger responds when a predefined event occurs.

Bindings allow functions to have inputs and outputs. Each function can have zero, one, or more
bindings. Some common bindings are shown in the following list:

• Blob storage: read or write to any file stored as a binary large object (BLOB).
• Cosmos DB: read or write documents to a cloud-scale data store.
• SignalR: receive or make remote method calls.
• Queue: write a message to a queue.
• SendGrid: send an email message.
• Twilio: send an SMS message.
• IoT Hub: write to an internet-connected device.

https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp
https://docs.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-overview?tabs=csharp

Building and Consuming Specialized Services

[62]

Triggers and bindings are configured differently for different languages. For C# and Java, you
decorate methods and parameters with attributes. For the other languages, you configure a file
named function.json.

Understanding Azure Functions versions and languages
Azure Functions supports four versions of the runtime host and multiple languages, as shown
in the following table:

Language v1 v2 v3 v4
C#, F# .NET Framework 4.8 .NET Core 2.1 .NET Core 3.1, .NET 5.02 .NET 6.02

JavaScript1 Node 6 Node 8, 10 Node 10, 12, 14
Java - Java 8 Java 8, 11
PowerShell - PowerShell Core 6 PowerShell Core 6, 7
Python - Python 3.6, 3.7 Python 3.6, 3.7, 3.8, 3.9

1 Azure Functions supports the TypeScript language via transpiling (transforming/compiling)
to JavaScript.

2 .NET 5.0 is only supported in the isolated hosting model because it is a Current release. .NET
6.0 supports both isolated and in-process because it is a Long Term Support release.

In this book, we will only look at implementing Azure Functions using C# and .NET.

Understanding Azure Functions hosting models
Azure Functions has two hosting models: in-process and isolated.

• In-process: Your function is implemented in a class library that runs in the same
process as the host. Your functions are required to run on the same version of .NET as
the Azure Functions runtime.

• Isolated: Your function is implemented in a console app that runs in its own process.
Your function can therefore execute on Current releases like .NET 5.0 that are not
supported by the Azure Functions runtime, which only allows LTS releases in-process.

Azure Functions only natively supports one LTS version of .NET. For example, for Azure
Functions v3, your function must use .NET Core 3.1 in-process. For Azure Functions v4, your
function must use .NET 6.0 in-process. If you create an isolated function, then you can choose
any .NET version.

You can see the full list of supported bindings at the following link: https://
docs.microsoft.com/en-us/azure/azure-functions/functions-
triggers-bindings?tabs=csharp#supported-bindings

https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp#supported-bindings
https://docs.microsoft.com/en-us/azure/azure-functions/functions-triggers-bindings?tabs=csharp#supported-bindings

Chapter 18

[63]

Setting up a local development environment for
Azure Functions
First, you will need to install the latest version of Azure Functions Core Tools, which at the
time of writing is v4, from the following link:

https://www.npmjs.com/package/azure-functions-core-tools

Azure Functions Core Tools provide the core runtime and templates for creating functions,
which enable local development on Windows, macOS, and Linux using any code editor.

Building an Azure Functions project for running
locally
Now, we can create an Azure Functions project. Although they can be created in the cloud
using the Azure portal, developers will have a better experience creating and running them
locally. You can then deploy to the cloud once you have tested your function on your own
computer.

Each code editor has a slightly different experience to get started with an Azure Functions
project.

Using Visual Studio 2022
If you prefer to use Visual Studio, here are the steps to create an Azure Functions project:

1. Use your preferred code editor to add a new project, as defined in the following list:
1. Project template: Azure Functions
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.AzureFuncs

Azure Functions Core Tools is included in the Azure development workload
of Visual Studio 2022, so you might already have it installed.

https://www.npmjs.com/package/azure-functions-core-tools

Building and Consuming Specialized Services

[64]

2. In Visual Studio, choose .NET 6 (Isolated), Http trigger, Storage emulator, and for
Authorization level, choose Anonymous, and then click Create, as partially shown in
Figure 18.12:

Figure 18.12: Choosing options for your Azure Functions project in Visual Studio 2022

Using Visual Studio Code
If you prefer to use Visual Studio Code, here are the steps to create an Azure Functions project:

1. In Visual Studio Code, navigate to Extensions and search for Azure Functions (ms-
azuretools.vscode-azurefunctions). It has dependencies on two other extensions:
Azure Account (ms-vscode.azure-account) and Azure Resources (ms-azuretools.
vscode-azureresourcegroups), so those will be installed too.

2. In the PracticalApps folder, create a new folder named Northwind.AzureFuncs and add
it to the PracticalApps workspace.

3. Close the PracticalApps workspace and then open the Northwind.AzureFuncs
folder. (The following steps only work outside a workspace.)

4. In the Azure extension, in the FUNCTIONS section, click the Create new project
button, and then select the Northwind.AzureFuncs folder, as shown in Figure 18.13:

Figure 18.13: Selecting the folder for your Azure Functions project

Chapter 18

[65]

5. At the prompts, select the following:
1. Select a language for your function project: C#.
2. Select .NET 6 LTS as the .NET runtime, unfortunately not shown in Figure 18.14

because it was not released at the time of writing:

Figure 18.14: Selecting the target .NET runtime for your Azure Functions project

3. Select a template for your project's first function: HTTP trigger.
4. Provide a function name: NumbersToWordsFunction.
5. Provide a namespace: Northwind.AzureFuncs.
6. Select the authorization level: Anonymous.

6. In the Visual Studio Code File menu, close the folder.
7. Open the PracticalApps workspace.

Using the func CLI
If you prefer to use the command-line and some other code editor, here are the steps to create
an Azure Functions project:

1. In the PracticalApps folder, create a new folder named Northwind.AzureFuncs and add
it to the PracticalApps workspace.

2. In command prompt or terminal, in the Northwind.AzureFuncs folder, create a new
Azure Functions project using C#, as shown in the following command:

func init --csharp

3. In command prompt or terminal, in the Northwind.AzureFuncs folder, create a
new Azure Functions function using HTTP trigger, which can be called anonymously,
as shown in the following command:

func new --name NumbersToWordsFunction --template "HTTP trigger"
--authlevel "anonymous"

4. Optionally, you can start the function locally, as shown in the following
command:

func start

Building and Consuming Specialized Services

[66]

Reviewing the project
Before we write a function, let's review what makes an Azure Functions project:

1. Open the project file, and note the Azure Functions version and the package references
needed to implement an Azure Function that responds to HTTP requests, as shown in
the following markup:

<Project Sdk="Microsoft.NET.Sdk">
 <PropertyGroup>
 <TargetFramework>net6.0</TargetFramework>
 <AzureFunctionsVersion>v4</AzureFunctionsVersion>
 </PropertyGroup>
 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Sdk.Functions"
 Version="3.0.13" />
 </ItemGroup>
 <ItemGroup>
 <None Update="host.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 </None>
 <None Update="local.settings.json">
 <CopyToOutputDirectory>PreserveNewest</CopyToOutputDirectory>
 <CopyToPublishDirectory>Never</CopyToPublishDirectory>
 </None>
 </ItemGroup>
</Project>

2. Open the local.settings.json file, and note that during local development
your project will use local development storage and an isolated process, as shown in
the following markup:

{
 "IsEncrypted": false,
 "Values": {
 "AzureWebJobsStorage": "UseDevelopmentStorage=true",
 "FUNCTIONS_WORKER_RUNTIME": "dotnet"
 }
}

Implementing the function
Now, we can implement the function to convert numbers into words:

1. If you completed the exercise in Chapter 8, Working with Common .NET Types, to write
a function that converts numbers to words, then use your implementation. If not, then
use the class at the following link: https://github.com/markjprice/cs10dotnet6/blob/
master/vscode/PracticalApps/Northwind.AzureFuncs/NumbersToWords.cs.

https://github.com/markjprice/cs10dotnet6/blob/master/vscode/PracticalApps/Northwind.AzureFuncs/NumbersToWords.cs
https://github.com/markjprice/cs10dotnet6/blob/master/vscode/PracticalApps/Northwind.AzureFuncs/NumbersToWords.cs

Chapter 18

[67]

2. If you are using Visual Studio, in the Northwind.AzureFuncs project, right-click
Function1.cs and rename it to NumbersToWordsFunction.cs.

3. Open NumbersToWordsFunction.cs and modify the contents to implement
an Azure Function to convert an amount as a number into words, as shown in the
following code:

using Microsoft.AspNetCore.Mvc;
using Microsoft.Azure.WebJobs; // [FunctionName], [HttpTrigger]
using Microsoft.Azure.WebJobs.Extensions.Http;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.Logging;
using System.Numerics; // BigInteger
using Packt.Shared; // ToWords extension method
using System.Threading.Tasks; // Task

namespace Northwind.AzureFuncs;

public static class NumbersToWordsFunction
{
 [FunctionName(nameof(NumbersToWordsFunction))]
 public static async Task<IActionResult> Run(
 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]
 HttpRequest req, ILogger log)
 {
 log.LogInformation($"C# HTTP trigger function processed a request.");

 string amount = req.Query["amount"];

 if (BigInteger.TryParse(amount, out BigInteger number))
 {
 return new OkObjectResult(number.ToWords());
 }
 else
 {
 return new BadRequestObjectResult($"Failed to parse: {amount}");
 }
 }
}

Testing the function
Now we can test the function:

1. Start the Northwind.AzureFuncs project. If you are using Visual Studio Code, you will
need to navigate to the Run and Debug pane, make sure that Attach to .NET Functions
is selected, and then click the Run button.

Building and Consuming Specialized Services

[68]

2. Note that Azure Storage emulator starts.
3. On Windows, if you see a Windows Security Alert from Windows Defender

Firewall, then click Allow access.
4. Note Azure Functions Core Tools hosts your function, usually on port 7071, as

shown in the following output:
Azure Functions Core Tools
Core Tools Version: 4.0.3743 Commit hash:
44e84987044afc45f0390191bd5d70680a1c544e (64-bit)
Function Runtime Version: 4.0.16281

Functions:
 NumbersToWordsFunction: [GET,POST] http://localhost:7071/api/
NumbersToWordsFunction

For detailed output, run func with --verbose flag.
[2021-09-12T18:44:47.499Z] Worker process started and initialized.
[2021-09-12T18:44:51.038Z] Host lock lease acquired by instance ID '000000
00000000000000000011150C3D'.

5. Select the URL for your function and copy it to the clipboard.
6. Start Chrome.
7. Paste the URL into the address box, append the query string: ?amount=123456, and note

the successful response, as shown in Figure 18.15:

Figure 18.15: A successful call to the Azure Function running locally

8. In the command prompt or terminal, note the function was called successfully, as
shown in the following output:

Chapter 18

[69]

[2021-09-14T05:58:27.357Z] Executing 'Functions.NumbersToWordsFunction'
(Reason='This function was programmatically called via the host APIs.',
Id=c2c98c67-bf9f-4121-8f7b-701dbc9c0bad)
[2021-09-14T05:58:27.417Z] C# HTTP trigger function processed a request.
[2021-09-14T05:58:27.461Z] Executed 'Functions.NumbersToWordsFunction'
(Succeeded, Id=c2c98c67-bf9f-4121-8f7b-701dbc9c0bad, Duration=111ms)

9. Try calling the function without an amount in the query string, or a non-integer value
for the amount, and note the function returns a 400 status code indicating a bad request,
as shown in Figure 18.16:

Figure 18.16: A bad request to the Azure Function running locally

10. Close Chrome and shut down the web server (or in Visual Studio Code stop
debugging).

Publishing an Azure Functions project to the cloud
Now, let's create a function app and related resources in an Azure subscription, then deploy
your function to the cloud and run it there.

If you do not already have an Azure account, then you can sign up for a free one at the
following link: https://azure.microsoft.com/en-us/free/

Using Visual Studio 2022
Visual Studio has a GUI to publish to Azure:

1. In Solution Explorer, right-click the Northwind.AzureFuncs project and select Publish.
2. Select Azure and then click Next.
3. Select Azure Function App (Windows) and click Next.
4. Sign in and enter your credentials.
5. Select your subscription.

https://azure.microsoft.com/en-us/free/

Building and Consuming Specialized Services

[70]

6. In the Function Instance section, click the + button that has a tooltip that says Create a
new Azure Function…

7. Complete the dialog box, as shown in the following screenshot in Figure 18.17:
1. Name: This must be globally unique.
2. Subscription name: Your subscription.
3. Resource group: Create a new resource group to make it easier to delete

everything later. I entered cs10dotnet6projects.
4. Plan Type: Consumption (pay for only what you use).
5. Location: A data center nearest to you. I chose UK South.
6. Azure Storage: Create a new account named cs10dotnet6projects (or

something else that is globally unique—try appending your initials) in a data
center nearest to you and choose Standard – Locally Redundant Storage for the
account type.

Figure 18.17: Creating a new Azure Function app

8. Click Create. This process can take a minute or more.
9. In the Publish dialog, click Finish.

Chapter 18

[71]

10. In the Publish window, click the Publish button, as shown in Figure 18.18:

Figure 18.18: An Azure Function app ready to publish

11. Review the output window, as shown in the following publishing output:
Build started...
2>------ Publish started: Project: Northwind.AzureFuncs, Configuration:
Release Any CPU ------
2>Northwind.AzureFuncs -> C:\Code\PracticalApps\Northwind.AzureFuncs\bin\
Release\net6.0\Northwind.AzureFuncs.dll
2>Northwind.AzureFuncs -> C:\Code\PracticalApps\Northwind.AzureFuncs\obj\
Release\net6.0\PubTmp\Out\
2>Publishing C:\Code\PracticalApps\Northwind.AzureFuncs\obj\Release\
net6.0\PubTmp\Northwind.AzureFuncs - 20210911153432123.zip to https://
northwindazurefuncs20210911151522.scm.azurewebsites.net/api/zipdeploy...
2>Zip Deployment succeeded.
========== Build: 1 succeeded, 0 failed, 0 up-to-date, 0 skipped
==========
========== Publish: 1 succeeded, 0 failed, 0 skipped ==========
Waiting for function app ready....
Finished waiting for function app to be ready

12. Test the function in your browser, as shown in Figure 18.19:

Figure 18.19: Calling the Azure Function in the cloud

Building and Consuming Specialized Services

[72]

Cleaning up Azure resources
You can use the following steps to delete the function app and its related resources to avoid
incurring any further costs:

1. In Visual Studio Code, navigate to View | Command Palette.
2. Search for and select Azure Functions: Open in portal.
3. Select your function app.
4. In the Azure portal, in your function app Overview blade, select the Resource

Group.
5. Confirm that it contains only resources that you want to delete.
6. Click Delete resource group and accept any other confirmations.

Understanding identity services
Identity services are used to authenticate and authorize users. It is important for these services
to implement open standards so that you can integrate disparate systems. Common standards
include OpenID Connect and OAuth 2.0.

A popular free open source implementation of these identity standards is IdentityServer4.
It enables developers to integrate token-based authentication, single-sign-on, and API access
control in websites, services, and applications.

Microsoft has no plans to officially support IdentityServer4 because, "creating and sustaining
an authentication server is a full-time endeavor, and Microsoft already has a team and a
product in that area, Azure Active Directory, which allows 500,000 objects for free."

Summary of choices for specialized services
Use the recommendations for various scenarios as guidance, as shown in the following table:

You can read the documentation for IdentityServer4 at the following link:
https://identityserver4.readthedocs.io/.

https://identityserver4.readthedocs.io/

Chapter 18

[73]

Scenario Recommendation
Public services REST aka HTTP-based services are best for services that need to be

publicly accessible, especially if they need to be called from a browser or
even a mobile device.

Public data services OData and GraphQL are both good choices for exposing complex
hierarchical data sets that could come from different data stores. OData is
designed and supported by Microsoft via official .NET packages. GraphQL
is designed by Facebook and supported by third-party packages.

Service-to-services gRPC is designed for low latency and high throughput communication.
gRPC is great for lightweight internal microservices where efficiency is
critical.

Point-to-point real-time
communication

gRPC has excellent support for bidirectional streaming. gRPC services can
push messages in real time without polling. SignalR is also an option for
real-time communication of many kinds although it is less efficient than
gRPC.

Broadcast real-time
communication

SignalR has great support for broadcast real-time communication to many
clients.

Polyglot environments gRPC tooling supports all popular development languages, making gRPC
a good choice for multi-language and platform environments.

Network bandwidth-
constrained
environments

gRPC messages are serialized with Protobuf, a lightweight message
format. A gRPC message is always smaller than an equivalent JSON
message.

Nanoservices Azure Functions do not need to be hosted 24/7 so they are a good choice
for nanoservices that usually do not need to be running constantly.

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with deeper research.

Exercise 18.1 – Test your knowledge
Answer the following questions:

1. You have an app that communicates with a service built using the legacy Windows
Communication Foundation service. What are two possible options for migrating the
service and client to modern .NET?

2. What transport protocol does an OData service use?
3. Why is an OData web service more flexible than a traditional ASP.NET Core Web API

web service?

Building and Consuming Specialized Services

[74]

4. What must you do to an action method in an OData controller to enable query strings
to customize what it returns?

5. What transport protocol does a GraphQL service use?
6. How are contracts defined in gRPC?
7. What are three benefits of gRPC that make it a good choice for implementing

services?
8. What transports does SignalR use, and which is the default?
9. What is the difference between the in-process and isolated hosting models for

Azure Functions?
10. What is a good practice for RPC method signature design?

Exercise 18.2 – Explore topics
Use the links on the following page to learn more detail about the topics covered in this
chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-18---
building-and-consuming-other-services

Summary
In this chapter, you learned how to build more specialized types of service using various
technologies including gRPC, SignalR, OData, GraphQL, and Azure Functions.

In the next chapter, you will learn how to build cross-platform mobile and desktop apps using
.NET MAUI.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-18---building-and-consuming-other-services
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-18---building-and-consuming-other-services

[75]

19
Building Mobile and Desktop

Apps Using .NET MAUI
This chapter is about learning how to make graphical user interface (GUI) apps by building a
cross-platform mobile and desktop app for iOS and Android, macOS Catalyst, and Windows
using .NET MAUI (Multi-platform App User Interface).

You will see how eXtensible Application Markup Language (XAML) makes it easy to define
the user interface for a graphical app.

Cross-platform GUI development cannot be learned in a single chapter, but like web
development, it is so important that I want to introduce you to some of what is possible. Think
of this chapter as an introduction that will give you a taste to inspire you, and then you can
learn more from a book dedicated to mobile or desktop development.

The app will allow the listing and management of customers in the Northwind database. The
mobile app that you create will call the Northwind service that you built using the ASP.NET
Core Web API in Chapter 16, Building and Consuming Web Services. If you have not built the
Northwind service, please go back and build it now or download it from the GitHub repository
for this book at the following link: https://github.com/markjprice/cs10dotnet6.

After .NET MAUI has its general availability release expected in May 2022, either a Windows
computer with Visual Studio or a macOS computer with Visual Studio for Mac can be used to
create a .NET MAUI project. But you will need a computer with Windows to compile WinUI 3 apps
and you will need a computer with macOS and Xcode to compile for macOS Catalyst and iOS.

Warning! This chapter was tested using .NET Release Candidate 2, .NET
MAUI Preview 9, and Visual Studio 2022 Preview 5. Future previews are
likely to fix some things that are not working, but also break some things that
were working, until the GA release in Q2 2022. For the latest updates, please
see the updated chapter online at the following link: https://github.com/
markjprice/cs10dotnet6/tree/main/docs/chapter19

https://github.com/markjprice/cs10dotnet6
https://github.com/markjprice/cs10dotnet6/tree/main/docs/chapter19
https://github.com/markjprice/cs10dotnet6/tree/main/docs/chapter19

Building Mobile and Desktop Apps Using .NET MAUI

[76]

Although you can create a .NET MAUI project at the command line and then edit it using
Visual Studio Code, there is no official tooling to help you yet. That is expected to come with
.NET 7.0 in late 2022.

In this chapter, we will cover the following topics:

• Understanding the .NET MAUI delay
• Understanding XAML
• Understanding .NET MAUI
• Building mobile and desktop apps using .NET MAUI
• Consuming a web service from a .NET MAUI app

Understanding the .NET MAUI delay
On September 14, 2021, Microsoft announced that .NET MAUI would be delayed.
"Unfortunately, .NET MAUI will not be ready for production with .NET 6 GA in November."
– Scott Hunter, Director of Program Management, .NET. You can read more from Scott's
announcement at the following link:

https://devblogs.microsoft.com/dotnet/update-on-dotnet-maui/

The following seems a likely timeline of preview and release candidate releases leading to the
general availability release of .NET MAUI in Q2 2022:

• October 12, 2021: .NET MAUI Preview 9 and .NET 6 Release Candidate 2 that were
used for this chapter published in the printed and eBook editions of this book

• November 9, 2021: .NET MAUI Preview 10 and .NET 6 GA
• December 2021: .NET MAUI Preview 11
• January 2022: .NET MAUI Preview 12
• February 2022: .NET MAUI Preview 13
• March 2022: .NET MAUI Release Candidate 1
• April 2022: .NET MAUI Release Candidate 2
• May 2022: .NET MAUI General Availability at Microsoft Build
• November 2022: .NET MAUI included with .NET 7

My publisher, Packt, and I wanted to include this chapter in the published book even though
parts are likely to change after publishing. To keep the chapter up to date as .NET MAUI
previews continue to be released, I plan to update this chapter in the GitHub repository for this
book up until the GA release. You can find the online version of this chapter at the following
link:

https://github.com/markjprice/cs10dotnet6/tree/main/docs/chapter19

Let's start by looking at the markup language used by .NET MAUI.

https://devblogs.microsoft.com/dotnet/update-on-dotnet-maui/
https://github.com/markjprice/cs10dotnet6/tree/main/docs/chapter19

Chapter 19

[77]

Understanding XAML
In 2006, Microsoft released Windows Presentation Foundation (WPF), which was the first
technology to use XAML (eXtensible Application Markup Language). Silverlight, for web and
mobile apps, quickly followed, but it is no longer supported by Microsoft. WPF is still used
today to create Windows desktop applications; for example, Visual Studio for Windows is
partially built using WPF.

XAML can be used to build parts of the following apps:

• .NET MAUI apps for mobile and desktop devices, including Android, iOS, Windows,
and macOS. It is an evolution of a technology named Xamarin.Forms.

• WinUI 3 apps for Windows 10 and 11.
• Universal Windows Platform (UWP) apps for Windows 10 and 11, Xbox, and Mixed

Reality headsets.
• WPF apps for Windows desktop, including Windows 7 and later.
• Avalonia and Uno Platform apps using cross-platform, third-party technologies.

Simplifying code using XAML
XAML simplifies C# code, especially when building a user interface.

Imagine that you need two or more buttons laid out horizontally to create a toolbar.

In C#, you might write this code:

StackPanel toolbar = new();
toolbar.Orientation = Orientation.Horizontal;

Button newButton = new();
newButton.Content = "New";
newButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(newButton);

Button openButton = new();
openButton.Content = "Open";
openButton.Background = new SolidColorBrush(Colors.Pink);
toolbar.Children.Add(openButton);

In XAML, this could be simplified to the following lines of code. When this XAML is processed,
the equivalent properties are set, and methods are called to achieve the same goal as the
preceding C# code:

<StackPanel Name="toolbar" Orientation="Horizontal">
 <Button Name="newButton" Background="Pink">New</Button>
 <Button Name="openButton" Background="Pink">Open</Button>
</StackPanel>

Building Mobile and Desktop Apps Using .NET MAUI

[78]

You can think of XAML as an alternative and easier way of declaring and instantiating .NET
types, especially when defining a user interface and the resources that it uses.

XAML allows resources such as brushes, styles, and themes to be declared at different levels,
like a UI element, a page, or globally for the application to enable resource sharing.

XAML allows data binding between UI elements or between UI elements and objects and
collections.

Choosing common controls
There are lots of predefined controls that you can choose from for common user interface
scenarios. Almost all dialects of XAML support these controls:

Controls Description

Button, ImageButton, Menu,
Toolbar Executing actions

CheckBox, RadioButton Choosing options

Calendar, DatePicker Choosing dates

ComboBox, ListBox, ListView,
TreeView Choosing items from lists and hierarchical trees

Canvas, DockPanel, Grid,
StackPanel, WrapPanel Layout containers that affect their children in different ways

Label, TextBlock Displaying read-only text

RichTextBox, TextBox Editing text

Image, MediaElement Embedding images, videos, and audio files

DataGrid Viewing and editing data as quickly and easily as possible

Scrollbar, Slider, StatusBar Miscellaneous user interface elements

Understanding markup extensions
To support some advanced features, XAML uses markup extensions. Some of the most
important enable element and data binding and the reuse of resources, as shown in the
following list:

• {Binding} links an element to a value from another element or a data source
• {StaticResource} links an element to a shared resource
• {ThemeResource} links an element to a shared resource defined in a theme

You will see some practical examples of markup extensions throughout this chapter.

Chapter 19

[79]

Understanding .NET MAUI
To create a mobile app that only needs to run on iPhones, you might choose to build it with
either the Objective-C or Swift language and the UIKit libraries using the Xcode development
tool.

To create a mobile app that only needs to run on Android phones, you might choose to build
it with either the Java or Kotlin language and the Android SDK libraries using the Android
Studio development tool.

But what if you need to create a mobile app that can run on iPhones and Android phones?
And what if you only want to create that mobile app once using a programming language and
development platform that you are already familiar with? And what if you realized that with
a bit more coding effort to adapt the user interface to desktop size devices, you could target
macOS and Windows desktops too?

.NET MAUI enables developers to build cross-platform mobile apps for Apple iOS (iPhone),
iPadOS, macOS using Catalyst, Windows using WinUI 3, and Google Android using C# and
.NET, which are then compiled to native APIs and executed on native phone and desktop
platforms.

Business logic layer code can be written once and shared between all platforms. User interface
interactions and APIs are different on various mobile and desktop platforms, so the user
interface layer is sometimes custom for each platform.

Like WPF and UWP apps, .NET MAUI uses XAML to define the user interface once for all
platforms using abstractions of platform-specific user interface components. Applications built
with .NET MAUI draw the user interface using native platform widgets, meaning the app's
look and feel fit naturally with the target mobile platform.

A user experience built using .NET MAUI will not perfectly fit a specific platform in a way that
one custom built with native tools for that platform would, but for mobile and desktop apps
that will not have millions of users, it is good enough.

Development tools for mobile first, cloud first
Mobile apps are often supported by services in the cloud.

Satya Nadella, CEO of Microsoft, famously said the following:

"To me, when we say mobile first, it's not the mobility of the device, it's actually the mobility of
the individual experience. [...] The only way you are going to be able to orchestrate the mobility
of these applications and data is through the cloud."

As you have seen earlier in this book, to create an ASP.NET Core Web API service to support
a mobile app, we can use Visual Studio Code. To create .NET MAUI apps, developers can use
either Visual Studio 2022 for Windows or Visual Studio 2022 for Mac.

Building Mobile and Desktop Apps Using .NET MAUI

[80]

When installing Visual Studio 2022, you must select the .NET MAUI (Preview) checkbox that is
part of the Mobile development with .NET workload, as shown in Figure 19.1:

Figure 19.1: Selecting the .NET MAUI workload for Visual Studio 2022

Using Windows to create iOS and macOS apps
If you want to use Visual Studio 2022 for Windows to create an iOS mobile app or a macOS
Catalyst desktop app, then you can connect over a network to a Mac build host. Instructions
can be found at the following link:

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/
connecting-to-mac/

Understanding additional functionality
We will build a cross-platform mobile and desktop app that uses a lot of the skills and
knowledge that you learned in previous chapters. We will also use some functionality that you
have not seen before.

Understanding MVVM
Model-View-ViewModel (MVVM) is a design pattern like MVC. The letters in the acronym
stand for:

• Model: an entity class that represents a data object in a store, like a relational database.
• View: a way to represent data in a graphical user interface, including fields to show

and edit data fields and buttons and other elements to interact with the data.

https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/
https://docs.microsoft.com/en-us/xamarin/ios/get-started/installation/windows/connecting-to-mac/

Chapter 19

[81]

• ViewModel: a class that represents the data fields, actions, and events that can then be
bound to elements like textboxes and buttons in a view.

In MVC, models passed to a view are read-only because they are only passed one way into the
view. That is why immutable records are good for MVC models. But ViewModels are different.
They need to support two-way interactions and if the original data changes during the lifetime
of the object, the view needs to dynamically update.

Understanding the INotificationPropertyChanged interface
The INotifyPropertyChanged interface enables a model class to support two-way data binding.
It works by forcing the class to have an event named PropertyChanged, with a parameter of
type PropertyChangedEventArgs, as shown in the following code:

namespace System.ComponentModel
{
 public class PropertyChangedEventArgs : EventArgs
 {
 public PropertyChangedEventArgs(string? propertyName);
 public virtual string? PropertyName { get; }
 }

 public delegate void PropertyChangedEventHandler(
 object? sender, PropertyChangedEventArgs e);

 public interface INotifyPropertyChanged
 {
 event PropertyChangedEventHandler PropertyChanged;
 }
}

Inside each property in the class, when setting a new value, you must raise the event (if it is not
null) with an instance of PropertyChangedEventArgs containing the name of the property as a
string value, as shown in the following code:

private string companyName;

public string CompanyName
{
 get => companyName;
 set
 {
 companyName = value; // store the new value being set
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(nameof(CompanyName)));
 }
}

Building Mobile and Desktop Apps Using .NET MAUI

[82]

When a user interface control is data-bound to the property, it will automatically update to
show the new value when it changes.

To simplify the implementation, we can use a compiler feature to get the name of the property
by decorating a string parameter with the [CallerMemberName] attribute, as shown in the
following code:

private void NotifyPropertyChanged(
 [CallerMemberName] string propertyName = "")
{
 // if an event handler has been set then invoke
 // the delegate and pass the name of the property
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
}

public string CompanyName
{
 get => companyName;
 set
 {
 companyName = value; // store the new value being set
 NotifyPropertyChanged(); // caller member name is "CompanyName"
 }
}

Understanding ObservableCollection
Related to INotifyPropertyChanged is the INotifyCollectionChanged interface, which is
implemented by the ObservableCollection<T> class. This gives notifications when items get
added, removed, or when the collection is refreshed. When bound to controls like ListView or
TreeView, the user interface will update dynamically to reflect changes.

Understanding dependency services
Mobile platforms such as iOS and Android, and desktop platforms like Windows and macOS,
implement common features in different ways, so we need a way to get a platform-native
implementation of common features. We can do that using dependency services. It works like this:

• Define an interface for the common feature, for example, IDialer for a phone number
dialer on a phone device, or INotificationManager for a pop-up local notification on
desktop and mobile devices.

• Implement the interface for all the platforms that you need to support, for example, iOS
and Android for a phone dialer, and register the implementations with an attribute, as
shown in the following code:

[assembly: Dependency(typeof(PhoneDialer))]

Chapter 19

[83]

namespace Northwind.Maui.iOS
{
 public class PhoneDialer : IDialer

• Get the platform-native implementation of an interface by using the dependency
service, as shown in the following code:

IDialer dialer = DependencyService.Get<IDialer>();

Understanding .NET MAUI user interface
components
.NET MAUI includes some common controls for building user interfaces. They are divided into
four categories:

• Pages: represent cross-platform application screens, for example, ContentPage,
NavigationPage, FlyoutPage, and TabbedPage.

• Layouts: represent the structure of a combination of other user interface components,
for example, Grid, StackLayout, and FlexLayout.

• Views: represent a single user interface component, for example, CarouselView,
CollectionView, Label, Entry, Editor, and Button.

• Cells: represent a single item in a list or table view, for example, TextCell, ImageCell,
SwitchCell, and EntryCell.

Understanding the ContentPage view
The ContentPage view is for simple user interfaces. It has a ToolbarItems property that shows
the actions the user can perform in a platform-native way. Each ToolbarItem can have an icon
and text:

<ContentPage.ToolbarItems>
 <ToolbarItem Text="Add" Activated="Add_Activated"
 Order="Primary" Priority="0" />
 ...
</ContentPage.ToolbarItems>

.NET MAUI Essentials includes a PhoneDialer component, so we will
use that in our project rather than have to define our own phone dialer
dependency service.

You can track the status of the migration progress of .NET MAUI components
at the following link: https://github.com/dotnet/maui/wiki/Status

https://github.com/dotnet/maui/wiki/Status

Building Mobile and Desktop Apps Using .NET MAUI

[84]

Understanding the ListView control
The ListView control is used for long lists of data-bound values of the same type. It can have
headers and footers and its list items can be grouped.

It has cells to contain each list item. There are two built-in cell types: text and image.
Developers can define custom cell types.

Cells can have context actions that appear when the cell is swiped on iPhone or long pressed
on Android. A context action that is destructive can be shown in red, as shown in the following
markup:

<TextCell Text="{Binding CompanyName}" Detail="{Binding Location}">
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete" IsDestructive="True" />
 </TextCell.ContextActions>
</TextCell>

Understanding the Entry and Editor controls
The Entry and Editor controls are used for editing text values and are often data-bound to an
entity model property, as shown in the following markup:

<Editor Text="{Binding CompanyName, Mode=TwoWay}" />

Use Entry for a single line of text. Use Editor for multiple lines of text.

Understanding .NET MAUI handlers
In .NET MAUI, XAML controls are defined in the Microsoft.Maui.Controls namespace.
Components called handlers map these common controls to native controls on each platform.
On iOS, a handler will map a .NET MAUI Button to an iOS-native UIButton defined by UIKit.
On macOS, Button is mapped to NSButton defined by AppKit. On Android, Button is mapped
to an Android-native AppCompatButton.

Handlers have a NativeView property that exposes the underlying native control. This allows
you to work with platform-specific features like properties, methods, and events and customize
all instances of a native control.

Writing platform-specific code
If you need to write code statements that only execute for a specific platform like Android, then
you can use compiler directives.

For example, by default, Entry controls on Android show an underline character.

Chapter 19

[85]

If you want to hide the underline, you could write some Android-specific code to get the handler
for the Entry control, use its NativeView property to access the underlying native control, and
then set the property that controls that feature to false, as shown in the following code:

#if __ANDROID__
 Handlers.EntryHandler.EntryMapper[nameof(IEntry.BackgroundColor)] = (h, v) =>
 {
 (h.NativeView as global::Android.Views.Entry).UnderlineVisible = false;
 };
#endif

Predefined compiler constants include the following:

• __ANDROID__

• __IOS__

• WINDOWS

The compiler #if statement syntax is slightly different from the C# if statement syntax, as
shown in the following code:

#if __IOS__
 // iOS-specific statements
#elif __ANDROID__
 // Android-specific statements
#elif WINDOWS
 // Windows-specific statements
#endif

Building mobile and desktop apps using .NET
MAUI
We will build a mobile and desktop app for managing customers in Northwind.

Creating a virtual Android device for local app
testing
To target Android, you must install at least one Android SDK. A default installation of Visual
Studio with the mobile development workload already includes one Android SDK, but it is
often an older version to support as many Android devices as possible.

Good Practice: If you have never run Xcode, run it now until you see the Start
window to ensure that all its required components are installed and registered.
If you do not run Xcode, then you might get errors with your projects later in
Visual Studio for Mac.

Building Mobile and Desktop Apps Using .NET MAUI

[86]

To use the latest features of .NET MAUI, you must install a more recent Android SDK:

1. In Windows, start Visual Studio 2022.
2. Navigate to Tools | Android | Android Device Manager.
3. In Android Device Manager, click the + New button to create a new device.
4. In the New Device dialog, make the following choices:

1. Base Device: Pixel 2 (+ Store)
2. Processor: x86
3. OS: Pie 9.0 – API 28

5. Click Create.
6. Accept any license agreements.
7. Wait for any required downloads.
8. In Android Device Manager, in the list of devices, in the row for the device that you

just created, click Start.
9. When the Android device has finished starting, click the browser and test that it has

access to the network by navigating to https://www.bbc.co.uk/news.
10. Close the emulator.
11. Restart Visual Studio 2022 to ensure that it is aware of the new emulator.

Creating a .NET MAUI solution
We will now create a project for a cross-platform mobile and desktop app:

1. In Visual Studio for Windows, add a new project, as defined in the following list:
1. Project template: .NET MAUI App (Preview) / maui
2. Workspace/solution file and folder: PracticalApps
3. Project file and folder: Northwind.Maui.Customers

2. Open the project file, and uncomment the element to enable Windows targeting, as
shown highlighted in the following markup:

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFrameworks>net6.0-ios;net6.0-android;net6.0-maccatalyst</
TargetFrameworks>
 <TargetFrameworks Condition="$([MSBuild]::IsOSPlatform('windo
ws')) and '$(MSBuildRuntimeType)' == 'Full'">$(TargetFrameworks);net6.0-
windows10.0.19041</TargetFrameworks>
 <OutputType>Exe</OutputType>
 <RootNamespace>Northwind.Maui.Customers</RootNamespace>

https://www.bbc.co.uk/news

Chapter 19

[87]

 <UseMaui>true</UseMaui>
 <SingleProject>true</SingleProject>

3. To the right of the Run button in the toolbar, set the Framework to net6.0-android, and
select the Pixel 2 - API 28 (Android 9.0 - API 28) emulator image that you previously
created, as shown in Figure 19.2:

Figure 19.2: Selecting Android as the target for startup

4. Click the Run button in the toolbar and wait for the device emulator to start the
Android operating system and launch your mobile app.

5. In the .NET MAUI app, click the Click me button to increment the counter three times,
as shown in Figure 19.3:

Figure 19.3: Incrementing the counter in the Android .NET MAUI app

6. Note the XAML Live Preview window in Visual Studio and that XAML Hot Reload is
connected so that you could make changes to the XAML and see them reflected in the
app without restarting. For example, try changing the text of the Hello World label to
something else, save the XAML file, and click the Hot Reload button in the toolbar.

7. Close the Android device emulator.
8. Navigate to Build | Configuration Manager.

Building Mobile and Desktop Apps Using .NET MAUI

[88]

9. In the row for the Northwind.Maui.Customers project, select the checkbox in the
Deploy column, as shown in Figure 19.4:

Figure 19.4: Enabling the Windows app to deploy to the Windows machine

10. To the right of the Run button in the toolbar, set the Framework to net6.0-windows,
and then select Windows Machine.

11. Make sure that the Debug configuration is selected and then click the green triangle
start button labeled Windows Machine.

12. After a few moments, note that the Windows app displays with the same Click me
button and counter functionality, as shown in Figure 19.5:

Figure 19.5: Incrementing the counter in the Windows .NET MAUI app

13. Close the Windows app.

Creating a view model with two-way data binding
We need to create a view model that will allow us to show and modify a customer entity so the
class should implement two-way data binding:

1. In the Northwind.Maui.Customers project folder, create two classes, one named
CustomerDetailViewModel.cs to show the details of a single customer, and one named
CustomersListViewModel.cs to show a list of customers.

Chapter 19

[89]

2. In CustomerDetailViewModel.cs, modify the statements to define a class that
implements the INotifyPropertyChanged interface and has six properties, as shown in
the following code:

using System.ComponentModel; // INotifyPropertyChanged
using System.Runtime.CompilerServices; // [CallerMemberName]

namespace Northwind.Maui.Customers;

public class CustomerDetailViewModel : INotifyPropertyChanged
{
 public event PropertyChangedEventHandler PropertyChanged;

 private string customerId;
 private string companyName;
 private string contactName;
 private string city;
 private string country;
 private string phone;

 // this attribute sets the propertyName parameter
 // using the context in which this method is called
 private void NotifyPropertyChanged(
 [CallerMemberName] string propertyName = "")
 {
 // if an event handler has been set then invoke
 // the delegate and pass the name of the property
 PropertyChanged?.Invoke(this,
 new PropertyChangedEventArgs(propertyName));
 }

 public string CustomerId
 {
 get => customerId;
 set
 {
 customerId = value;
 NotifyPropertyChanged();
 }
 }

 public string CompanyName
 {
 get => companyName;
 set
 {

Building Mobile and Desktop Apps Using .NET MAUI

[90]

 companyName = value;
 NotifyPropertyChanged();
 }
 }

 public string ContactName
 {
 get => contactName;
 set
 {
 contactName = value;
 NotifyPropertyChanged();
 }
 }

 public string City
 {
 get => city;
 set
 {
 city = value;
 NotifyPropertyChanged();
 NotifyPropertyChanged(nameof(Location));
 }
 }

 public string Country
 {
 get => country;
 set
 {
 country = value;
 NotifyPropertyChanged();
 NotifyPropertyChanged(nameof(Location));
 }
 }

 public string Phone
 {
 get => phone;
 set
 {
 phone = value;
 NotifyPropertyChanged();
 }
 }

Chapter 19

[91]

 public string Location
 {
 get => $"{City}, {Country}";
 }
}

Note the following:
• The class implements INotifyPropertyChanged, so a two-way bound control

like Editor will update the property and vice versa. There is a PropertyChanged
event that is raised whenever one of the properties is modified using a
NotifyPropertyChanged private method to simplify the implementation.

• In addition to properties for storing values retrieved from the HTTP service, the
class defines a read-only Location property. This will be bound to a summary
list of customers to show the location of each one. Whenever the City or Country
property changes, we also need to notify that the Location has changed, or any
views bound to Location would not update correctly.

3. In CustomersListViewModel.cs, modify the statements to define a class that inherits
from ObservableCollection<T> and has a method to populate sample data, as shown in
the following code:

using System.Collections.ObjectModel; // ObservableCollection<T>

namespace Northwind.Maui.Customers;

public class CustomersListViewModel :
 ObservableCollection<CustomerDetailViewModel>
{
 // for testing before calling web service
 public void AddSampleData(bool clearList = true)
 {
 if (clearList) Clear();

 Add(new CustomerDetailViewModel
 {
 CustomerId = "ALFKI",
 CompanyName = "Alfreds Futterkiste",
 ContactName = "Maria Anders",
 City = "Berlin",
 Country = "Germany",
 Phone = "030-0074321"
 });

 Add(new CustomerDetailViewModel
 {

Building Mobile and Desktop Apps Using .NET MAUI

[92]

 CustomerId = "FRANK",
 CompanyName = "Frankenversand",
 ContactName = "Peter Franken",
 City = "München",
 Country = "Germany",
 Phone = "089-0877310"
 });

 Add(new CustomerDetailViewModel
 {
 CustomerId = "SEVES",
 CompanyName = "Seven Seas Imports",
 ContactName = "Hari Kumar",
 City = "London",
 Country = "UK",
 Phone = "(171) 555-1717"
 });
 }
}

Note the following:

• After loading from the service, which will be implemented later in this chapter,
the customers are cached locally using ObservableCollection<T>. This supports
notifications to any bound user interface components, such as ListView, so that the user
interface can redraw itself when the underlying data adds or removes items from the
collection.

• For testing purposes, when the HTTP service is not available, there is a static method to
populate three sample customers.

Creating views for the list of customers and
customer details
You will now replace the existing MainPage with a view to show a list of customers and a view
to show the details for a customer:

1. In the Northwind.Maui.Customers project, delete MainPage.xaml.
2. Open App.xaml and add a style to apply the same background color and font family

to Entry controls as are being applied to Label controls, as shown in the following
markup:

<Style TargetType="Entry">
 <Setter Property="TextColor" Value="{DynamicResource PrimaryTextColor}"
/>
 <Setter Property="FontFamily" Value="OpenSansRegular" />
 <Setter Property="HorizontalOptions" Value="StartAndExpand" />

Chapter 19

[93]

 <Setter Property="WidthRequest" Value="300" />
</Style>

Implementing the customer list view
First, we will create two views for a list of customers and show details of one customer, and
then we will implement the list of customers:

1. Right-click the Northwind.Maui.Customers project folder, choose Add | New Item…,
select Content Page, enter the name CustomersListPage, and click Add, as shown in
Figure 19.6:

Figure 19.6: Adding a new XAML Content Page item

2. Right-click the Views folder, choose Add | New Item…, select Content Page, enter the
name CustomerDetailPage, and click Add.

3. Open CustomersListPage.xaml and modify its contents, as shown in the following
markup:

<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Customers.CustomersListPage"
 BackgroundColor="{DynamicResource PageBackgroundColor}"
 Title="List">

At the time of writing, Visual Studio 2022 does not have project item templates
for .NET MAUI. The ContentPage project item template is for the older
Xamarin.Forms. In the next step, we will replace almost all the markup and
code anyway, so it is not an issue. By May 2022, I expect Visual Studio 2022 to
have project item templates for common .NET MAUI file types.

Building Mobile and Desktop Apps Using .NET MAUI

[94]

 <ContentPage.Content>
 <ListView ItemsSource="{Binding .}"
 VerticalOptions="Center"
 HorizontalOptions="Center"
 IsPullToRefreshEnabled="True"
 ItemTapped="Customer_Tapped"
 Refreshing="Customers_Refreshing">
 <ListView.Header>
 <StackLayout Orientation="Horizontal">
 <Label Text="Northwind Customers"
 FontSize="Subtitle" Margin="10" />
 <Button Text="Add" Clicked="Add_Clicked" />
 </StackLayout>
 </ListView.Header>
 <ListView.ItemTemplate>
 <DataTemplate>
 <TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}"
 TextColor="{DynamicResource PrimaryTextColor}"
 DetailColor="{DynamicResource PrimaryTextColor}" >
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete"
 IsDestructive="True" />
 </TextCell.ContextActions>
 </TextCell>
 </DataTemplate>
 </ListView.ItemTemplate>
 </ListView>
 </ContentPage.Content>
</ContentPage>

Note the following:
• ContentPage has had its Title attribute set to List.
• ListView has its IsPullToRefreshEnabled attribute set to true.
• Handlers have been written for the following events:
• Customer_Tapped: A customer being tapped to show their details.
• Customers_Refreshing: The list being pulled down to refresh its items.
• Customer_Phoned: A cell being swiped left on iPhone or long pressed on

Android and then tapping Phone.
• Customer_Deleted: A cell being swiped left on iPhone or long pressed on

Android and then tapping Delete.
• Add_Clicked: The Add button being clicked.

Chapter 19

[95]

• A data template defines how to display each customer: larger text for the
company name and smaller text for the location underneath.

• An Add button is in the list view header so that users can navigate to a detail
view to add a new customer.

4. Open CustomersListPage.xaml.cs and modify the contents, as shown in the following
code:

using Microsoft.Maui.Controls; // ContentPage, ListView
using Microsoft.Maui.Essentials; // PhoneDialer
using System;
using System.Threading.Tasks;

namespace Northwind.Maui.Customers;

public partial class CustomersListPage : ContentPage
{
 public CustomersListPage()
 {
 InitializeComponent();

 CustomersListViewModel viewModel = new();
 viewModel.AddSampleData();
 BindingContext = viewModel;
 }

 async void Customer_Tapped(object sender, ItemTappedEventArgs e)
 {
 if (e.Item is not CustomerDetailViewModel c) return;

 // navigate to the detail view and show the tapped customer
 await Navigation.PushAsync(new CustomerDetailPage(
 BindingContext as CustomersListViewModel, c));
 }

 async void Customers_Refreshing(object sender, EventArgs e)
 {
 if (sender is not ListView listView) return;

 listView.IsRefreshing = true;

 // simulate a refresh
 await Task.Delay(1500);

 listView.IsRefreshing = false;
 }

Building Mobile and Desktop Apps Using .NET MAUI

[96]

 void Customer_Deleted(object sender, EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 if (menuItem.BindingContext is not CustomerDetailViewModel c) return;
 (BindingContext as CustomersListViewModel).Remove(c);
 }

 async void Customer_Phoned(object sender, EventArgs e)
 {
 MenuItem menuItem = sender as MenuItem;
 if (menuItem.BindingContext is not CustomerDetailViewModel c) return;

 if (await DisplayAlert("Dial a Number",
 "Would you like to call " + c.Phone + "?",
 "Yes", "No"))
 {
 PhoneDialer.Open(c.Phone);
 }
 }

 async void Add_Clicked(object sender, EventArgs e)
 {
 await Navigation.PushAsync(new CustomerDetailPage(
 BindingContext as CustomersListViewModel));
 }
}

Note the following:

• BindingContext is set to an instance of CustomersViewModel, which is populated with
sample data in the constructor of the page.

• When a customer in the list view is tapped, the user is taken to a details view (which
you will implement in the next step).

• When the list view is pulled down, it triggers a simulated refresh that takes 1.5 seconds.
• When a customer is deleted in the list view, they are removed from the bound

customers view model.
• When a customer in the list view is swiped, and the Phone button is tapped, a dialog

prompts the user as to whether they want to dial the number, and if so, the platform-
native implementation will be retrieved using the dependency resolver and then used
to dial the number.

• When the Add button is tapped, the user is taken to the customer detail page to enter
details for a new customer.

Chapter 19

[97]

Implementing the customer detail view
Next, we will implement the customer detail view:

1. Open CustomerDetailPage.xaml and modify its contents, as shown in the following
markup, and note the following:

• Title of the content page has been set to Edit.
• A customer Grid with two columns and six rows is used for the layout.
• Entry views are two-way data bound to properties of the CustomerViewModel

class.
• InsertButton has an event handler to execute code to add a new customer.

<ContentPage
 xmlns="http://schemas.microsoft.com/dotnet/2021/maui"
 xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml"
 x:Class="Northwind.Maui.Customers.Views.CustomerDetailPage"
 BackgroundColor="{DynamicResource PageBackgroundColor}"
 Title="Edit">

 <ContentPage.Content>
 <StackLayout VerticalOptions="Fill" HorizontalOptions="Fill">
 <Grid ColumnDefinitions="Auto,Auto"
 RowDefinitions="Auto,Auto,Auto,Auto,Auto,Auto">
 <Label Text="Customer Id" VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding CustomerId, Mode=TwoWay}" Grid.Column="1"
 MaxLength="5" TextTransform="Uppercase" />
 <Label Text="Company Name" Grid.Row="1"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding CompanyName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="1" />
 <Label Text="Contact Name" Grid.Row="2"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding ContactName, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="2" />
 <Label Text="City" Grid.Row="3"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding City, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="3" />
 <Label Text="Country" Grid.Row="4"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Country, Mode=TwoWay}"
 Grid.Column="1" Grid.Row="4" />
 <Label Text="Phone" Grid.Row="5"
 VerticalOptions="Center" Margin="6" />
 <Entry Text="{Binding Phone, Mode=TwoWay}"

Building Mobile and Desktop Apps Using .NET MAUI

[98]

 Grid.Column="1" Grid.Row="5" />
 </Grid>
 <Button x:Name="InsertButton" Text="Insert Customer"
 Clicked="InsertButton_Clicked" />
 </StackLayout>
 </ContentPage.Content>
</ContentPage>

2. Open CustomerDetailPage.xaml.cs and modify its contents, as shown in the following
code:

using Microsoft.Maui.Controls;
using System;
using System.Threading.Tasks;

namespace Northwind.Maui.Customers;

public partial class CustomerDetailPage : ContentPage
{
 private CustomersListViewModel customers;

 public CustomerDetailPage(CustomersListViewModel customers)
 {
 InitializeComponent();

 this.customers = customers;
 BindingContext = new CustomerDetailViewModel();
 Title = "Add Customer";
 }

 public CustomerDetailPage(CustomersListViewModel customers,
 CustomerDetailViewModel customer)
 {
 InitializeComponent();

 this.customers = customers;
 BindingContext = customer;
 InsertButton.IsVisible = false;
 }

 async void InsertButton_Clicked(object sender, EventArgs e)

Chapter 19

[99]

 {
 customers.Add((CustomerDetailViewModel)BindingContext);
 await Navigation.PopAsync(animated: true);
 }
}

Note the following:

• The default constructor sets the binding context to a new customer instance and the
view title is changed to Add Customer.

• The constructor with a customer parameter sets the binding context to that instance and
hides the Insert button because it is not needed when editing an existing customer due
to two-way data binding.

• When the Insert button is tapped, the new customer is added to the customers view
model and the navigation is moved back to the previous view asynchronously.

Setting the main page for the mobile app
Finally, we need to modify the mobile app to use our customer list wrapped in a navigation
page as the main page instead of the old one that we deleted, which was created by the project
template:

1. Open App.xaml.cs.
2. In the App constructor, modify the statement that creates a MainPage to instead create

an instance of CustomersListPage wrapped in an instance of NavigationPage, as shown
highlighted in the following code:

public App()
{
 InitializeComponent();

 MainPage = new NavigationPage(new CustomersListPage());
}

Testing the mobile app
We will now test the mobile app using the Android device emulator:

1. In Visual Studio, to the right of the Run button in the toolbar, set the target Framework
to net6.0-android and select the Android emulator.

Building Mobile and Desktop Apps Using .NET MAUI

[100]

2. Start with project debugging. The project will build, and then after a few moments, the
Android device emulator will appear with your running .NET MAUI app, as shown in
Figure 19.7:

Figure 19.7: The Android device emulator running the Northwind Customers .NET MAUI app

3. Click Seven Seas Imports and modify Company Name to Seven Oceans Imports, as
shown in the following screenshot of the customer detail page in Figure 19.8:

Figure 19.8: Editing a company name on the customer detail page

4. Click the back button to return to the list of customers and note that the company name
has been updated due to the two-way data binding.

5. Click Add, and then fill in the fields for a new customer.

By default, in the Android device emulator, the virtual keyboard is shown
when typing on a physical keyboard. To hide the virtual keyboard, click the
keyboard icon to the right of the square Android soft button and then toggle
Show virtual keyboard.

Chapter 19

[101]

6. On the customer detail page, click Insert Customer, and after being returned to the list
of customers, note that the new customer has been added to the bottom of the list. (At
the time of writing using .NET MAUI Preview 9, there is a bug that means the list view
does not update properly. Click, hold, and drag down on the list view and then release
to refresh it.)

7. Click and hold on one of the customers to reveal two action buttons, Phone and Delete,
as shown in Figure 19.9:

Figure 19.9: Extra commands for a selected customer

8. Click Phone and note the pop-up prompt to the user to dial the number of that
customer with Yes and No buttons.

9. Click No.
10. Click and hold on one of the customers to reveal two action buttons, Phone and Delete,

and then click on Delete and note that the customer is removed.
11. Click, hold, and drag the list down and then release, and note the animation effect

for refreshing the list, but remember that this feature is simulated, so the list does not
change.

12. Close the Android device emulator.

We will now make the app call the Northwind.WebApi service to get the list of customers.

Consuming a web service from a mobile app
Apple's App Transport Security (ATS) forces developers to use good practice, including secure
connections between an app and a web service. ATS is enabled by default and your mobile
apps will throw an exception if they do not connect securely.

If you need to call a web service that is secured with a self-signed certificate like our Northwind.
WebApi service is, it is possible but complicated. For simplicity, we will allow insecure
connections to the web service and disable the security checks in the mobile app.

Building Mobile and Desktop Apps Using .NET MAUI

[102]

Configuring the web service to allow insecure
requests
First, we will enable the web service to handle insecure connections at a new URL:

1. In the Northwind.WebApi project, in Program.cs, in the section that configures the HTTP
pipeline, comment out the HTTPS redirection, as shown in the following code:

// commented out for the .NET MAUI app project to use
// app.UseHttpsRedirection();

2. In Program.cs, in the UseUrls method, add the insecure URL, as shown highlighted in
the following code:

var builder = WebApplication.CreateBuilder(args);

builder.WebHost.UseUrls(
 "https://localhost:5002"
 , "http://localhost:5008" // for .NET MAUI client
);

3. Start the Northwind.WebApi web service project without debugging.
4. Start Chrome and test that the web service is returning customers as JSON by

navigating to the following URL: http://localhost:5008/api/customers/.
5. Close Chrome but leave the web service running.

Configuring the iOS app to allow insecure connections
Now you will configure the Northwind.Maui.Customers project to disable ATS to allow insecure
HTTP requests to the web service:

1. In the Northwind.Maui.Customers project, in the Platforms/iOS folder, open the Info.
plist file by right-clicking and open it with the XML (Text) Editor.

2. At the bottom of the dictionary, add a new key named NSAppTransportSecurity,
which is a dictionary, and in it, add a key named NSAllowsArbitraryLoads that has a
value of true, as shown highlighted in the following partial markup:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>LSRequiresIPhoneOS</key>
 <true/>
 ...
 <key>NSAppTransportSecurity</key>
 <dict>

Chapter 19

[103]

 <key>NSAllowsArbitraryLoads</key>
 <true/>
 </dict>
</dict>
</plist>

3. Save and close Info.plist.

Configuring the Android app to allow insecure
connections
In a similar way to Apple and ATS, with Android 9 (API level 28) cleartext (that is, non-
HTTPS), support is disabled by default.

Now you will configure the project to enable cleartext to allow insecure HTTP requests to the
web service:

1. In the Platforms/Android folder, in the Properties folder, open MainApplication.cs.
2. In the Application attribute, enable cleartext, as shown highlighted in the following

code:

namespace Northwind.Maui.Customers
{
 [Application(UsesCleartextTraffic = true)]
 public class MainApplication : MauiApplication

Getting customers from the web service
Now, we can modify the customers list page to get its list of customers from the web service
instead of using sample data:

1. In the Northwind.Maui.Customers project, open CustomersListPage.xaml.cs.
2. Import the following additional namespaces:

using System.Collections.Generic; // IEnumerable<T>
using System.Linq; // OrderBy
using System.Net.Http; // HttpClient
using System.Net.Http.Headers; // MediaTypeWithQualityHeaderValue
using System.Net.Http.Json; // ReadFromJsonAsync<T>

3. Modify the CustomersListPage constructor to load the list of customers using the
service proxy and only call the AddSampleData method if an exception occurs, as shown
in the following code:

public CustomersListPage()
{
 InitializeComponent();

Building Mobile and Desktop Apps Using .NET MAUI

[104]

 CustomersListViewModel viewModel = new();

 try
 {
 HttpClient client = new()
 {
 BaseAddress = new Uri("http://localhost:5008/")
 };

 client.DefaultRequestHeaders.Accept.Add(
 new MediaTypeWithQualityHeaderValue("application/json"));

 HttpResponseMessage response = client
 .GetAsync("api/customers").Result;

 response.EnsureSuccessStatusCode();

 IEnumerable<CustomerDetailViewModel> customersFromService =
 response.Content.ReadFromJsonAsync
 <IEnumerable<CustomerDetailViewModel>>().Result;

 foreach (CustomerDetailViewModel c in customersFromService
 .OrderBy(customer => customer.CompanyName))
 {
 viewModel.Add(c);
 }
 }
 catch (Exception ex)
 {
 DisplayAlert(title: "Exception",
 message: $"App will use sample data due to: {ex.Message}",
 cancel: "OK");

 viewModel.AddSampleData();
 }

 BindingContext = viewModel;
}

4. Navigate to Build | Clean Northwind.Maui.Customers because changes to Info.
plist, such as allowing insecure connections, sometimes require a clean build.

5. Navigate to Build | Build Northwind.Maui.Customers.
6. Run the Northwind.Maui.Customers project in the Android emulator and note that 91

customers are loaded from the web service.
7. Close the Android emulator.

Chapter 19

[105]

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore this chapter's topics with more in-depth research.

Exercise 19.1 – Test your knowledge
Answer the following questions:

1. What are the four categories of .NET MAUI user interface components, and what do
they represent?

2. List four types of cell.
3. How can you enable a user to perform an action on a cell in a list view?
4. When would you use an Entry instead of an Editor?
5. What is the effect of setting IsDestructive to true for a menu item in a cell's context

actions?
6. When would you call the methods PushAsync and PopAsync in a .NET MAUI app?
7. What is the difference between Margin and Padding for an element like a Button?
8. How are event handlers attached to an object using XAML?
9. What do XAML styles do?
10. Where can you define resources?

Exercise 19.2 – Explore topics
Use the links on the following page to learn more about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-19---
building-mobile-and-desktop-apps-using-net-maui

Summary
In this chapter, you learned how to build a cross-platform mobile and desktop app using .NET
MAUI, which consumed data from a web service.

In the next chapter, you will learn to protect data and files using hashing, signing encryption,
authentication, and authorization.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-19---building-mobile-and-desktop-apps-using-net-maui
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-19---building-mobile-and-desktop-apps-using-net-maui

[107]

20
Protecting Your Data

and Applications
This chapter is about protecting your data from being viewed by malicious users using
encryption and from being manipulated or corrupted using hashing and signing.

In .NET Core 2.1, Microsoft introduced Span<T>-based cryptography APIs for hashing, random
number generation, asymmetric signature generation and processing, and Rivest-Shamir-
Adleman (RSA) encryption.

Cryptographic operations are performed by operating system implementations so that when an
OS has a security vulnerability fixed, then .NET apps benefit immediately. But this means that
those .NET apps can only use features that an OS supports. You can read about which features
are supported by which OS at the following link:

https://docs.microsoft.com/en-us/dotnet/standard/security/cross-platform-cryptography

This chapter covers the following topics:

• Understanding the vocabulary of protection
• Encrypting and decrypting data
• Hashing data
• Signing data
• Generating random numbers
• Authenticating and authorizing users

Warning! The code in this chapter shows security primitives for basic
educational purposes only. You must not use any of the code in this chapter
for production libraries and apps. Only use professionally written security
libraries that are built using these security primitives and that have been
hardened for real-world use following the latest best security practices.

https://docs.microsoft.com/en-us/dotnet/standard/security/cross-platform-cryptography

Protecting Your Data and Applications

[108]

Understanding the vocabulary of protection
There are many techniques for protecting your data; below we'll briefly introduce some of the
most popular ones and you will see more detailed explanations and practical implementations
throughout this chapter:

• Encryption and decryption: These are a two-way process for converting your data
from cleartext into ciphertext and back again.

• Hashes: This is a one-way process for generating a hash value to securely store
passwords or can be used to detect malicious changes or corruption of your data.
Simple hashes should not be used for passwords. You should use PBKDF2, bcrypt, or
scrypt because these guarantee that there cannot be two inputs that generate the same
hash.

• Signatures: This technique is used to ensure that data has come from a claimed source
by validating a signature that has been applied to some data against someone's public
key.

• Authentication: This technique is used to identify someone by checking their
credentials.

• Authorization: This technique is used to ensure that someone has permission to perform
an action or work with some data by checking the roles or groups they belong to.

Keys and key sizes
Protection algorithms often use a key. Keys are represented by byte arrays of varying sizes.
Keys are used for various purposes, as shown in the following list:

• Encryption and decryption: AES, 3DES, RC2, Rijndael, RSA.
• Signing and verifying: RSA, ECDSA, DSA.
• Message authentication and validation: HMAC.
• Key agreement: Diffie-Hellman, Elliptical Curve Diffie-Hellman.

Good Practice: If security is important to you (and it should be!), then hire an
experienced security expert for guidance rather than relying on advice found
online. It is very easy to make small mistakes and leave your applications and
data vulnerable without realizing until it is too late!

Good Practice: Choose a bigger key size for stronger protection. This is
an oversimplification because some RSA implementations support up to
16,384-bit keys that can take days to generate and would be overkill in most
scenarios. A 2048-bit key should be sufficient until the year 2030, at which
point you should upgrade to 3192-bit keys.

Chapter 20

[109]

Keys for encryption and decryption can be symmetric (also known as shared or secret because
the same key is used to encrypt and decrypt and therefore must be kept safe) or asymmetric (a
public-private key pair where the public key is used to encrypt and only the private key can be
used to decrypt).

In the real world, get the best of both worlds by using a symmetric key to encrypt your data,
and an asymmetric key to share the symmetric key. This is how Secure Sockets Layer (SSL)
2.0 encryption on the internet worked in 1995. Today, what is still often called SSL is actually
Transport Layer Security (TLS), which uses key agreement rather than RSA-encrypted session
keys.

Keys come in various byte array sizes.

IVs and block sizes
When encrypting large amounts of data, there are likely to be repeating sequences. For
example, in an English document, in the sequence of characters, the would appear frequently,
and each time it might get encrypted as hQ2. A good cracker would use this knowledge to make
it easier to crack the encryption, as shown in the following output:

When the wind blew hard the umbrella broke.
5:s4&hQ2aj#D f9d1d£8fh"&hQ2s0)an DF8SFd#][1

We can avoid repeating sequences by dividing data into blocks. After encrypting a block, a
byte array value is generated from that block, and this value is fed into the next block to adjust
the algorithm. The next block is encrypted so the output is different even for the same input as
the preceding block. To encrypt the first block, we need a byte array to feed in. This is called the
initialization vector (IV).

An IV should:

• Be generated randomly along with every encrypted message.
• Be transmitted along with the encrypted message.
• Not itself be a secret.

Salts
A salt is a random byte array that is used as an additional input to a one-way hash function.
If you do not use a salt when generating hashes, then when many of your users register with
123456 as their password (about 8% of users still did this in 2016!), they will all have the same
hashed value, and their accounts will be vulnerable to a dictionary attack.

Good Practice: Symmetric key encryption algorithms are fast and can encrypt
large amounts of data using a stream. Asymmetric key encryption algorithms
are slow and can only encrypt small byte arrays. The most common use of
asymmetric keys is signature creation and validation.

Protecting Your Data and Applications

[110]

When a user registers, the salt should be randomly generated and concatenated with their
chosen password before being hashed. The output (but not the original password) is stored
with the salt in the database.

Then, when the user logs in next and enters their password, you look up their salt, concatenate
it with the entered password, regenerate a hash, and then compare its value with the hash
stored in the database. If they are the same, you know they entered the correct password.

Even salting passwords is not enough for truly secure storage. You should do a lot more work,
such as PBKDF2, bcrypt, or scrypt, but such work is beyond the scope of this book.

Generating keys and IVs
Keys and IVs are byte arrays. Both parties that want to exchange encrypted data need the key
and IV values, but byte arrays can be difficult to exchange reliably.

You can reliably generate a key or IV using a password-based key derivation function
(PBKDF2). A good one is the Rfc2898DeriveBytes class, which takes a password, a salt, an
iteration count, and a hash algorithm (the default is SHA-1, which is no longer recommended).
It then generates keys and IVs by making calls to its GetBytes method. The iteration count is
the number of times that the password is hashed during the process. The more iterations, the
harder it will be to crack.

Although the Rfc2898DeriveBytes class can be used to generate the IV as well as the key, the
IV should be randomly generated each time and transmitted with the encrypted message as
plaintext because it does not need to be secret.

Encrypting and decrypting data
In .NET, there are multiple encryption algorithms you can choose from.

In legacy .NET Framework, some algorithms are implemented by the operating system and
their names are suffixed with CryptoServiceProvider or Cng. Some algorithms are implemented
in the .NET BCL and their names are suffixed with Managed.

In modern .NET, all algorithms are implemented by the operating system. If the OS algorithms
are certified by the Federal Information Processing Standards (FIPS), then .NET uses FIPS-
certified algorithms.

Generally, you will always use an abstract class like Aes and its Create factory method to get an
instance of an algorithm, so you will not need to know if you are using CryptoServiceProvider
or Managed anyway.

Good Practice: The salt size should be 8 bytes or larger, and the iteration count
should be a value that takes about 100ms to generate a key and IV for the
encryption algorithm on the target machine. This value will increase over time
as CPUs improve. In the example code written below, we use 150,000, but that
value will already be too low for some computers by the time you read this.

Chapter 20

[111]

Some algorithms use symmetric keys, and some use asymmetric keys. The main asymmetric
encryption algorithm is RSA. Ron Rivest, Adi Shamir, and Leonard Adleman described the
algorithm in 1977. A similar algorithm was designed in 1973 by Clifford Cocks, an English
mathematician working for GCHQ, the British intelligence agency, but it was not declassified
until 1997 so Rivest, Shamir, and Adleman got the credit and had their names immortalized in
the RSA acronym.

Symmetric encryption algorithms use CryptoStream to encrypt or decrypt large amounts of
bytes efficiently. Asymmetric algorithms can only handle small amounts of bytes; stored in a
byte array instead of a stream.

The most common symmetric encryption algorithms derive from the abstract class named
SymmetricAlgorithm and are shown in the following list:

• AES
• DESCryptoServiceProvider
• TripleDES
• RC2CryptoServiceProvider
• RijndaelManaged

If you need to write code to decrypt some data sent by an external system, then you will have
to use whatever algorithm the external system used to encrypt the data. Or, if you need to send
encrypted data to a system that can only decrypt using a specific algorithm, then again, you
will not have a choice of algorithm.

If your code will both encrypt and decrypt, then you can choose the algorithm that best suits
your requirements for strength, performance, and so on.

Encrypting symmetrically with AES
To make it easier to reuse your protection code in multiple projects, we will create a static class
named Protector in its own class library and then reference it in a console app.

Let's go!

1. Use your preferred code editor to create a new solution/workspace named Chapter20.
2. Add a console app project, as defined in the following list:

1. Project template: Console Application / console
2. Workspace/solution file and folder: Chapter20
3. Project file and folder: EncryptionApp

Good Practice: Choose the Advanced Encryption Standard (AES), which is
based on the Rijndael algorithm, for symmetric encryption. Choose RSA for
asymmetric encryption. Do not confuse RSA with DSA. Digital Signature
Algorithm (DSA) cannot encrypt data. It can only generate and verify
signatures.

Protecting Your Data and Applications

[112]

3. Add a new class library named CryptographyLib to the Chapter20 solution/workspace.
1. In Visual Studio, set the startup project for the solution to the current selection.
2. In Visual Studio Code, select EncryptionApp as the active OmniSharp project.

4. In the CryptographyLib project, rename the Class1.cs file to Protector.cs.
5. In the EncryptionApp project, add a project reference to the CryptographyLib library, as

shown in the following markup:
<ItemGroup>
 <ProjectReference
 Include="..\CryptographyLib\CryptographyLib.csproj" />
</ItemGroup>

6. Build the EncryptionApp project and make sure there are no compile errors.
7. Open the Protector.cs file and change its contents to define a static class named

Protector with fields for storing a salt byte array and a large number of iterations, and
methods to Encrypt and Decrypt, as shown in the following code:

using System.Diagnostics;
using System.Security.Cryptography;
using System.Security.Principal;
using System.Text;
using System.Xml.Linq;

using static System.Console;
using static System.Convert;

namespace Packt.Shared
{
 public static class Protector
 {
 // salt size must be at least 8 bytes, we will use 16 bytes
 private static readonly byte[] salt =
 Encoding.Unicode.GetBytes("7BANANAS");

 // iterations should be high enough to take at least 100ms to
 // generate a Key and IV on the target machine. 150,000 iterations
 // takes 139ms on my 11th Gen Intel Core i7-1165G7 @ 2.80GHz.
 private static readonly int iterations = 150_000;

 public static string Encrypt(
 string plainText, string password)
 {
 byte[] encryptedBytes;
 byte[] plainBytes = Encoding.Unicode.GetBytes(plainText);

Chapter 20

[113]

 using (Aes aes = Aes.Create()) // abstract class factory method
 {
 // record how long it takes to generate the Key and IV
 Stopwatch timer = Stopwatch.StartNew();

 using (Rfc2898DeriveBytes pbkdf2 = new(
 password, salt, iterations))
 {
 aes.Key = pbkdf2.GetBytes(32); // set a 256-bit key
 aes.IV = pbkdf2.GetBytes(16); // set a 128-bit IV
 }

 timer.Stop();

 WriteLine("{0:N0} milliseconds to generate Key and IV using {1:N0}
iterations.",
 arg0: timer.ElapsedMilliseconds,
 arg1: iterations);

 using (MemoryStream ms = new())
 {
 using (ICryptoTransform transformer = aes.CreateEncryptor())
 {
 using (CryptoStream cs = new(
 ms, transformer, CryptoStreamMode.Write))
 {
 cs.Write(plainBytes, 0, plainBytes.Length);
 }
 }
 encryptedBytes = ms.ToArray();
 }
 }

 return ToBase64String(encryptedBytes);
 }

 public static string Decrypt(
 string cipherText, string password)
 {
 byte[] plainBytes;
 byte[] cryptoBytes = FromBase64String(cipherText);

 using (Aes aes = Aes.Create())
 {

Protecting Your Data and Applications

[114]

 using (Rfc2898DeriveBytes pbkdf2 = new(
 password, salt, iterations))
 {
 aes.Key = pbkdf2.GetBytes(32);
 aes.IV = pbkdf2.GetBytes(16);
 }

 using (MemoryStream ms = new())
 {
 using (ICryptoTransform transformer = aes.CreateDecryptor())
 {
 using (CryptoStream cs = new(
 ms, transformer, CryptoStreamMode.Write))
 {
 cs.Write(cryptoBytes, 0, cryptoBytes.Length);
 }
 }
 plainBytes = ms.ToArray();
 }
 }

 return Encoding.Unicode.GetString(plainBytes);
 }
 }
}

Note the following points about the preceding code:
• Although the salt and iteration count can be hardcoded (but preferably stored

in the message itself), the password must be passed as a parameter at runtime
when calling the Encrypt and Decrypt methods.

• We use a temporary MemoryStream type to store the results of encrypting and
decrypting, and then call ToArray to turn the stream into a byte array.

• We convert the encrypted byte arrays to and from a Base64 encoding to make
them easier to read for humans.

8. In the EncryptionApp project, open the Program.cs file and then import the namespace
for the Protector class, the namespace for the CryptographicException class, and
statically import the Console class, as shown in the following code:

Good Practice: Never hardcode a password in your source code
because, even after compilation, the password can be read in the
assembly by using disassembler tools.

Chapter 20

[115]

using System.Security.Cryptography; // CryptographicException
using Packt.Shared; // Protector

using static System.Console;

9. In Program.cs, add statements to prompt the user for a message and a password, and
then encrypt and decrypt, as shown in the following code:

Write("Enter a message that you want to encrypt: ");
string? message = ReadLine();

Write("Enter a password: ");
string? password = ReadLine();

if ((password is null) || (message is null))
{
 WriteLine("Message or password cannot be null.");
 return;
}

string cipherText = Protector.Encrypt(message, password);

WriteLine($"Encrypted text: {cipherText}");

Write("Enter the password: ");
string? password2Decrypt = ReadLine();

if (password2Decrypt is null)
{
 WriteLine("Password to decrypt cannot be null.");
 return;
}

try
{
 string clearText = Protector.Decrypt(cipherText, password2Decrypt);
 WriteLine($"Decrypted text: {clearText}");
}
catch (CryptographicException ex)
{
 WriteLine("{0}\nMore details: {1}",
 arg0: "You entered the wrong password!",
 arg1: ex.Message);
}
catch (Exception ex)

Protecting Your Data and Applications

[116]

{
 WriteLine("Non-cryptographic exception: {0}, {1}",
 arg0: ex.GetType().Name,
 arg1: ex.Message);
}

10. Run the code, try entering a message and password to encrypt, enter the same
password to decrypt, and view the result, as shown in the following output:

Enter a message that you want to encrypt: Hello Bob
Enter a password: secret
139 milliseconds to generate Key and IV using 150,000 iterations.
Encrypted text: eWt8sgL7aSt5DC9g74ONEPO7mjd55lXB/MmCZpUsFE0=
Enter the password: secret
Decrypted text: Hello Bob

11. Rerun the code and try entering a message and password to encrypt, but this time enter
the password incorrectly to decrypt and view the result, as shown in the following
output:

Enter a message that you want to encrypt: Hello Bob
Enter a password: secret
134 milliseconds to generate Key and IV using 150,000 iterations.
Encrypted text: eWt8sgL7aSt5DC9g74ONEPO7mjd55lXB/MmCZpUsFE0=
Enter the password: 123456
You entered the wrong password!
More details: Padding is invalid and cannot be removed.

Hashing data
In .NET, there are multiple hash algorithms you can choose from. Some do not use any key,
some use symmetric keys, and some use asymmetric keys.

There are two important factors to consider when choosing a hash algorithm:

If your output shows the number of milliseconds less than 100, then
increase the number of iterations until the number of milliseconds is
100 or higher. Note that a different number of iterations will affect the
hashed value so it will look different from the above output.

Good Practice: To support future encryption upgrades, record information
about what choices you made, for example, AES-256, CBC mode with PKCS#7
padding, and PBKDF2 and its hash algorithm and iteration count. This is
known as cryptographic agility.

Chapter 20

[117]

• Collision resistance: How rare is it to find two inputs that share the same hash?
• Preimage resistance: For a hash, how difficult would it be to find another input that

shares the same hash?

Some common non-keyed hashing algorithms are shown in the following table:

Algorithm Hash size Description
MD5 16 bytes This is commonly used because it is fast,

but it is not collision-resistant.
SHA1 20 bytes The use of SHA1 on the internet has been

deprecated since 2011.
SHA256, SHA384, SHA512 32 bytes, 48 bytes, 64 bytes These are the Secure Hashing Algorithm

2nd generation (SHA2) algorithms with
different hash sizes.

Hashing with the commonly used SHA256
We will now add a class to represent a user stored in memory, a file, or a database. We will use
a dictionary to store multiple users in memory:

1. In the CryptographyLib class library project, add a new class file named User.cs, and
give it three properties for storing a user's name, a random salt value, and their salted
and hashed password, as shown in the following code:

namespace Packt.Shared;

public class User
{
 public string Name { get; set; }
 public string Salt { get; set; }
 public string SaltedHashedPassword { get; set; }

 public User(string name, string salt,
 string saltedHashedPassword)
 {
 Name = name;
 Salt = salt;
 SaltedHashedPassword = saltedHashedPassword;
 }
}

Good Practice: Avoid MD5 and SHA1 because they have known weaknesses.
Choose a larger hash size to reduce the possibility of repeated hashes. The first
publicly known MD5 collision happened in 2010. The first publicly known
SHA1 collision happened in 2017. You can read more at the following link:
https://arstechnica.co.uk/information-technology/2017/02/at-
deaths-door-for-years-widely-used-sha1-function-is-now-dead/

https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/
https://arstechnica.co.uk/information-technology/2017/02/at-deaths-door-for-years-widely-used-sha1-function-is-now-dead/

Protecting Your Data and Applications

[118]

2. In the Protector class, add statements to declare a dictionary to store users and define
two methods, one to register a new user and one to validate their password when they
subsequently log in, as shown in the following code:

private static Dictionary<string, User> Users = new();

public static User Register(
 string username, string password)
{
 // generate a random salt
 RandomNumberGenerator rng = RandomNumberGenerator.Create();
 byte[] saltBytes = new byte[16];
 rng.GetBytes(saltBytes);
 string saltText = ToBase64String(saltBytes);

 // generate the salted and hashed password
 string saltedhashedPassword = SaltAndHashPassword(password, saltText);

 User user = new(username, saltText, saltedhashedPassword);

 Users.Add(user.Name, user);

 return user;
}

// check a user's password that is stored
// in the private static dictionary Users
public static bool CheckPassword(string username, string password)
{
 if (!Users.ContainsKey(username))
 {
 return false;
 }

 User u = Users[username];

 return CheckPassword(password,
 u.Salt, u.SaltedHashedPassword);
}

// check a user's password using salt and hashed password
public static bool CheckPassword(string password,
 string salt, string hashedPassword)
{
 // re-generate the salted and hashed password
 string saltedhashedPassword = SaltAndHashPassword(

Chapter 20

[119]

 password, salt);

 return (saltedhashedPassword == hashedPassword);
}

private static string SaltAndHashPassword(string password, string salt)
{
 using (SHA256 sha = SHA256.Create())
 {
 string saltedPassword = password + salt;
 return ToBase64String(sha.ComputeHash(
 Encoding.Unicode.GetBytes(saltedPassword)));
 }
}

3. Use your preferred code editor to add a new console app named HashingApp to the
Chapter20 solution/workspace.

4. In Visual Studio Code, select HashingApp as the active OmniSharp project.
5. In the HashingApp project, add a project reference to CryptographyLib.
6. Build the HashingApp project and make sure there are no compile errors.
7. In Program.cs, import the Packt.Shared namespace.
8. In Program.cs, add statements to register a user and prompt to register a second user,

and then prompt to log in as one of those users and validate the password, as shown in
the following code:

WriteLine("Registering Alice with Pa$$w0rd:");
User alice = Protector.Register("Alice", "Pa$$w0rd");

WriteLine($" Name: {alice.Name}");
WriteLine($" Salt: {alice.Salt}");
WriteLine(" Password (salted and hashed): {0}",
 arg0: alice.SaltedHashedPassword);
WriteLine();

Write("Enter a new user to register: ");
string? username = ReadLine();

Write($"Enter a password for {username}: ");
string? password = ReadLine();

if ((username is null) || (password is null))
{
 WriteLine("Username or password cannot be null.");
 return;
}

Protecting Your Data and Applications

[120]

WriteLine("Registering a new user:");
User newUser = Protector.Register(username, password);
WriteLine($" Name: {newUser.Name}");
WriteLine($" Salt: {newUser.Salt}");
WriteLine(" Password (salted and hashed): {0}",
 arg0: newUser.SaltedHashedPassword);
WriteLine();

bool correctPassword = false;

while (!correctPassword)
{
 Write("Enter a username to log in: ");
 string? loginUsername = ReadLine();

 Write("Enter a password to log in: ");
 string? loginPassword = ReadLine();

 if ((loginUsername is null) || (loginPassword is null))
 {
 WriteLine("Login username or password cannot be null.");
 return;
 }

 correctPassword = Protector.CheckPassword(
 loginUsername, loginPassword);

 if (correctPassword)
 {
 WriteLine($"Correct! {loginUsername} has been logged in.");
 }
 else
 {
 WriteLine("Invalid username or password. Try again.");
 }
}

9. Run the code, register a new user with the same password as Alice, and view the result,
as shown in the following output:

Registering Alice with Pa$$w0rd:
 Name: Alice
 Salt: I1I1dzIjkd7EYDf/6jaf4w==
 Password (salted and hashed): pIoadjE4W/XaRFkqS3br3UuAuPv/3LVQ8kzj6mvcz
+s=

Chapter 20

[121]

Enter a new user to register: Bob
Enter a password for Bob: Pa$$w0rd
Registering a new user:
 Name: Bob
 Salt: 1X7ym/UjxTiuEWBC/vIHpw==
 Password (salted and hashed):
DoBFtDhKeN0aaaLVdErtrZ3mpZSvpWDQ9TXDosTq0sQ=

Enter a username to log in: Alice
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob
Enter a password to log in: secret
Invalid username or password. Try again.
Enter a username to log in: Bob
Enter a password to log in: Pa$$w0rd
Correct! Bob has been logged in.

Signing data
To prove that some data has come from someone we trust, it can be signed. You do not sign the
data itself; instead, you sign a hash of the data, because all the signature algorithms first hash
the data as an implementation step. They also allow you to shortcut this step and provide the
data already hashed.

We will be using the SHA256 algorithm to generate the hash, combined with the RSA algorithm
for signing the hash.

We could use DSA for both hashing and signing. DSA is faster than RSA for generating a
signature, but it is slower than RSA for validating a signature. Since a signature is generated
once but validated many times, it is best to have faster validation than generation.

Even if two users register with the same password, they have randomly
generated salts so that their salted and hashed passwords are different.

Good Practice: DSA is rarely used today. The improved equivalent is Elliptic
Curve DSA. Although ECDSA is slower than RSA, it generates a shorter
signature with the same level of security.

Protecting Your Data and Applications

[122]

Signing with SHA256 and RSA
Let's explore signing data and checking the signature with a public key:

1. In the Protector class, add statements to declare a field to store a public key as a string
value, and two methods to generate and validate a signature, as shown in the following
code:

public static string? PublicKey;

public static string GenerateSignature(string data)
{
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 SHA256 sha = SHA256.Create();
 byte[] hashedData = sha.ComputeHash(dataBytes);
 RSA rsa = RSA.Create();

 PublicKey = rsa.ToXmlString(false); // exclude private key

 return ToBase64String(rsa.SignHash(hashedData,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1));
}

public static bool ValidateSignature(
 string data, string signature)
{
 if (PublicKey is null) return false;
 byte[] dataBytes = Encoding.Unicode.GetBytes(data);
 SHA256 sha = SHA256.Create();
 byte[] hashedData = sha.ComputeHash(dataBytes);
 byte[] signatureBytes = FromBase64String(signature);
 RSA rsa = RSA.Create();
 rsa.FromXmlString(PublicKey);
 return rsa.VerifyHash(hashedData, signatureBytes,
 HashAlgorithmName.SHA256, RSASignaturePadding.Pkcs1);
}

Note the following from the preceding code:
• Only the public part of the public-private key pair needs to be made available

to the code that is checking the signature so that we can pass false when we
call the ToXmlString method. The private part is required to sign data and must
be kept secret because anyone with the private part can sign data as if they are
you!

• The hash algorithm used to generate the hash from the data by calling
the SignHash method must match the hash algorithm set when calling the
VerifyHash method. In the preceding code, we used SHA256.

Chapter 20

[123]

Now we can test signing some data and checking its signature.
2. Use your preferred code editor to add a new console app named SigningApp to the

Chapter20 solution/workspace.
3. In Visual Studio Code, select SigningApp as the active OmniSharp project.
4. In the SigningApp project, add a project reference to CryptographyLib.
5. Build the SigningApp project and make sure there are no compile errors.
6. In Program.cs, import the Packt.Shared namespace.
7. Add statements to prompt the user to enter some text, sign it, check its signature, then

modify the signature, and check the signature again to deliberately cause a mismatch,
as shown in the following code:

Write("Enter some text to sign: ");
string? data = ReadLine();

string signature = Protector.GenerateSignature(data);

WriteLine($"Signature: {signature}");
WriteLine("Public key used to check signature:");
WriteLine(Protector.PublicKey);

if (Protector.ValidateSignature(data, signature))
{
 WriteLine("Correct! Signature is valid.");
}
else
{
 WriteLine("Invalid signature.");
}

// simulate a fake signature by replacing the
// first character with an X or Y
string fakeSignature = signature.Replace(signature[0], 'X');
if (fakeSignature == signature)
{
 fakeSignature = signature.Replace(signature[0], 'Y');
}

if (Protector.ValidateSignature(data, fakeSignature))
{
 WriteLine("Correct! Signature is valid.");
}
else
{
 WriteLine($"Invalid signature: {fakeSignature}");
}

Protecting Your Data and Applications

[124]

8. Run the code and enter some text, as shown in the following output (edited for length):

Enter some text to sign: The cat sat on the mat.
Signature: BXSTdM...4Wrg==
Public key used to check signature:
<RSAKeyValue><Modulus>nHtwl3...mw3w==</Modulus><Exponent>AQAB</Exponent></
RSAKeyValue>
Correct! Signature is valid.
Invalid signature: XXSTdM...4Wrg==

Generating random numbers
Sometimes, you need to generate random numbers, perhaps in a game that simulates rolls of
a die, or for use with cryptography in encryption or signing. There are a couple of classes that
can generate random numbers in .NET.

Generating random numbers for games and similar
apps
In scenarios that don't need truly random numbers like games, you can create an instance of the
Random class, as shown in the following code example:

Random r = new();

Random has a constructor with a parameter for specifying a seed value used to initialize its
pseudo-random number generator, as shown in the following code:

Random r = new(Seed: 46378);

As you learned in Chapter 2, Speaking C#, parameter names should use camel case. The
developer who defined the constructor for the Random class broke this convention! The
parameter name should be seed, not Seed.

Once you have a Random object, you can call its methods to generate random numbers, as shown
in the following code examples:

// minValue is an inclusive lower bound i.e. 1 is a possible value
// maxValue is an exclusive upper bound i.e. 7 is not a possible value

Good Practice: Shared seed values act as a secret key, so if you use the same
random number generation algorithm with the same seed value in two
applications, then they can generate the same "random" sequences of numbers.
Sometimes this is necessary, for example, when synchronizing a GPS receiver
with a satellite, or when a game needs to randomly generate the same level.
But usually, you want to keep your seed secret.

Chapter 20

[125]

int dieRoll = r.Next(minValue: 1, maxValue: 7); // returns 1 to 6

double randomReal = r.NextDouble(); // returns 0.0 to less than 1.0

byte[] arrayOfBytes = new byte[256];
r.NextBytes(arrayOfBytes); // 256 random bytes in an array

The Next method takes two parameters: minValue and maxValue. But maxValue is not the
maximum value that the method returns! It is an exclusive upper bound, meaning it is one more
than the maximum value. In a similar way, the value returned by the NextDouble method is
greater than or equal to 0.0, and less than 1.0.

Generating random numbers for cryptography
The Random class generates cryptographically weak pseudo-random numbers. This is not
good enough for cryptography. If the random numbers are not truly random, then they are
predictable, and then a cracker can break your protection.

For cryptographically strong pseudo-random numbers, you must use a
RandomNumberGenerator-derived type, such as RNGCryptoServiceProvider.

We will now create a method to generate a truly random byte array that can be used in
algorithms like encryption for key and IV values:

1. In the Protector class, add statements to define a method to get a random key or IV for
use in encryption, as shown in the following code:

public static byte[] GetRandomKeyOrIV(int size)
{
 RandomNumberGenerator r = RandomNumberGenerator.Create();
 byte[] data = new byte[size];
 r.GetBytes(data);

 // data is an array now filled with
 // cryptographically strong random bytes
 return data;
}

Now we can test the random bytes generated for a truly random encryption key or IV.
2. Use your preferred code editor to add a new console app named RandomizingApp to the

Chapter20 solution/workspace.
3. In Visual Studio Code, select RandomizingApp as the active OmniSharp project.
4. In the RandomizingApp project, add a project reference to CryptographyLib.
5. Build the RandomizingApp project and make sure there are no compile errors.
6. In Program.cs, import the Packt.Shared namespace.

Protecting Your Data and Applications

[126]

7. Add statements to prompt the user to enter a size of byte array and then generate
random byte values and write them to the console, as shown in the following code:

Write("How big do you want the key (in bytes): ");
string? size = ReadLine();

byte[] key = Protector.GetRandomKeyOrIV(int.Parse(size));

WriteLine($"Key as byte array:");
for (int b = 0; b < key.Length; b++)
{
 Write($"{key[b]:x2} ");
 if (((b + 1) % 16) == 0) WriteLine();
}
WriteLine();

8. Run the code, enter a typical size for the key, such as 256, and view the randomly
generated key, as shown in the following output:

How big do you want the key (in bytes): 256
Key as byte array:
f1 57 3f 44 80 e7 93 dc 8e 55 04 6c 76 6f 51 b9
e8 84 59 e5 8d eb 08 d5 e6 59 65 20 b1 56 fa 68
...

Authenticating and authorizing users
Authentication is the process of verifying the identity of a user by validating their credentials
against some authority. Credentials include a username and password combination, or a
fingerprint or face scan. Once authenticated, the authority can make claims about the user, for
example, what their email address is, and what groups or roles they belong to.

Authorization is the process of verifying the membership of groups or roles before allowing
access to resources such as application functions and data. Although authorization can be
based on individual identity, it is good security practice to authorize based on group or role
membership (that can be indicated via claims) even when there is only one user in the role
or group. This is because that allows the user's membership to change in the future without
reassigning the user's individual access rights.

For example, instead of assigning access rights to Buckingham Palace to Elizabeth Alexandra
Mary Windsor (a user), you would assign access rights to the Monarch of the United Kingdom of
Great Britain and Northern Ireland and other realms and territories (a role) and then add Elizabeth
as the only member of that role. Then, at some point in the future, you do not need to change
any access rights for the Monarch role; you just remove Elizabeth and add the next person in
the line of succession. And of course, you would implement the line of succession as a queue.

Chapter 20

[127]

Authentication and authorization mechanisms
There are multiple authentication and authorization mechanisms to choose from. They all
implement a pair of interfaces in the System.Security.Principal namespace: IIdentity and
IPrincipal.

Identifying a user
IIdentity represents a user, so it has a Name property and an IsAuthenticated property to
indicate whether they are anonymous or whether they have been successfully authenticated
from their credentials, as shown in the following code:

namespace System.Security.Principal
{
 public interface IIdentity
 {
 string? AuthenticationType { get; }
 bool IsAuthenticated { get; }
 string? Name { get; }
 }
}

A common class that implements this interface is GenericIdentity, which inherits from
ClaimsIdentity, as shown in the following code:

namespace System.Security.Principal
{
 public class GenericIdentity : ClaimsIdentity
 {
 public GenericIdentity(string name);
 public GenericIdentity(string name, string type);
 protected GenericIdentity(GenericIdentity identity);
 public override string AuthenticationType { get; }
 public override IEnumerable<Claim> Claims { get; }
 public override bool IsAuthenticated { get; }
 public override string Name { get; }
 public override ClaimsIdentity Clone();
 }
}

The Claim objects have a Type property that indicates if the claim is for their name, their
membership of a role or group, their date of birth, and so on, as shown in the following code:

namespace System.Security.Claims
{
 public class Claim
 {

Protecting Your Data and Applications

[128]

 // various constructors

 public string Type { get; }
 public ClaimsIdentity? Subject { get; }
 public IDictionary<string, string> Properties { get; }
 public string OriginalIssuer { get; }
 public string Issuer { get; }
 public string ValueType { get; }
 public string Value { get; }
 protected virtual byte[]? CustomSerializationData { get; }
 public virtual Claim Clone();
 public virtual Claim Clone(ClaimsIdentity? identity);
 public override string ToString();
 public virtual void WriteTo(BinaryWriter writer);
 protected virtual void WriteTo(BinaryWriter writer, byte[]? userData);
 }

 public static class ClaimTypes
 {
 public const string Actor = "http://schemas.xmlsoap.org/ws/2009/09/identity/
claims/actor";
 public const string NameIdentifier = "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/nameidentifier";
 public const string Name = "http://schemas.xmlsoap.org/ws/2005/05/identity/
claims/name";
 public const string PostalCode = "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/postalcode";

 // ...many other string constants

 public const string MobilePhone = "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/mobilephone";
 public const string Role = "http://schemas.microsoft.com/ws/2008/06/identity/
claims/role";
 public const string Webpage = "http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/webpage";
 }
}

User membership
IPrincipal is used to associate an identity with the roles and groups that they are members of,
so it can be used for authorization purposes, as shown in the following code:

namespace System.Security.Principal
{
 public interface IPrincipal

Chapter 20

[129]

 {
 IIdentity? Identity { get; }
 bool IsInRole(string role);
 }
}

The current thread executing your code has a CurrentPrincipal property that can be set to
any object that implements IPrincipal, and it will be checked when permission is needed to
perform a secure action.

The most common class that implements this interface is GenericPrincipal, which inherits
from ClaimsPrincipal, as shown in the following code:

namespace System.Security.Principal
{
 public class GenericPrincipal : ClaimsPrincipal
 {
 public GenericPrincipal(IIdentity identity, string[]? roles);
 public override IIdentity Identity { get; }
 public override bool IsInRole([NotNullWhen(true)] string? role);
 }
}

Implementing authentication and authorization
Let's explore authentication and authorization by implementing a custom authentication and
authorization mechanism:

1. In the CryptographyLib project, add a property to the User class to store an array of
roles, as shown in the following code:

public string[]? Roles { get; set; }

2. In User.cs, add a parameter to set the Roles in the constructor.
3. Modify the Register method in the Protector class to allow an array of roles to be

passed as an optional parameter, as shown highlighted in the following code:
public static User Register(
 string username, string password,
 string[]? roles = null)

4. In the Register method, add a parameter to set the array of roles in the new User object,
as shown highlighted in the following code:

User user = new(username, saltText,
 saltedhashedPassword, roles);

Protecting Your Data and Applications

[130]

5. In the CryptographyLib project, add statements to the Protector class to define a LogIn
method to log in a user, and if the username and password are valid, then create a generic
identity and principal and assign them to the current thread, indicating that the type of
authentication was a custom one named PacktAuth, as shown in the following code:

public static void LogIn(string username, string password)
{
 if (CheckPassword(username, password))
 {
 GenericIdentity gi = new(
 name: username, type: "PacktAuth");

 GenericPrincipal gp = new(
 identity: gi, roles: Users[username].Roles);

 // set the principal on the current thread so that
 // it will be used for authorization by default
 Thread.CurrentPrincipal = gp;
 }
}

6. Use your preferred code editor to add a new console app named SecureApp to the
Chapter20 solution/workspace.

7. In Visual Studio Code, select SecureApp as the active OmniSharp project.
8. In the SecureApp project, add a project reference to CryptographyLib.
9. Build the SecureApp project and make sure there are no compile errors.
10. In Program.cs, import the required namespaces for working with authentication and

authorization, as shown in the following code:
using Packt.Shared; // Protector
using System.Security; // SecurityException
using System.Security.Principal; // IPrincipal
using System.Security.Claims; // ClaimsPrincipal, Claim

using static System.Console;

11. Write statements to register three users, named Alice, Bob, and Eve, in various roles,
prompt the user to log in, and then output information about them, as shown in the
following code:

Protector.Register("Alice", "Pa$$w0rd",
 roles: new[] { "Admins" });

Protector.Register("Bob", "Pa$$w0rd",
 roles: new[] { "Sales", "TeamLeads" });

// Eve is not a member of any roles
Protector.Register("Eve", "Pa$$w0rd");

Chapter 20

[131]

// prompt user to enter username and password to login
// as one of these three users

Write($"Enter your user name: ");
string? username = ReadLine();

Write($"Enter your password: ");
string? password = ReadLine();

if ((username == null) || (password == null))
{
 WriteLine("Username or password is null. Cannot login.");
 return;
}

Protector.LogIn(username, password);

if (Thread.CurrentPrincipal == null)
{
 WriteLine("Log in failed.");
 return;
}

IPrincipal p = Thread.CurrentPrincipal;

WriteLine(
 $"IsAuthenticated: {p.Identity?.IsAuthenticated}");
WriteLine(
 $"AuthenticationType: {p.Identity?.AuthenticationType}");
WriteLine($"Name: {p.Identity?.Name}");
WriteLine($"IsInRole(\"Admins\"): {p.IsInRole("Admins")}");
WriteLine($"IsInRole(\"Sales\"): {p.IsInRole("Sales")}");

if (p is ClaimsPrincipal)
{
 WriteLine(
 $"{p.Identity?.Name} has the following claims:");

 IEnumerable<Claim>? claims = (p as ClaimsPrincipal)?.Claims;

 if (claims is not null)
 {
 foreach (Claim claim in claims)
 {
 WriteLine($"{claim.Type}: {claim.Value}");
 }
 }
}

Protecting Your Data and Applications

[132]

12. Run the code, log in as Alice with Pa$$w0rd, and view the results, as shown in the
following output:

Enter your user name: Alice
Enter your password: Pa$$w0rd
IsAuthenticated: True
AuthenticationType: PacktAuth
Name: Alice
IsInRole("Admins"): True
IsInRole("Sales"): False
Alice has the following claims:
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Alice
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: Admins

13. Run the code, log in as Alice with secret, and view the results, as shown in the
following output:

Enter your user name: Alice
Enter your password: secret
Log in failed.

14. Run the code, log in as Bob with Pa$$w0rd, and view the results, as shown in the
following output:

Enter your user name: Bob
Enter your password: Pa$$w0rd
IsAuthenticated: True
AuthenticationType: PacktAuth
Name: Bob
IsInRole("Admins"): False
IsInRole("Sales"): True
Bob has the following claims:
http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name: Bob
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: Sales
http://schemas.microsoft.com/ws/2008/06/identity/claims/role: TeamLeads

Protecting application functionality
Now let's explore how we can use authorization to prevent some users from accessing some
features of an application:

1. At the bottom of Program.cs, add a method that is secured by checking for permission
inside the method, and throw appropriate exceptions if the user is anonymous or not a
member of the Admins role, as shown in the following code:

static void SecureFeature()
{
 if (Thread.CurrentPrincipal == null)

Chapter 20

[133]

 {
 throw new SecurityException(
 "A user must be logged in to access this feature.");
 }

 if (!Thread.CurrentPrincipal.IsInRole("Admins"))
 {
 throw new SecurityException(
 "User must be a member of Admins to access this feature.");
 }

 WriteLine("You have access to this secure feature.");
}

2. Above the SecureFeature method, add statements to call the SecureFeature method in
a try statement, as shown in the following code:

try
{
 SecureFeature();
}
catch (Exception ex)
{
 WriteLine($"{ex.GetType()}: {ex.Message}");
}

3. Run the code, log in as Alice with Pa$$word, and view the result, as shown in the
following output:

You have access to this secure feature.

4. Run the code, log in as Bob with Pa$$word, and view the result, as shown in the
following output:

System.Security.SecurityException: User must be a member of Admins to
access this feature.

Real-world authentication and authorization
Although it is valuable to see some examples of how authentication and authorization can
work, in the real world, you should not build your own security systems because it is too likely
that you might introduce flaws.

Instead, you should look at commercial or open-source implementations. These usually
implement standards such as OAuth 2.0 and OpenID Connect. A popular open-source one
is IdentityServer4, but it will only be maintained until November 2022. A semi-commercial
option is Duende IdentityServer.

Protecting Your Data and Applications

[134]

Microsoft's official position is that "Microsoft already has a team and a product in that area,
Azure Active Directory, which allows 500,000 objects for free." You can read more at the
following link:

https://devblogs.microsoft.com/aspnet/asp-net-core-6-and-authentication-servers/

Practicing and exploring
Test your knowledge and understanding by answering some questions, get some hands-on
practice, and explore the topics covered in this chapter with more in-depth research.

Exercise 20.1 – Test your knowledge
Answer the following questions:

1. Of the encryption algorithms provided by .NET, which is the best choice for symmetric
encryption?

2. Of the encryption algorithms provided by .NET, which is the best choice for
asymmetric encryption?

3. What is a rainbow attack?
4. For encryption algorithms, is it better to have a larger or smaller block size?
5. What is a cryptographic hash?
6. What is a cryptographic signature?
7. What is the difference between symmetric and asymmetric encryption?
8. What does RSA stand for?
9. Why should passwords be salted before being stored?
10. SHA1 is a hashing algorithm designed by the United States National Security Agency.

Why should you never use it?

Exercise 20.2 – Practice protecting data with
encryption and hashing
In the Chapter10 solution/workspace, add a console application named Exercise02 that
protects sensitive data like a credit card number or password stored in an XML file, such as the
following example:

<?xml version="1.0" encoding="utf-8" ?>
<customers>
 <customer>
 <name>Bob Smith</name>
 <creditcard>1234-5678-9012-3456</creditcard>

https://devblogs.microsoft.com/aspnet/asp-net-core-6-and-authentication-servers/

Chapter 20

[135]

 <password>Pa$$w0rd</password>
 </customer>
 ...
</customers>

The customer's credit card number and password are currently stored in cleartext. The credit
card number must be encrypted so that it can be decrypted and used later, and the password
must be salted and hashed.

Exercise 20.3 – Practice protecting data with
decryption
In the Chapter20 solution/workspace, add a console application named Exercise03 that opens
the XML file that you protected in the preceding code and decrypts the credit card number.

Exercise 20.4 – Explore topics
Use the links on the following webpage to learn more about the topics covered in this chapter:

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-20---
protecting-your-data-and-applications

Summary
In this chapter, you learned how to encrypt and decrypt using symmetric encryption, how to
generate a salted hash, how to sign data and check the signature on the data, how to generate
truly random numbers, and how to use authentication and authorization to protect features of
your applications.

Good Practice: You should not store credit card numbers in your applications.
This is just an example of a secret that you might want to protect. If you
have to store credit card numbers, then there is a lot more you must do to be
Payment Card Industry (PCI) compliant.

https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-20---protecting-your-data-and-applications
https://github.com/markjprice/cs10dotnet6/blob/main/book-links.md#chapter-20---protecting-your-data-and-applications

[137]

Appendix

Answers to the Test Your
Knowledge Questions

This appendix has the answers to the questions in the Test your knowledge section at the end of
each chapter.

Chapter 1 – Hello, C#! Welcome, .NET!
1. Is Visual Studio 2022 better than Visual Studio Code?

Answer: No. Each is optimized for different tasks. Visual Studio 2022 for Windows
is large, heavyweight, and can create applications with graphical user interfaces, for
example, Windows Forms, WPF, UWP, and .NET MAUI apps, but it is only available
on Windows. Visual Studio 2022 is an Interactive Development Environment (IDE)
rather than a code editor. Visual Studio Code is smaller, lighter-weight, code-focused,
supports many more languages, and is available cross-platform. In November 2022,
with the release of .NET 7, Visual Studio Code is expected to get an extension that
facilitates the building of user interfaces for .NET MAUI apps using the MVU design
pattern.

2. Is .NET 6 better than .NET Framework?
Answer: For modern development, yes, but it depends on what you need. .NET 6 is
a modern, cross-platform, performance-oriented version of the legacy, mature .NET
Framework. .NET 6 is more frequently improved. .NET Framework has better support
for legacy applications; however, the current version 4.8 will be the last major release. It
will never support some language features of C# 8 and later.

3. What is .NET Standard, and why is it still important?
Answer: .NET Standard defines an API, aka a contract that a .NET platform can
implement. The latest versions of .NET Framework, Xamarin, and modern .NET
implement .NET Standard 2.0 to provide a single, standard API that developers can
target for maximum reuse. .NET Core 3.0 and later, including .NET 6, implement .NET
Standard 2.1, which has some new features not supported by .NET Framework. If you
want to create a new class library that supports all .NET platforms, you will need it to
be .NET Standard 2.0-compatible.

Appendix

[138]

4. Why can a programmer use different languages, for example, C# and F#, to write
applications that run on .NET?
Answer: Multiple languages are supported on .NET because each one has a compiler
that translates the source code into intermediate language (IL) code. This IL code is then
compiled to native CPU instructions at runtime by the CLR.

5. What is the name of the entry point method of a .NET console application, and how
should it be declared?
Answer: The entry point of a .NET console application is the Main method. An optional
string array for command-line arguments and a return type of int are recommended,
but they are not required. It can be declared as shown in the following code:

public static void Main() // minimum
public static int Main(string[] args) // recommended

6. What is a top-level program and how do you access any command-line arguments?
Answer: A top-level program is a project that does not need to explicitly define a
Program class with a Main method entry point with a parameter named args to access
any command-line arguments. These are implicitly defined for you so that you can type
statements without boilerplate code.

7. What do you type at the prompt to build and execute C# source code?
Answer: In a folder with a .csproj file, you enter dotnet run.

8. What are some benefits of using .NET Interactive Notebooks to write C# code?
Answer: Benefits of using .NET Interactive Notebooks to write C# code include mixing
languages in the same document and mixing code with markdown for rich text.

9. Where would you look for help for a C# keyword?
Answer: The Microsoft Docs website. Specifically, C# keywords are documented at
the following link: https://docs.microsoft.com/en-us/dotnet/articles/csharp/
language-reference/keywords/.

10. Where would you look for solutions to common programming problems?
Answer: https://stackoverflow.com/.

Chapter 2 – Speaking C#

Exercise 2.1 – Test your knowledge
1. What statement can you type in a C# file to discover the compiler and language

version?
Answer: #error version

2. What are the two types of comments in C#?
Answer: The two types of comments in C# are a single-line comment prefixed with //
and a multi-line comment starting with /* and ending with */.

https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/
https://docs.microsoft.com/en-us/dotnet/articles/csharp/language-reference/keywords/
https://stackoverflow.com/

Appendix

[139]

3. What is the difference between a verbatim string and an interpolated string?
Answer: A verbatim string is prefixed with the @ symbol and each character
(except ") is interpreted as itself; for example, a backslash \ is a backslash \. An
interpolated string is prefixed with the $ symbol and can include expressions
surrounded with braces like this: {expression}.

4. Why should you be careful when using float and double values?
Answer: You should be careful when using float and double values because they are
not guaranteed to be accurate, especially when performing equality comparisons.

5. How can you determine how many bytes a type like double uses in memory?
Answer: You can determine how many bytes a type like double uses in memory by
using the sizeof() operator, for example, sizeof(double).

6. When should you use the var keyword?
Answer: You should only use the var keyword to declare local variables when you
cannot specify a known type. It is easy to overuse var due to its convenience when
initially writing code, but its use can make it harder to maintain code later.

7. What is the newest way to create an instance of a class like XmlDocument?
Answer: The newest way to create an instance of a class like XmlDocument is to use a
target-typed new expression, as shown in the following code:

XmlDocument doc = new();

8. Why should you be careful when using the dynamic type?
Answer: You should be careful when using the dynamic type because the type of object
stored in it is not checked until runtime, which can mean runtime exceptions being
thrown if you attempt to use a member that does not exist on the type.

9. How do you right-align a format string?
Answer: To right-align a format string, after the index or expression, add a comma and
an integer value to specify a column width within which to align the value. Positive
integers mean right-aligned, and negative integers mean left-aligned.

10. What character separates arguments for a console application?
Answer: The space character separates arguments for a console application.

Exercise 2.2 – Test your knowledge of number
types
What type would you choose for the following "numbers"?

1. A person's telephone number
Answer: string.

2. A person's height
Answer: float or double.

Appendix

[140]

3. A person's age
Answer: int for best performance on most CPUs or byte (0 to 255) for the smallest size.

4. A person's salary
Answer: decimal.

5. A book's ISBN
Answer: string.

6. A book's price
Answer: decimal.

7. A book's shipping weight
Answer: float or double.

8. A country's population
Answer: uint (0 to about 4 billion).

9. The number of stars in the universe
Answer: ulong (0 to about 18 quadrillion) or System.Numerics.BigInteger (allows an
arbitrarily large integer).

10. The number of employees in each of the small or medium-sized businesses in the
United Kingdom (up to about 50,000 employees per business)
Answer: Since there are hundreds of thousands of small or medium-sized businesses,
we need to take memory size as the determining factor, so choose ushort because it
only takes 2 bytes compared to an int, which takes 4 bytes.

Chapter 3 – Controlling the Flow and
Converting Types

Exercise 3.1 – Test your knowledge
Answer the following questions:

1. What happens when you divide an int variable by 0?
Answer: DivideByZeroException is thrown when dividing an integer or decimal by 0.

2. What happens when you divide a double variable by 0?
Answer: The double type contains a special value of infinity. Instances of floating-point
numbers can have the special values of NaN (not a number), or, in the case of dividing
by 0, either PositiveInfinity or NegativeInfinity.

Appendix

[141]

3. What happens when you overflow an int variable, that is, set it to a value beyond its
range?
Answer: It will loop unless you wrap the statement in a checked block, in which case,
OverflowException will be thrown.

4. What is the difference between the statements x = y++; and x = ++y;?
Answer: In the statement x = y++;, the current value of y will be assigned to x and
then y will be incremented, while in the statement x = ++y;, the value of y will be
incremented and then the result will be assigned to x.

5. What is the difference between break, continue, and return when used inside a loop
statement?
Answer: The break statement will end the whole loop and continue executing after the
loop, the continue statement will end the current iteration of the loop and continue
executing at the start of the loop block for the next iteration, and the return statement
will end the current method call and continue executing after the method call.

6. What are the three parts of a for statement and which of them are required?
Answer: The three parts of a for statement are the initializer, condition, and
incrementer expressions. The condition expression is required to evaluate to true or
false, but the other two are optional.

7. What is the difference between the = and == operators?
Answer: The = operator is the assignment operator for assigning values to variables,
while the == operator is the equality check operator that returns true or false.

8. Does the following statement compile? for (; true;) ;
Answer: Yes. The for statement only requires the condition expression that evaluates
to true or false. The initializer and incrementer expressions are optional. This for
statement will execute the empty ; statement after the close brace, forever. It is an
example of an infinite loop.

9. What does the underscore _ represent in a switch expression?
Answer: The underscore _ represents the default return value.

10. What interface must an object implement to be enumerated over by using the foreach
statement?
Answer: An object must "implement" the IEnumerable interface. It must have the correct
methods with the correct signatures even if the object does not actually implement the
interface.

Appendix

[142]

Exercise 3.2 – Explore loops and overflow
What will happen if this code executes?

int max = 500;
for (byte i = 0; i < max; i++)
{
 WriteLine(i);
}

Answer:

The code will loop forever because the value of i can only be between 0 and 255. Once i gets
incremented beyond 255, it loops back to 0 and therefore will always be less than max (500).

To prevent the infinite loop, you can add a checked statement around the code. This would
cause an exception to be thrown after 255 due to the overflow, as shown in the following
output:

254
255
System.OverflowException says Arithmetic operation resulted in an overflow.

Exercise 3.5 – Test your knowledge of operators
What are the values of x and y after the following statements execute?

1. Increment and addition operators:
x = 3;
y = 2 + ++x;

Answer: x is 4 and y is 6.
2. Binary shift operators:

x = 3 << 2;
y = 10 >> 1;

Answer: x is 12 and y is 5.
3. Bitwise operators:

x = 10 & 8;
y = 10 | 7;

Answer: x is 8 and y is 15.

Appendix

[143]

Chapter 4 – Writing, Debugging, and Testing
Functions

1. What does the C# keyword void mean?
Answer: It indicates that a method has no return value.

2. What are some differences between imperative and functional programming styles?
Answer: The imperative programming style means writing a sequence of statements
that the runtime executes step by step, like a recipe. Your code tells the runtime
exactly how to perform the task. Do this. Now do that. It has variables, meaning that
the state can change at any time, including outside the current function. Imperative
programming causes side effects, changing the value of a state somewhere in your
program. Side effects are tricky to debug. The functional programming style describes
what you want to achieve instead of how. It can also be described as declarative.
However, the most important point is that functional programming languages make all
states immutable by default to avoid side effects.

3. In Visual Studio Code or Visual Studio, what is the difference between pressing F5, Ctrl
or Cmd + F5, Shift + F5, and Ctrl or Cmd + Shift + F5?
Answer: F5 saves, compiles, runs, and attaches the debugger; Ctrl or Cmd + F5 saves,
compiles, and runs the application with the debugger attached; Shift + F5 stops the
debugger and running application; and Ctrl or Cmd + Shift + F5 restarts the application
with the debugger attached.

4. Where does the Trace.WriteLine method write its output to?
Answer: Trace.WriteLine writes its output to any configured trace listeners. By default,
this includes the terminal or the command line but can be configured to be a text file or
any custom listener.

5. What are the five trace levels?
Answer: 0 = Off, 1 = Error, 2 = Warning, 3 = Info, and 4 = Verbose.

6. What is the difference between the Debug and Trace classes?
Answer: Debug is only active during development. Trace is active during development
and following release into production.

7. When writing a unit test, what are the three "A"s?
Answer: Arrange, Act, Assert.

8. When writing a unit test using xUnit, what attribute must you decorate the test
methods with?
Answer: [Fact] or [Theory].

9. What dotnet command executes xUnit tests?
Answer: dotnet test.

Appendix

[144]

10. What statement should you use to rethrow a caught exception named ex without losing
the stack trace?
Answer: Use throw;. Do not use throw ex; because this will lose stack trace
information.

Chapter 5 – Building Your Own Types with
Object-Oriented Programming

1. What are the six combinations of access modifier keywords and what do they do?
Answer: The six combinations of access modifier keywords and their effects are
described in the following list:

• private: This modifier makes a member only visible inside the class.
• internal: This modifier makes a member only visible inside the same assembly.
• protected: This modifier makes a member only visible inside the class or

derived classes.
• internal protected: This modifier makes a member only visible inside the

class, derived classes, or within the same assembly.
• private protected: This modifier makes a member only visible inside the class

or derived classes that are within the same assembly.
• public: This modifier makes a member visible everywhere.

2. What are the differences between the static, const, and readonly keywords when
applied to a type member?
Answer: The differences between the static, const, and readonly keywords when
applied to a type member are described in the following list:

• static: This keyword makes the member shared by all instances, and it must be
accessed through the type, not an instance of the type.

• const: This keyword makes the field a fixed literal value that must never change
because, during compilation, assemblies that use the field copy the literal value
at the time of compilation.

• readonly: This keyword restricts the field so that it can only be assigned to
using a constructor or field initializer at runtime.

3. What does a constructor do?
Answer: A constructor allocates memory and initializes field values.

4. Why do you need to apply the [Flags] attribute to an enum type when you want to store
combined values?
Answer: If you don't apply the [Flags] attribute to an enum type when you want to
store combined values, then a stored enum value that is a combination will be returned
by a call to ToString as the stored integer value instead of one or more of the comma-
separated lists of text values.

Appendix

[145]

5. Why is the partial keyword useful?
Answer: You can use the partial keyword to split the definition of a type over multiple
files.

6. What is a tuple?
Answer: A tuple is a data structure consisting of multiple parts. They are used when
you want to store multiple values as a unit without defining a type for them.

7. What does the record keyword do?
Answer: The record keyword defines a data structure that is immutable by default to
enable a more functional programming style. Like a class, a record can have properties
and methods, but the values of properties can only be set during initialization.

8. What does overloading mean?
Answer: Overloading is when you define more than one method with the same method
name and different input parameters.

9. What is the difference between a field and a property?
Answer: A field is a data storage location that can be referenced. A property is one or a
pair of methods that get and/or set a value. The value for a property is often stored in a
private field.

10. How do you make a method parameter optional?
Answer: You make a method parameter optional by assigning a default value to it in
the method signature.

Chapter 6 – Implementing Interfaces and
Inheriting Classes

1. What is a delegate?
Answer: A delegate is a type-safe method reference. It can be used to execute any
method with a matching signature.

2. What is an event?
Answer: An event is a field that is a delegate having the event keyword applied. The
keyword ensures that only += and -= are used; this safely combines multiple delegates
without replacing any existing event handlers.

3. How are a base class and a derived class related and how can the derived class access
the base class?
Answer: A derived class (or subclass) is a class that inherits from a base class (or
superclass). Inside a derived class, you use the base keyword to access the class that the
subclass inherits from.

4. What is the difference between the is and as operators?
Answer: The is operator returns true if an object can be cast to the type; otherwise, it
returns false. The as operator returns a reference to the object if an object can be cast to
the type; otherwise, it returns null.

Appendix

[146]

5. Which keyword is used to prevent a class from being derived from or a method from
being overridden?
Answer: sealed.

6. Which keyword is used to prevent a class from being instantiated with the new
keyword?
Answer: abstract.

7. Which keyword is used to allow a member to be overridden?
Answer: virtual.

8. What's the difference between a destructor and a deconstruct method?
Answer: A destructor, also known as a finalizer, must be used to release resources
owned by the object. A deconstruct method is a feature of C# 7 or later that allows
a complex object to be broken down into smaller parts. It is especially useful when
working with tuples.

9. What are the signatures of the constructors that all exceptions should have?
Answer: The signatures of the three constructors that all exceptions should have are
shown in the following list:

• A constructor with no parameters
• A constructor with a string parameter, usually named message
• A constructor with a string parameter, usually named message, and an

Exception parameter, usually named innerException

10. What is an extension method and how do you define one?
Answer: An extension method is a compiler trick that makes a static method of a
static class appear to be one of the members of another type. You define which type
you want to extend by prefixing the first parameter of that type in the method with the
this keyword.

Chapter 7 – Packaging and Distributing .NET
Types

1. What is the difference between a namespace and an assembly?
Answer: A namespace is the logical container of a type. An assembly is the physical
container of a type. To use a type, the developer must reference its assembly.
Optionally, the developer can import its namespace, or specify the namespace when
specifying the type.

2. How do you reference another project in a .csproj file?
Answer: You reference another project in a .csproj file by adding a
<ProjectReference> element that sets its Include attribute to a path to the reference
project file inside an <ItemGroup> element, as shown in the following markup:

Appendix

[147]

<ItemGroup>
 <ProjectReference Include="..\Calculator\Calculator.csproj" />
</ItemGroup>

3. What is the benefit of a tool like ILSpy?
Answer: A benefit of a tool like ILSpy is learning how to write code in C# for the .NET
platform by seeing how other packages are written. Of course, you should never steal
their intellectual property. But it is especially useful to see how Microsoft developers
have implemented key components of the Base Class Libraries. Decompiling can also
be useful when calling a third-party library that you need to understand better to call it
appropriately.

4. Which .NET type does the C# float alias represent?
Answer: System.Single.

5. When porting an application from .NET Framework to .NET 6, what tool should you
run before porting, and what tool could you run to perform much of the porting work?
Answer: You should use the .NET Portability Analyzer before porting an application
from .NET Framework to .NET 6. You could use the .NET Upgrade Assistant to
perform much of the porting work.

6. What is the difference between framework-dependent and self-contained deployments
of modern .NET applications?
Answer: Framework-dependent modern .NET applications require .NET to be installed
for an operating system to execute. Self-contained .NET applications include everything
necessary to execute on their own.

7. What is an RID?
Answer: RID is the acronym for Runtime Identifier. RID values are used to identify target
platforms where a .NET application runs.

8. What is the difference between the dotnet pack and dotnet publish commands?
Answer: The dotnet pack command creates a NuGet package that could then be
uploaded to a NuGet feed like Microsoft's. The dotnet publish command puts the
application and its dependencies into a folder for deployment to a hosting system.

9. What types of applications written for .NET Framework can be ported to modern .NET?
Answer: Console, ASP.NET MVC, ASP.NET Web API, Windows Forms, and Windows
Presentation Foundation (WPF) apps.

10. Can you use packages written for .NET Framework with modern .NET?
Answer: Yes, provided they only call APIs in .NET Standard 2.0.

Appendix

[148]

Chapter 8 – Working with Common .NET Types
1. What is the maximum number of characters that can be stored in a string variable?

Answer: The maximum size of a string variable is 2 GB, or about one billion characters,
because each character uses 2 bytes due to the internal use of Unicode (UTF-16)
encoding for characters in a string.

2. When and why should you use a SecureString type?
Answer: The string type leaves text data in the memory for too long, and it's too
visible. The SecureString type encrypts its text and ensures that the memory is released
immediately. For example, in WPF, the PasswordBox control stores its password as a
SecureString variable, and when starting a new process, the Password parameter must
be a SecureString variable.

3. When is it appropriate to use a StringBuilder class?
Answer: When concatenating more than about three string variables, you will use less
memory and get improved performance using StringBuilder than using the string.
Concat method or the + operator.

4. When should you use the LinkedList<T> class?
Answer: Each item in a linked list has a reference to its previous and next siblings as
well as the list itself. A linked list should be used when items need to be inserted and
removed from positions in the list without moving the items in memory.

5. When should you use the SortedDictionary<T> class rather than the SortedList<T>
class?
Answer: The SortedList<T> class uses less memory than SortedDictionary<T>;
SortedDictionary<T> has faster insertion and removal operations for unsorted data.
If the list is populated all at once from sorted data, SortedList<T> is faster than
SortedDictionary<T>.

6. What is the ISO culture code for Welsh?
Answer: cy-GB.

7. What is the difference between localization, globalization, and internationalization?
Answer:

• Localization affects the user interface of your application. Localization is
controlled by a neutral (language only) or specific (language and region)
culture. You provide multiple language versions of a text and other values. For
example, the label of a text box might be First name in English, and Prénom in
French.

• Globalization affects the data of your application. Globalization is controlled by
a specific (language and region) culture, for example, en-GB for British English,
or fr-CA for Canadian French. The culture must be specific because a decimal
value formatted as a currency must know to use Canadian dollars instead of
French euros.

• Internationalization is the combination of localization and globalization.

Appendix

[149]

8. In a regular expression, what does $ mean?
Answer: In a regular expression, $ represents the end of the input.

9. In a regular expression, how could you represent digit characters?
Answer: In a regular expression, you could represent digit characters using \d or [0-9].

10. Why should you not use the official standard for email addresses to create a regular
expression to validate a user's email address?
Answer: The effort is not worth the pain for you or your users. Validating an email
address using the official specification doesn't check whether that address exists or
whether the person entering the address is its owner.

Chapter 9 – Working with Files, Streams, and
Serialization

1. What is the difference between using the File class and the FileInfo class?
Answer: The File class has static methods, and it cannot be instantiated. It is
best used for one-off tasks such as copying a file. The FileInfo class requires the
instantiation of an object that represents a file. It is best used when you need to perform
multiple operations on the same file.

2. What is the difference between the ReadByte method and the Read method of a stream?
Answer: The ReadByte method returns a single byte each time it is called, while the Read
method fills a temporary array with bytes up to a specified length. It is generally best to
use Read to process multiple bytes at once.

3. When would you use the StringReader, TextReader, and StreamReader classes?
Answer:

• StringReader is used for efficiently reading from a string stored in memory.
• TextReader is an abstract class that StringReader and StreamReader both inherit

from for their shared functionality.
• StreamReader is used for reading strings from a stream that can be any type of

text file, including XML and JSON.

4. What does the DeflateStream type do?
Answer: DeflateStream implements the same compression algorithm as GZIP, but
without a cyclical redundancy check; so, although it produces smaller compressed files,
it cannot perform integrity checks when decompressing.

5. How many bytes per character does UTF-8 encoding use?
Answer: The number of bytes per character used by UTF-8 encoding depends on the
character. Most Western alphabet characters are stored using one byte. Other characters
may need two or more bytes.

Appendix

[150]

6. What is an object graph?
Answer: An object graph is any set of connected instances of classes that reference
each other. For example, a Customer object may have a property named Orders that
references a collection of Order instances.

7. What is the best serialization format to choose for minimizing space requirements?
Answer: JavaScript Object Notation (JSON) has a good balance between space
requirements and practical factors such as human readability, but protocol buffers are
best for minimizing space requirements.

8. What is the best serialization format to choose for cross-platform compatibility?
Answer: There is still an argument for eXtensible Markup Language (XML) if you need
maximum compatibility, especially with legacy systems, although JSON is better if
you need to integrate with web systems, or protocol buffers for best performance and
minimum bandwidth use.

9. Why is it bad to use a string value like "\Code\Chapter01" to represent a path and
what should you do instead?
Answer: It is bad to use a string value like "\Code\Chapter01" to represent a path
because it assumes that backslashes are used as a folder separator on all operating
systems. Instead, you should use the Path.Combine method and pass separate string
values for each folder, or a string array, as shown in the following code:

string path = Path.Combine(new[] { "Code", "Chapter01" });

10. Where can you find information about NuGet packages and their dependencies?
Answer: You can find information about NuGet packages and their dependencies at the
following link: https://www.nuget.org/.

Chapter 10 – Working with Data Using Entity
Framework Core

1. What type would you use for the property that represents a table, for example, the
Products property of a database context?
Answer: DbSet<T>, where T is the entity type, for example, Product.

2. What type would you use for the property that represents a one-to-many relationship,
for example, the Products property of a Category entity?
Answer: ICollection<T>, where T is the entity type, for example, Product.

3. What is the EF convention for primary keys?
Answer: The property named ID or Id, or ClassNameID or ClassNameId, is assumed to be
the primary key. If the type of that property is any of the following, then the property is
also marked as being an IDENTITY column: tinyint, smallint, int, bigint, guid.

https://www.nuget.org/

Appendix

[151]

4. When might you use an annotation attribute in an entity class?
Answer: You might use an annotation attribute in an entity class when the conventions
cannot work out the correct mapping between the classes and tables; for example, if a
class name does not match a table name or a property name does not match a column
name. You might also define constraints, like a maximum length of characters in a text
value or a range of numeric values, by decorating with validation attributes. These
can be read by technologies like ASP.NET Core MVC and Blazor to provide automatic
validation warnings to users.

5. Why might you choose Fluent API in preference to annotation attributes?
Answer: You might choose Fluent API in preference to annotation attributes when
you want to keep your entity classes free from extraneous code that is not needed in
all scenarios. For example, when creating a .NET Standard 2.0 class library for entity
classes, you might want to only use validation attributes so that that metadata can be
read by Entity Framework Core and by technologies such as ASP.NET Core model
binding validation and .NET MAUI desktop and mobile apps. However, you might
want to use Fluent API to define Entity Framework Core-specific functionality, like
mapping to a different table or column name.

6. What does a transaction isolation level of Serializable mean?
Answer: Maximum locks are applied to ensure complete isolation from any other
processes working with the affected data.

7. What does the DbContext.SaveChanges method return?
Answer: An int value for the number of entities affected.

8. What is the difference between eager loading and explicit loading?
Answer: Eager loading means related entities are included in the original query
to the database so that they do not have to be loaded later. Explicit loading means
related entities are not included in the original query to the database and they must be
explicitly loaded just before they are needed.

9. How should you define an EF Core entity class with annotation attributes to match the
following table?

CREATE TABLE Employees(
 EmpId INT IDENTITY,
 FirstName NVARCHAR(40) NOT NULL,
 Salary MONEY
)

Answer: Use the following class:
public class Employee
{
 [Column("EmpId")]
 public int EmployeeId { get; set; }

 [Required]
 [StringLength(40)]

Appendix

[152]

 public string FirstName { get; set; }

 [Column(TypeName = "money")]
 public decimal? Salary { get; set; }
}

10. What benefit do you get from declaring entity navigation properties as virtual?
Answer: You can enable lazy loading if you declare entity navigation properties as
virtual.

Chapter 11 – Querying and Manipulating Data
Using LINQ

1. What are the two required parts of LINQ?
Answer: A LINQ provider and the LINQ extension methods. You must import the
System.Linq namespace to make the LINQ extension methods available and reference
a LINQ provider assembly for the type of data that you want to work with, except for
the LINQ to Objects and LINQ to XML providers that are built-in to .NET.

2. Which LINQ extension method would you use to return a subset of properties from a
type?
Answer: The Select method allows the projection (selection) of properties.

3. Which LINQ extension method would you use to filter a sequence?
Answer: The Where method allows filtering by supplying a delegate (or lambda
expression) that returns a Boolean to indicate whether the value should be included in
the results.

4. List five LINQ extension methods that perform aggregation.
Answer: Any five of the following: Max, Min, Count, LongCount, Average, Sum, and
Aggregate.

5. What is the difference between the Select and SelectMany extension methods?
Answer: Select returns exactly what you specify to return. SelectMany checks that
the items you have selected are themselves IEnumerable<T> and then breaks them
down into smaller parts. For example, if the type you select is a string value (which
is IEnumerable<char>), SelectMany will break each string value returned into their
individual char values and combine them into a single sequence.

6. What is the difference between IEnumerable<T> and IQueryable<T> and how do you
switch between them?
Answer: The IEnumerable<T> interface indicates a LINQ provider that will execute the
query locally, like LINQ to Objects. These providers have no limitations but can be less
efficient.

Appendix

[153]

The IQueryable<T> interface indicates a LINQ provider that first builds an expression
tree to represent the query and then converts it into another query syntax before
executing it, like Entity Framework Core converts LINQ queries to SQL statements.
These providers sometimes have limitations, such as a lack of support for certain
expressions, and may throw exceptions. You can convert from an IQueryable<T>
provider to an IEnumerable<T> provider by calling the AsEnumerable method.

7. What does the last type parameter T in generic Func delegates like Func<T1, T2, T>
represent?
Answer: The last type parameter T in generic Func delegates like Func<T1, T2, T>
represents the type of the return value. For example, for Func<string, int, bool>, the
delegate or lambda function used must return a Boolean value.

8. What is the benefit of a LINQ extension method that ends with OrDefault?
Answer: The benefit of a LINQ extension method that ends with OrDefault is that it
returns the default value instead of throwing an exception if it cannot return a value.
For example, calling the First method on a sequence of int values would throw an
exception if the collection is empty but the FirstOrDefault method would return 0.

9. Why is query comprehension syntax optional?
Answer: Query comprehension syntax is optional because it is just syntactic sugar. It
makes code easier for humans to read but it does not add any additional functionality
except the let keyword.

10. How can you create your own LINQ extension methods?
Answer: Create a static class with a static method with an IEnumerable<T> parameter
prefixed with this, as shown in the following code:

namespace System.Linq
{
 public static class MyLinqExtensionMethods
 {
 public static IEnumerable<T> MyChainableExtensionMethod<T>(
 this IEnumerable<T> sequence)
 {
 // return something IEnumerable<T>
 }

 public static int? MyAggregateExtensionMethod<T>(
 this IEnumerable<T> sequence)
 {
 // return some int value
 }
 }
}

Appendix

[154]

Chapter 12 – Improving Performance and
Scalability Using Multitasking

1. What information can you find out about a process?
Answer: The Process class has many properties, including ExitCode, ExitTime, Id,
MachineName, PagedMemorySize64, ProcessorAffinity, StandardInput, StandardOutput,
StartTime, Threads, and TotalProcessorTime.

2. How accurate is the Stopwatch class?
Answer: The Stopwatch class can be accurate to within a nanosecond (a billionth of a
second), but you shouldn't rely on that.

3. By convention, what suffix should be applied to a method that returns Task or Task<T>?
Answer: Add the suffix Async to the method name, for example, for a synchronous
method named Open, use OpenAsync for the equivalent that returns a Task or Task<T>.

4. To use the await keyword inside a method, which keyword must be applied to the
method declaration?
Answer: The async keyword must be applied to the method declaration.

5. How do you create a child task?
Answer: Call the Task.Factory.StartNew method with the TaskCreationOptions.
AttachToParent option to create a child task.

6. Why should you avoid the lock keyword?
Answer: The lock keyword does not allow you to specify a timeout; this can cause
deadlocks. Use the Monitor.Enter method and pass a TimeSpan argument as a timeout
and then call the Monitor.Exit method explicitly to release the lock at the end of your
work instead.

7. When should you use the Interlocked class?
Answer: You should use the Interlocked class to modify integers and floating-point
numbers that are shared between multiple threads.

8. When should you use the Mutex class instead of the Monitor class?
Answer: Use Mutex when you need to share a resource across process boundaries.
Monitor only works on resources inside the current process.

9. What is the benefit of using async and await in a website or web service?
Answer: In a website or web service, using async and await improves scalability but
not the performance of a specific request because extra work in handling work between
threads is required.

10. Can you cancel a task? If so, how?
Answer: Yes, you can cancel a task, as described at the following link: https://docs.
microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/cancel-an-
async-task-or-a-list-of-tasks.

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/cancel-an-async-task-or-a-list-of-tasks
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/cancel-an-async-task-or-a-list-of-tasks
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/cancel-an-async-task-or-a-list-of-tasks

Appendix

[155]

Chapter 13 – Practical Applications of C# and
.NET

1. .NET 6 is cross-platform. Windows Forms and WPF apps can run on .NET 6. Can those
apps therefore run on macOS and Linux?
Answer: No. Although Windows Forms and WPF apps can run on .NET 6, they
also need to make calls to Win32 APIs and so are limited to running on Windows.
When you download the .NET SDK for Windows, it includes an extra workload for
supporting WPF and Windows Forms apps.

2. How does a Windows Forms app define its user interface, and why is this a potential
problem?
Answer: A Windows Forms app defines its user interface using C# code. Therefore, it is
important to use a Windows Forms visual designer with a toolbox and drag-and-drop
support. It is messy to edit the generated code directly.

3. How can a WPF or UWP app define its user interface, and why is this good for
developers?
Answer: A WPF or UWP app can define its user interface using XAML, which is easier
than C# code for developers to understand and write, even without a visual designer.
XAML is also used by .NET MAUI.

Chapter 14 – Building Websites Using
ASP. NET Core Razor Pages

1. List six method names that can be specified in an HTTP request.
Answer: GET, HEAD, POST, PUT, PATCH, and DELETE. Others include TRACE, OPTIONS, and
CONNECT.

2. List six status codes and their descriptions that can be returned in an HTTP response.
Answer: 200 OK, 201 Created, 301 Moved Permanently, 400 Bad Request, 404 Not
Found (missing resource), and 500 Internal Server Error. Others include 101 Switching
Protocols (for example, from HTTP to WebSocket), 202 Accepted, 204 No Content, 304
Not Modified, 401 Unauthorized, 403 Forbidden, 406 Not Acceptable (for example,
requesting a response format that is not supported by a website), and 503 Service
Unavailable.

3. In ASP.NET Core, what is a Startup class used for?
Answer: In ASP.NET Core, a Startup class can be used to cleanly separate the addition
and configuration of dependency services from the configuring of middleware in the
request and response pipeline, like error handling, security options, static files, default
files, endpoint routing, Razor Pages and MVC, and Entity Framework Core data
contexts. The default project templates for ASP.NET Core 6 do not use a Startup class
and instead put all the configuration code in Program.cs.

Appendix

[156]

4. What does the acronym HSTS stand for, and what does it do?
Answer: HTTP Strict Transport Security (HSTS) is an opt-in security enhancement. If
a website specifies it and a browser supports it, then it forces all communication over
HTTPS and prevents the visitor from using untrusted or invalid certificates.

5. How do you enable static HTML pages for a website?
Answer: To enable static HTML pages for a website, you must add statements to the
Configure method in the Startup class to use default files and then to use static files
(this order is important!), as shown in the following code:

app.UseDefaultFiles(); // index.html, default.html, and so on
app.UseStaticFiles();

6. How do you mix C# code into the middle of HTML to create a dynamic page?
Answer: To mix C# code into the middle of HTML to create a dynamic page, you can
create a Razor file with the .cshtml file extension, and then prefix any C# expressions
with the @ symbol, and for C# statements, wrap them in braces or create a @functions
section, as shown in the following markup:

@page
@functions
{
 public string[] DaysOfTheWeek
 {
 get => System.Threading.Thread.CurrentThread
 .CurrentCulture.DateTimeFormat.DayNames;
 }

 public string WhatDayIsIt
 {
 get => System.DateTime.Now.ToString("dddd");
 }
}
<html>
 <head>
 <title>Today is @WhatDayIsIt</title>
 </head>
 <body>
 <h1>Days of the week in your culture</h1>

 @{
 // to add a block of statements: use braces
 foreach (string dayName in DaysOfTheWeek)
 {
 @dayName
 }
 }

Appendix

[157]

 </body>
</html>

7. How can you define shared layouts for Razor Pages?
Answer: To define shared layouts for Razor Pages, create at least two files: _Layout.
cshtml will define the markup for the shared layout, and _ViewStart.cshtml will set the
default layout, as shown in the following markup:

@{
 Layout = "_Layout";
}

8. How can you separate the markup from the code behind in a Razor Page?
Answer: To separate the markup from the code behind in a Razor Page, create two
files: MyPage.cshtml contains the markup, and MyPage.cshtml.cs contains a class that
inherits from PageModel. In MyPage.cshtml, set the model to use the class, as shown in
the following markup:

@page
@model MyProject.Pages.MyPageModel

9. How do you configure an Entity Framework Core data context for use with an ASP.
NET Core website?
Answer: To configure an Entity Framework Core data context for use with an ASP.NET
Core website:

• In the project file, reference the assembly that defines the data context class.
• In Program.cs or the Startup class, import the namespaces for Microsoft.

EntityFrameworkCore and the data context class.
• In the ConfigureServices method or the section of Program.cs that configures

services, add a statement that configures the data context with a database
connection string for use with a specified database provider like SQLite or SQL
Server, as shown in the following code:

services.AddDbContext<MyDataContext>(options => // or UseSqlServer()
 options.UseSqlite("my database connection string"));

• In the Razor Page model class or @functions section, declare a private field
to store the data context and then set it in the constructor, as shown in the
following code:

private MyDataContext db;
public SuppliersModel(MyDataContext injectedContext)
{
 db = injectedContext;
}

Appendix

[158]

10. How can you reuse Razor Pages with ASP.NET Core 2.2 or later?
Answer: To reuse Razor Pages with ASP.NET Core 2.2 or later, everything related to
a Razor page can be compiled into a class library. To create one, enter the following
command:

dotnet new razorclasslib -s

Chapter 15 – Building Websites Using the
Model-View-Controller Pattern

1. What do the files with the special names _ViewStart and _ViewImports do when created
in the Views folder?
Answer:

• A _ViewStart file contains a block of statements that are executed when the View
method is executed when a controller action method passes a model to a view,
for example, to set a default layout.

• A _ViewImports file contains @using statements to import namespaces for all
views to avoid having to add the same import statements at the top of all views.

2. What are the names of the three segments defined in the default ASP.NET Core MVC
route, what do they represent, and which are optional?
Answer:

• {controller}: For example, /shippers represents a controller class to
instantiate, for example, ShippersController. It is optional because it can use
the default value Home.

• {action}: For example, /privacy represents an action method to execute, for
example, Privacy. It is optional because it can use the default value Index.

• {id}: For example, /5 represents a parameter in the action method, for example,
int id. It is optional because it is suffixed with ?.

3. What does the default model binder do, and what data types can it handle?
Answer: The default model binder sets parameters in the action method. It can handle
the following data types:

• Simple types like int, string, and DateTime, including nullable types.
• Complex types like Person and Product.
• Collection types like ICollection<T> or IList<T>.

4. In a shared layout file such as _Layout.cshtml, how do you output the content of the
current view?
Answer: To output the content of the current view in a shared layout, call the
RenderBody method, as shown in the following markup:

@RenderBody()

Appendix

[159]

5. In a shared layout file such as _Layout.cshtml, how do you output a section that the
current view can supply content for, and how does the view supply the contents for
that section?
Answer: To output the content of a section in a shared layout, call the RenderSection
method, specifying a name for the section and if it is required, as shown in the
following markup:

@RenderSection("Scripts", required: false)

To define the contents of the section in the view, create a named section, as shown in
the following markup:

@section Scripts
{
<script>
 alert('Hello, Mr. Page!');
</script>
}

6. When calling the View method inside a controller's action method, what paths are
searched for the view by convention?
Answer: When calling the View method inside a controller's action method, three
paths are searched for the view by default, based on combinations of the names of the
controller and the action method and a special Shared folder, as shown in the following
example output:

InvalidOperationException: The view 'Index' was not found. The following
locations were searched:
/Views/Home/Index.cshtml
/Views/Shared/Index.cshtml
/Pages/Shared/Index.cshtml

This can be generalized as follows:
• /Views/[controller]/[action].cshtml

• /Views/Shared/[action].cshtml

• /Pages/Shared/[action].cshtml

7. How can you instruct the visitor's browser to cache the response for 24 hours?
Answer: To instruct the visitor's browser to cache the response for 24 hours,
decorate the controller class or action method with the [ResponseCache] attribute,
and set the Duration parameter to 86400 seconds and the Location parameter to
ResponseCacheLocation.Client.

8. Why might you enable Razor Pages even if you are not creating any yourself?
Answer: If you have used features like ASP.NET Core Identity UI, then it requires
Razor Pages.

Appendix

[160]

9. How does ASP.NET Core MVC identify classes that can act as controllers?
Answer: ASP.NET Core MVC identifies classes that can act as controllers by looking
to see if the class (or a class that it derives from) is decorated with the [Controller]
attribute.

10. In what ways does ASP.NET Core MVC make it easier to test a website?
Answer: The Model-View-Controller (MVC) design pattern separates the technical
concerns of the shape of the data (model) and executable statements to process the
incoming request and outgoing response. It then generates the response in a format
requested by the user agent, like HTML or JSON. This makes it easier to write unit
tests. ASP.NET Core also makes it easy to implement the Inversion-of-Control (IoC)
and Dependency Injection (DI) design patterns to remove dependencies when testing a
component like a controller.

Chapter 16 – Building and Consuming Web
Services

1. Which class should you inherit from to create a controller class for an ASP.NET Core
Web API service?
Answer: To create a controller class for an ASP.NET Core Web API service, you should
inherit from ControllerBase. Do not inherit from Controller as you would in MVC
because this class includes methods like View that use Razor files to render HTML not
needed for a web service.

2. If you decorate your controller class with the [ApiController] attribute to get default
behavior like automatic 400 status code responses for invalid models, what else must
you do?
Answer: If you decorate your controller class with the [ApiController] attribute, then
you must also call the SetCompatibilityVersion method in the Startup class.

3. What must you do to specify which controller action method will be executed in
response to an HTTP request?
Answer: To specify which controller action method will be executed in response to
a request, you must decorate the action method with an attribute. For example, to
respond to an HTTP POST request, decorate the action method with [HttpPost].

4. What must you do to specify what responses should be expected when calling an action
method?
Answer: To specify what responses should be expected when calling an action method,
decorate the action method with the [ProducesResponseType] attribute, as shown in the
following code:

// GET: api/customers/[id]
[HttpGet("{id}", Name = nameof(Get))] // named route
[ProducesResponseType(200, Type = typeof(Customer))]

Appendix

[161]

[ProducesResponseType(404)]
public IActionResult Get(string id)
{

5. List three methods that can be called to return responses with different status codes.
Answer: Three methods that can be called to return responses with different status
codes include:

• Ok: This returns the 200 status code and the object passed to this method in the
body.

• CreatedAtRoute: This returns the 201 status code and the object passed to this
method in the body.

• NoContentResult: This returns the 204 status code and an empty body.
• BadRequest: This returns the 400 status code and an optional error message.
• NotFound: This returns the 404 status code and an optional error message.

6. List four ways in which you can test a web service.
Answer: Four ways that you can test a web service include:

• Using a browser to test simple HTTP GET requests.
• Installing the REST Client extension for Visual Studio Code.
• Installing the Swagger NuGet package in your web service project, enabling

Swagger, and then using the Swagger testing user interface.
• Installing the Postman tool from the following link: https://www.postman.com.

7. Why should you not wrap your use of HttpClient in a using statement to dispose of it
when you are finished even though it implements the IDisposable interface, and what
should you use instead?
Answer: HttpClient is shared, reentrant, and partially thread-safe, so it is tricky to use
correctly in many scenarios. You should use HttpClientFactory, which was introduced
in .NET Core 2.1.

8. What does the acronym CORS stand for, and why is it important to enable it in a web
service?
Answer: The acronym CORS stands for Cross-Origin Resource Sharing. It is important
to enable it for a web service because the default browser same-origin policy prevents
code downloaded from one origin from accessing resources downloaded from a
different origin to improve security.

9. How can you enable clients to detect if your web service is healthy with
ASP.NET Core 2.2 and later?
Answer: To enable clients to detect if your web service is healthy, you can install health
check APIs, including database health checks for Entity Framework Core data contexts.
Health checks can be extended to report detailed information back to the client.

https://www.postman.com

Appendix

[162]

10. What benefits does endpoint routing provide?
Answer: Endpoint routing provides improved performance of routing and action
method selection and a link generation service.

Chapter 17 – Building User Interfaces Using
Blazor

1. What are the two primary hosting models for Blazor and how are they different?
Answer: The two primary hosting models for Blazor are Server and WebAssembly:

• Blazor Server executes code on the server side, which means the code has
full and easy access to server-side resources like databases. This can simplify
implementing functionality. UI updates are made using SignalR, which means a
permanent connection is needed between the browser and server, which limits
scalability.

• Blazor WebAssembly executes code on the client side, which means the code
only has access to resources within the browser. This can complicate the
implementation because a call back to the server must be made whenever new
data is required.

2. In a Blazor Server website project, compared to an ASP.NET Core MVC website project,
what extra configuration is required in the Startup class?
Answer: In the Startup class, in the ConfigureServices method, you must call
AddServerSideBlazor, and in the Configure method, you must call MapBlazorHub and
MapFallbackToPage when setting up endpoints.

3. One of the benefits of Blazor is being able to implement client-side components using
C# and .NET instead of JavaScript. Does a Blazor component need any JavaScript?
Answer: Yes, Blazor components need some minimal JavaScript. For Blazor Server, this
is provided by the file _framework/blazor.server.js. For Blazor WebAssembly, this
is provided by the file _framework/blazor.webassembly.js. Blazor WebAssembly with
PWA also uses a JavaScript service worker file, service-worker.js. JavaScript is also
needed to invoke browser and other client-side APIs.

4. In a Blazor Server website project, what does the App.razor file do?
Answer: The App.razor file configures a Router used by all Blazor components in the
current assembly. For example, it sets a default shared layout for components that
match a route and a view to use when no match is found.

5. What is a benefit of using the <NavLink> component?
Answer: A benefit of using the <NavLink> component is that it integrates with the
Blazor routing system and so it can automatically apply a current style to visually
indicate when the current route matches the <NavLink> component.

Appendix

[163]

6. How can you pass a value into a component?
Answer: You can pass a value into a component by decorating a public property in
the component with the [Parameter] attribute and then setting the attribute in the
component when using it, as shown in the following code:

// defining the component
@code {
 [Parameter]
 public string ButtonText { get; set; };
}

// using the component
<CustomerDetail ButtonText="Create Customer" />

7. What is a benefit of using the <EditForm> component?
Answer: A benefit of using the <EditForm> component is automatic validation
messages.

8. How can you execute some statements when parameters are set?
Answer: You can execute some statements when parameters are set by defining an
OnParametersSetAsync method to handle that event.

9. How can you execute some statements when a component appears?
Answer: You can execute some statements when a component appears by defining an
OnInitializedAsync method to handle that event.

10. What are two key differences in the Program class between a Blazor Server and Blazor
WebAssembly project?
Answer: Two key differences in the Program class between a Blazor Server and Blazor
WebAssembly project are: (1) the use of WebAssemblyHostBuilder instead of Host.
CreateDefaultBuilder, and (2) the registering of an HttpClient with a base address of
the host environment.

Chapter 18 – Building and Consuming
Specialized Services

1. You have an app that communicates with a service built using the legacy Windows
Communication Foundation service. What are two possible options for migrating the
service and client to modern .NET?
Answer: Two options for migrating a WCF service and client are (1) use the Core WCF
open source project, or (2) re-implement the service and client using gRPC.

2. What transport protocol does an OData service use?
Answer: OData uses HyperText Transport Protocol (HTTP).

Appendix

[164]

3. Why is an OData web service more flexible than a traditional ASP.NET Core Web API
web service?
Answer: OData uses query strings for its queries that enable the client to control what is
returned and minimizes round trips. A traditional Web API defines all the methods and
what gets returned.

4. What must you do to an action method in an OData controller to enable query strings
to customize what it returns?
Answer: You must decorate an action method in an OData controller with the
[EnableQuery] attribute to enable query strings to customize what it returns.

5. What transport protocol does a GraphQL service use?
Answer: GraphQL can use HTTP or others like WebSocket.

6. How are contracts defined in gRPC?
Answer: In gRPC, contracts are defined using .proto files.

7. What are three benefits of gRPC that make it a good choice for implementing services?
Answer: Three benefits of gRPC that make it a good choice for implementing
services are (1) its Protobuf binary serialization that minimizes network usage, (2) its
requirement of HTTP/2 that provides significant performance benefits, and (3) its
support by almost all languages and platforms.

8. What transports does SignalR use, and which is the default?
Answer: SignalR prefers to use WebSockets as its transport, then it will fall back
to server-side events, and finally, it will use long polling if neither of the others is
supported by the client and server.

9. What is the difference between the in-process and isolated hosting models for Azure
Functions?
Answer: The in-process hosting model requires your Azure Function to be loaded
alongside other code and to target a predefined version of an LTS release like .NET
Core 3.1 or .NET 6. The isolated hosting model allows your Azure Function to load in
its own process and use any version of .NET that you choose.

10. What is good practice for RPC method signature design?
Answer: Good practice for RPC method signature design is to define a single parameter
using a complex type. This allows additional properties to be added to the type in the
future without breaking the contract between the client and service.

Chapter 19 – Building Mobile and Desktop
Apps Using .NET MAUI

1. What are the four categories of .NET MAUI user interface components and what do
they represent?
Answer: The four categories of .NET MAUI user interface components are:

Appendix

[165]

• Pages: This represents mobile application screens.
• Layouts: This represents the structure of a combination of the user interface

components.
• Views: This represents a single user interface component.
• Cells: This represents a single item in a list or table view.

2. List four types of cell.
Answer: Four types of cell are TextCell, SwitchCell, EntryCell, and ImageCell.

3. How can you enable a user to perform an action on a cell in a list view?
Answer: To enable a user to perform an action on a cell in a list view, you can set some
context actions that are menu items that raise an event, as shown in the following
markup:

<TextCell Text="{Binding CompanyName}"
 Detail="{Binding Location}"
 TextColor="{DynamicResource PrimaryTextColor}"
 DetailColor="{DynamicResource PrimaryTextColor}" >
 <TextCell.ContextActions>
 <MenuItem Clicked="Customer_Phoned" Text="Phone" />
 <MenuItem Clicked="Customer_Deleted" Text="Delete"
 IsDestructive="True" />
 </TextCell.ContextActions>
</TextCell>

4. When would you use an Entry instead of an Editor?
Answer: Use an Entry for a single line of text, and use an Editor for multiple lines of
text.

5. What is the effect of setting IsDestructive to true for a menu item in a cell's context
actions?
Answer: The menu item is colored red as a warning to the user.

6. When would you call the methods PushAsync and PopAsync in a .NET MAUI app?
Answer: To provide navigation between screens with built-in support to go back to the
previous screen, wrap the first screen in a NavigationPage when the app first starts, as
shown in the following code:

MainPage = new NavigationPage(new CustomersListPage());

To go to the next screen, push the next page onto the Navigation object, as shown in the
following code:

await Navigation.PushAsync(new CustomerDetailPage(c));

Appendix

[166]

To return to the previous screen, pop the page from the Navigation object, as shown in
the following code:

await Navigation.PopAsync();

7. What is the difference between Margin and Padding for an element like a Button?
Answer: The difference between Margin and Padding for an element like a Button is that
Margin is outside the Border, while Padding is inside the Border.

8. How are event handlers attached to an object using XAML?
Answer: Event handlers are attached to an object using XAML by setting an attribute
for the event name to the name of a method in the code-behind class, as shown in the
following markup:

<Button Clicked="SaveButton_Clicked">

9. What do XAML styles do?
Answer: XAML styles enable the setting of one or more properties.

10. Where can you define resources?
Answer: You can define resources in any element depending on where you want to
share those resources:

• To share resources throughout an app, define resources in the <Application.
Resources> element.

• To share resources only within a page, define resources in its <Page.Resources>
element.

• To share resources only in a single element like a button, define resources in its
<Button.Resources> element.

Chapter 20 – Protecting Your Data and
Applications

1. Of the encryption algorithms provided by .NET, which is the best choice for symmetric
encryption?
Answer: The AES algorithm is the best choice for symmetric encryption.

2. Of the encryption algorithms provided by .NET, which is the best choice for
asymmetric encryption?
Answer: The RSA algorithm is the best choice for asymmetric encryption.

3. What is a rainbow attack?
Answer: A rainbow attack uses a table of precalculated hashes of passwords. When a
database of password hashes is stolen, the attacker can compare against the rainbow
table hashes quickly and determine the original passwords.

Appendix

[167]

4. For encryption algorithms, is it better to have a larger or smaller block size?
Answer: For encryption algorithms, it is better to have a smaller block size.

5. What is a cryptographic hash?
Answer: A cryptographic hash is a fixed-size output that results from an input of
arbitrary size being processed by a hash function. Hash functions are one-way, which
means that the only way to recreate the original input is to brute-force all possible
inputs and compare the results.

6. What is a cryptographic signature?
Answer: A cryptographic signature is a value appended to a digital document to prove
its authenticity. A valid signature tells the recipient that the document was created by a
known sender and has not been modified.

7. What is the difference between symmetric and asymmetric encryption?
Answer: Symmetric encryption uses a secret shared key to both encrypt and decrypt.
Asymmetric encryption uses a public key to encrypt and a private key to decrypt.

8. What does RSA stand for?
Answer: Rivest-Shamir-Adleman, the surnames of the three men who publicly
described the algorithm in 1978.

9. Why should passwords be salted before being stored?
Answer: To slow down rainbow dictionary attacks.

10. SHA-1 is a hashing algorithm designed by the United States National Security Agency.
Why should you never use it?
Answer: SHA-1 is no longer secure. All modern browsers have stopped accepting SHA-
1 SSL certificates.

	Building and Consuming Specialized Services
	Understanding specialized service technologies
	Understanding Windows Communication Foundation (WCF)

	Exposing data as a web service using OData
	Understanding OData
	Building a web service that supports OData
	Defining OData models for EF Core models
	Testing the OData models

	Creating and testing OData controllers
	Testing OData controllers using REST Client
	Querying OData models
	Understanding OData operators
	Understanding OData functions
	Exploring OData queries

	Logging OData requests
	Versioning OData controllers
	Enabling entity inserts using POST
	Building a client for OData
	Adding a services page to the Northwind MVC website

	Exposing data as a service using GraphQL
	Understanding GraphQL
	Building a service that supports GraphQL
	Defining GraphQL schema for Hello World
	Defining GraphQL schema for EF Core models
	Exploring GraphQL queries with Northwind
	Understanding GraphQL mutations and subscriptions
	Building a client for GraphQL

	Implementing services using gRPC
	Understanding gRPC
	Building a gRPC service
	Building a gRPC client
	Testing a gRPC client to the gRPC service
	Implementing a gRPC service for an EF Core model
	Implementing a gRPC client for an EF Core model

	Implementing real-time communication using SignalR
	Understanding the history of real-time communication on the web
	Understanding XMLHttpRequest
	Understanding AJAX
	Understanding WebSocket
	Introducing SignalR
	Designing method signatures

	Building a live communication service using SignalR
	Defining some shared models
	Enabling a server-side SignalR hub
	Adding the SignalR client-side JavaScript library
	Adding a chat page to the Northwind MVC website

	Testing the chat feature
	Building a console app chat client

	Implementing serverless services using Azure Functions
	Understanding Azure Functions
	Understanding Azure Functions triggers and bindings
	Understanding Azure Functions versions and languages
	Understanding Azure Functions hosting models

	Setting up a local development environment for Azure Functions
	Building an Azure Functions project for running locally
	Using Visual Studio 2022
	Using Visual Studio Code
	Using the func CLI

	Reviewing the project
	Implementing the function
	Testing the function
	Publishing an Azure Functions project to the cloud
	Using Visual Studio 2022

	Cleaning up Azure resources

	Understanding identity services
	Summary of choices for specialized services
	Practicing and exploring
	Exercise 18.1 – Test your knowledge
	Exercise 18.2 – Explore topics

	Summary

	Building Mobile and Desktop Apps Using .NET MAUI
	Understanding the .NET MAUI delay
	Understanding XAML
	Simplifying code using XAML
	Choosing common controls
	Understanding markup extensions

	Understanding .NET MAUI
	Development tools for mobile first, cloud first
	Using Windows to create iOS and macOS apps

	Understanding additional functionality
	Understanding MVVM
	Understanding the INotificationPropertyChanged interface
	Understanding ObservableCollection
	Understanding dependency services

	Understanding .NET MAUI user interface components
	Understanding the ContentPage view
	Understanding the ListView control
	Understanding the Entry and Editor controls

	Understanding .NET MAUI handlers
	Writing platform-specific code

	Building mobile and desktop apps using .NET MAUI
	Creating a virtual Android device for local app testing
	Creating a .NET MAUI solution
	Creating a view model with two-way data binding
	Creating views for the list of customers and customer details
	Implementing the customer list view
	Implementing the customer detail view
	Setting the main page for the mobile app
	Testing the mobile app

	Consuming a web service from a mobile app
	Configuring the web service to allow insecure requests
	Configuring the iOS app to allow insecure connections
	Configuring the Android app to allow insecure connections

	Getting customers from the web service

	Practicing and exploring
	Exercise 19.1 – Test your knowledge
	Exercise 19.2 – Explore topics

	Summary

	Protecting Your Data and Applications
	Understanding the vocabulary of protection
	Keys and key sizes
	IVs and block sizes
	Salts
	Generating keys and IVs

	Encrypting and decrypting data
	Encrypting symmetrically with AES

	Hashing data
	Hashing with the commonly used SHA256

	Signing data
	Signing with SHA256 and RSA

	Generating random numbers
	Generating random numbers for games and similar apps
	Generating random numbers for cryptography

	Authenticating and authorizing users
	Authentication and authorization mechanisms
	Identifying a user
	User membership

	Implementing authentication and authorization
	Protecting application functionality
	Real-world authentication and authorization

	Practicing and exploring
	Exercise 20.1 – Test your knowledge
	Exercise 20.2 – Practice protecting data with encryption and hashing
	Exercise 20.3 – Practice protecting data with decryption
	Exercise 20.4 – Explore topics

	Summary

	Answers to the Test Your Knowledge Questions
	Chapter 1 – Hello, C#! Welcome, .NET!
	Chapter 2 – Speaking C#
	Exercise 2.1 – Test your knowledge
	Exercise 2.2 – Test your knowledge of number types

	Chapter 3 – Controlling the Flow and Converting Types
	Exercise 3.1 – Test your knowledge
	Exercise 3.2 – Explore loops and overflow
	Exercise 3.5 – Test your knowledge of operators

	Chapter 4 – Writing, Debugging, and Testing Functions
	Chapter 5 – Building Your Own Types with Object-Oriented Programming
	Chapter 6 – Implementing Interfaces and Inheriting Classes
	Chapter 7 – Packaging and Distributing .NET Types
	Chapter 8 – Working with Common .NET Types
	Chapter 9 – Working with Files, Streams, and Serialization
	Chapter 10 – Working with Data Using Entity Framework Core
	Chapter 11 – Querying and Manipulating Data Using LINQ
	Chapter 12 – Improving Performance and Scalability Using Multitasking
	Chapter 13 – Practical Applications of C# and .NET
	Chapter 14 – Building Websites Using ASP. NET Core Razor Pages
	Chapter 15 – Building Websites Using the Model-View-Controller Pattern
	Chapter 16 – Building and Consuming Web Services
	Chapter 17 – Building User Interfaces Using Blazor
	Chapter 18 – Building and Consuming Specialized Services
	Chapter 19 – Building Mobile and Desktop Apps Using .NET MAUI
	Chapter 20 – Protecting Your Data and Applications

	_Hlk75460558

